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part 1. In dynamics we consider a space X with a map T : X → X, or a one
parameter flow t ∈ R, φt : X → X such that φt+s = φs ◦ φt. The setting include
many problems from physics (examples...). Mathematicians used two frameworks
to answer questions about such a system:

Topological Dynamics -X a compact metrizable Hausdorff topological space.T :
X → X a homeomorphism.

Ergodic Theory - (X,B, µ) a measure space. T : X → X a measurable, measure
preserving map, i.e., for any A ∈ B, µ

(
T−1A

)
= µ(A). (the reason we’re taking

the inverse image is that the intersection of inverse image is the inverse image of
the intersection).

We are going to be interested in situations that allows very complicated dy-
namics.

add picture
Lets have a taste of one fundamental result in each of these settings:

Theorem 1 (Poincare’s recurrence theorem). (X,B, µ) a probability space. T :
X → X measurable, measure preserving. Then

∀A ∈ B µ(A) > 0 ∃n ≥ 1 T−n(A) ∩A 6= ∅.

Proof. T−n(A) ∩A = ∅ for all n. Suppose j > i ≥ 1. Then

T−j ∩ T−i(A) = T−i
(
T−(j−i)(A) ∩A

)
= ∅.
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Therefore the sets T−i(A), i = 1, 2, ... are pairwise disjoint. Now

1 ≥ µ(X) ≥ µ
( ∞⋃
i=1

T−i(A)
)

=
∞∑
i=1

µ
(
T−i(A)

)
=
∞∑
i=1

µ(A) =⇒ µ(A) = 0

is a contradiction. �

Theorem 2 (Folklore). If X is compact metrizable, T : X → X a homeomor-
phism, then there exists x0 ∈ X and nk →∞ such that Tnk(x0)→ x0. (x0 is called
a recurrent point).

Before proving the theorem we introduce a definition and a Lemma.

Definition 3. X0 ⊂ X is called minimal if:
(1) X0 is closed.
(2) T (X0) ⊂ X0
(3) For any Y ⊂ X0 satisfying (1) and (2), Y = ∅ or Y = X0.

Lemma 4. Any (X,T ) as in Theorem 2 contains a minimal set.

Proof. (of the Lemma) DenoteK = {X0 ⊂ X satisfying (1) and (2) and X0 6= ∅}
and order K by reverse inclusion, i.e.

X1 � X2 ⇐⇒ X1 ⊂ X2.

X0 ∈ K will satisfy (3) ⇐⇒ it is minimal element w.r.t �. Using Zorn Lemma
we’re done. �

Proof. (of Theorem 2) Suppose X0 ⊂ X minimal, x0 ∈ X0. Define

Y = {y : ∃nk →∞, Tnkx0 → y} .

Due to (1), Y ⊂ X0. X is compact and therefore Y is closed. Y is not empty and
therefore by minimality Y = X0 3 x0. (Note we got Y = {Tnx0 : n ∈ N}). �

What we realy want to do in science is to predict the future. There is a basic
idea in many sciences that one should look on equilibrium states. What we find in
dynamics is that there are very complicated equilibrium states. the main objective
will be to find/classify all invariant measure. In the case of a contracting fixed point
system, the only invariant measure is Dirac’s δ measure concentrated in the fixed
point. Indeed, by Poincare’s reccurence theorem, any positive measure set would
have to intersect itself - but it doesn’t (if not containing the fixed point).

add Picture.
The idea of ergodic theory is to reduce the study of invariant measures to the

study of ergodic invariant measures. A consequence of the ergodic decomposition
theorem and the pointwise ergodic theorem is that “if we understand all invariant
measures we will understand the asymptotics of all orbits”. For examples, sets
which assume zero measure under all the ergodic invariant measures - no orbit
will eventually spend time in them. The parallel part of ergodic measures in the
topolgical dynamics setting is played by minimal sets.s
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Part 2. A homogenuous space is a coset space of Lie groups: G is a Lie group.
H ⊂ G is a closed subgroup. X = G/H = {gH : g ∈ G}. G acts on X via
(g1g2)H = g1(g2H).

A Lie group is a manifold with group laws which are smooth. By smoothness we
mean partial derivatives of all orders exists. A manifold is something that locally
looks like Rn. The two group operations which are supposed to be smooth are
multiplication and inverse:

G×G → G

(g, h) 7→ gh

i : G → G

g 7→ g−1

Example 5. A few examples of Lie groups:
(1) (R,+). The map

R2 → R
(x, y) 7→ x+ y

is obviously smooth.
(2) S1 =

{
e2πiθ : θ ∈ R

}
. Multiplication as complex numbers (the same as

addition mod 1). Understand the meaning of smoothness by introducing
an atlas on S1.

(3) Matrix groups, e.g.
GLn(R) = {A ∈Mn(R) : det(A) 6= 0} ,
SLn(R) = {A ∈Mn(R) : det(A) = 1}

with group laws as matrices.

Remark 6. Similar definition, with “variety” instead of “manifold” and “alge-
braic” instead of “smooth” defines algebraic variety.

We want to put a topology on G/H.

Fact 7. (will be discussed later) G/H carries the structure of a manifold. The
map

π : G → G/H

π(g) = gH

is smooth and hence so is the map
G×G/H → G/H

(g1, g2H) 7→ (g1g2)H

Definition 8. An action of a group G on a set X is a map
G×X → X

(g, x) 7→ gx

that satisfies:
(1) (g1g2)x = g1(g2x). The relevant diagram is commutative.
(2) ex = x for all x ∈ X.
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If G is a Lie group and X is a manifold, we can speak of a Lie group action,
i.e. an action for which G × X → X is a smooth map of manifolds. G acts on
X = G/H via g1(g2H) = (g1g2)H. The action is well defined: If g2H = g3H then
there exists h ∈ H such that

g2 = g3h⇒ g1g2 = g1g3h⇒ (g1g2)H = (g1g3h)H = (g1g3)H.

Remark. Our definition is for right action. There is point in talking about
left actions.

Example 9. If G acts transitively on X (i.e., ∀x1, x2 ∈ X ∃g ∈ G such that
gx1 = x2) then X is in G-equivariant (see Definition11 below) bijection with G/H
where H = {g ∈ G : gx0 = x0} for some x0 ∈ X. Why? Choose x0 ∈ X, define
H = Gx0 = {g ∈ G : gx0 = x0} (this subgroup of G is called the stablizer of x0),
and a map

F : G/H → X

gH 7→ gx0

Onto: If x ∈ X, ∃g ∈ G such that gx0 = x (by transitivity), so gH 7→ x.
Injective: If g1H, g2H 7→ x then x = g1x0 = g2x0 ⇒ g−1

1 x = x0 = g−1
1 g2x0 ⇒

g−1
1 g2 ∈ H ⇒g1H = g2H (same argument for well defined).

Exercise 10. Check that the orbit map F is equivariant.

Definition 11. G acts on X1, X2. A map F : X1 → X2 is called G −
equiinvariant if ∀g ∈ G ∀x ∈ X gF (x) = F (gx).

Add diagram
X1

F−→ X2
g ↓ � ↓ g
X1

F−→ X2

Example 12. Some examples of homogenuous spaces:

(1) G = SLn(R), Γ = H = SLn(Z) = {A ∈Mn(Z) : det(A) = 1} (denoted
by gamma for historical reasons). To describe G/Γ, it’s enough to find
an action of G on a space X which is transitive, and for which Γ is the
stabilizer of a point.

X = {lattices in Rnof covolume 1}
= {Zv1 ⊕ ...⊕ Zvn : v1, ..., vn linearily independent with det(v1, ..., vn) = 1}

. G acts by
g(Zv1 ⊕ ...⊕ Zvn) = Zgv1 ⊕ ...⊕ Zgvn

E.g. if n = 2, any point of X is a subset of R2 that looks like
· ·

· · ·
· · ·

· · ·
This space will play important role in this course, and infact, most of
the difficulties in understanding the dynamics of in the general setting of
homogenuous spaces, appear already for this example.
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(2) G = SL2(R), X = H = {z ∈ C : Im(z) > 0}. There is a metric on H such
that SLn(R) is the group of isometries of H, acting by Mobius transfor-
mations (

a b
c d

)
z = az + b

cz + d

Exercise 13. This actions is transitive (appeared in diophantine ap-
proximation course last semester)

ThereforeH = G/(stabilizer of a point) (the stabilizer of i is SO(2,R)).
(3) 1 ≤ k ≤ n, Grk,n(R) = {k-dimensional linear subspaces of Rn} (Grass-

mannian). G = SLn(R) acts on Grk,n(R). Let L0 = span(e1, ..., ek)
where e1, ..., en is the standard basis of Rn.

Stab(L0) =


 ∗ ∗

0︸︷︷︸
n−k×k

∗


Picture of the disc model of the hyperbolic plane tesselated by copies of isometric
hyperbolic pentagons. The reason you can do it is because the angles are bigger
then what you expect (90 degrees. One actually needs only four pentagons to cover
a vertex).

Put a point in the center of each pentagon. There is a famous problem of count-
ing how many points there will be (asymptotically) in a big disc. The Euclidean
intuition says that the number of pentagons should be asymptotic to the area of
the disc divided by the area of the pentagon. But, looking at the picture of the
hyperbolic disc, we see that it is not at all clear - most of the pentagons intersecting
the disc are near the boundary of the disc. It is a theorem Margulis proved in his
thesis:

Theorem 14 (Margulis). N(R) ∼ area(B(v0,R))
area(pentagon) .

To prove it Margulis looked at
{(

et 0
0 e−t

)}
y SL2(R)/Γ. His method

applies to a much more general setting, but only recently more delicate estimations
appeared and it is still a very active research front) (complete open problem...).
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21.10

Part 1. We will describe few other applications of the method of proving by
translating the problem to a problem about dynamics on homogeneous spaces.

Theorem 15 (Oppenheim conjecture ’29 for n>4, ’50 n>2. Proved by Margulis
’86). Let Q be an indefinite nondegenerate quadratic form in n ≥ 3 variables. Then
either Q is a multiple of a rational form, or Q(Zn) is dense.

Definition 16. Q(v) = L(v, v) =
∑

1≤i,j≤n aijvivj where L : Rn × Rn → R
and v = (v1, ..., vn).

Any form can be put in the following shape by a change of variables

Q(v) = v2
1 + ...+ v2

p − v2
p−1 − ...− v2

p+q

where 1 ≤ p ≤ p+ q ≤ n and (p, q) is called the signature of the form.

Definition 17. A form is nondegenarate ⇐⇒ p+ q = n. A form is indefinite
⇐⇒ p 6= 0 and q 6= 0.

Geometric interpratation (take n = 2) for Q(v1, v2) = v2
1 − v2

2 = (v1 + v2)(v1 −
v2). After a change of variables, the level sets of Q are hyperbolas, and Z2 is
mapped to some lattice:

Q is a multiple of a rational form⇐⇒ ∃λ 6= 0 s.t. λaij ∈ Z ∀i, j . In this case
Q(Zn) ∈ λ−1Z, so not dense.

The theorem is false for n = 2: Let α ∈ R \Q, α > 0, be badly approximable,
and assume α2 /∈ Q. ∃C > 0 such that all p, q ∈ Z, q 6= 0 satisfy∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2 .

Now consider the form Q(x, y) = x2 − α2y2. For all p, q ∈ Z we have, if q 6= 0∣∣p2 − α2q2∣∣ = q2
∣∣∣∣p2

q2 − α
2
∣∣∣∣ = q2

∣∣∣∣pq − α
∣∣∣∣ ∣∣∣∣pq + α

∣∣∣∣ ≥ q2
∣∣∣∣pq − α

∣∣∣∣α ≥ q2 C

q2α = Cα > 0,
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wlog p
q is close to α than −α so

∣∣∣pq − α∣∣∣ ≥ ∣∣−α−α2
∣∣ = α. If q = 0 than Q (p, q) =

p2 ≥ 1.
(Complete reduction to Ratner’s theorem...)

Definition 18. x = (x1, ..., xd) ∈ Rd is called VWA (very well approximable)
if ∃ε > 0 such that there ∞-many solutions p ∈ Zd, 0 6= q ∈ Z to∥∥∥∥x− 1

q
p

∥∥∥∥ ≤ 1
q1+ 1

d+ε .

This is usually not the case.

Theorem 19 (Dirichlet). ∀x ∈ Rd, for all Q > 0 there are solutions to∥∥∥∥x− 1
q
p

∥∥∥∥ ≤ 1
qQ

,

q < Qd

In particular, if x /∈ Qd, there are ∞-many solutions to∥∥∥∥x− 1
q
p

∥∥∥∥ ≤ 1
q1+ 1

d

.

Definition 20. x = (x1, ..., xd) ∈ Rd is called MVWA (multiplicatively very
well approximable) if ∃ε > 0 such that there are∞-many solutions p ∈ Zd, 0 6= q ∈
Z to

d∏
i=1
|qxi − pi| ≤

1
q1+ε .

Claim. VWA =⇒ MVWA

Proof. Note that we didn’t define the norm in the definition of VWA, but it
doesn’t matter because the constant will be digested by the exponent. Using the
supremum norm:

max
i

∣∣∣∣xi − pi
q

∣∣∣∣ ≤ 1
q1+ 1

d+ε ⇒

max
i
|qxi − pi| ≤

1
q

1
d+ε

Therefore, multiplying all coordinates we get
d∏
i=1
|qxi − pi| ≤

(
1

q
1
d+ε

)d
≤ 1
q1+dε .

�

Theorem 21 (Kchinchine, 30’s). A.e. x (w.r.t. Lesbesgue measure) is not
VWA.

One can show more: a.e. x is not MVWA.

Conjecture 22 (Mahler, proved by Sprindzhuk). For a.e. (x, x2, ..., xd) is
not VWA. (i.e., in Kchinchine’s theorem, replace Lebesgue measure on Rd with the
length measure on the curve

{
(x, x2, ..., xd) : x ∈ Rd

}
).
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Problem 23.
1. Can we replace the curve

{
(x, x2, ..., xd) : x ∈ Rd

}
by other manifolds?

2. Can we replace VWA by MVWA?
Sprindzhuk and Baker proved that “yes” for both problems.
Theorem 24 (Kleinbock-Margulis). Let C be an analytic nondegenerate curve

(analytic: C = (c1(t), ..., cd(t)), ci(t) is an analytic function. nondegenerate: not
contained in a proper affine subspace). Then a.e. x ∈ C is not MVWA.

Definition 25. Let 0 < ε ≤ 1. A vector x ∈ Rd is called ε-Dirichlet-improvable
(DI(ε)) if ∃Q0 ∀Q > Q0 there exists a solution to:∥∥∥∥x− 1

q
p

∥∥∥∥
∞
≤ ε

qQ
,

q < εQd

Theorem 26 (Davenport and Schmidt, 60’s). If ε < 1 then the Lebesgue mea-
sure of DI(ε) vectors is zero.

Conjecture 27 (Baker and Schmidt, 60’s, proved by Shah 2010). If ε < 1,
then for any nondegenarate analytic curve C, the measure of the set of DI(ε) w.r.t
the length measure is zero.

All the theorems were proved using the dynamics ofgt =


et

. . .
et

e−dt


y SLd+1(R)/SLd+1(Z).

Part 2. Fix the following notation: < x >= dist(x,Z) = mink∈Z |x− k|.
Conjecture 28 (Littlewood 30’s). ∀α, β ∈ R

(1) lim inf
n→∞

n < nα >< nβ >= 0.

Remark. α is notBA⇐⇒lim infn→∞ n < nα >= 0, and thereforelim infn→∞ n <
nα >< nβ >= 0.

Theorem 29 (Einsiedler-Katok-Lindenstrauss). dim ({(α, β) : 1 fails }) = 0
They proved it by using ?

?
?

y SL3(R)/SL3(Z).

Fix N ∈ N and consider {
√
n mod 1 : n = 1, ..., N} = {t1 < ... < tN} . Define

J(N) = {tn+1 − tn : n = 1, ..., N − 1}:
Theorem 30 (Elkies-McMullen 99). There exists analytic F1, F2 : R → R

(given explicitly) such that if we define

F (t) =


6
π2 t ∈ [0, 1

2 ]
F1(t) t ∈ [ 1

2 , 2]
F2(t) t ≥ 2

Then #{J∈J(N):NJ∈[a,b]}
N −→

∫ b
a
F (t)dt
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Remark 31. An average gap has length 1
N (complete picture...)

(1) If instead of looking at {
√
n mod 1} we looked at random points (inde-

pendent, distributed according to Lebesgue) then almost surely, a similar
result holds, with F (t) replaced by e−t.

(2) The “non-standard” frequency for {
√
n mod 1} was discovered by numer-

ical experiments (Boshernitzan). Numerically, for all 0 < α < 1, α 6= 1
2 ,

the gap frequencies for {nα mod 1} seem to behave like those random
sequences, i.e. according to density e−t.

(3) The proof is using et

e−t

1

y SL2(R)nR2
/SL2(Z)nZ2.

Theorem 32 (Marklof and Strombergssonn, Visibility in a forest). Λ ⊂ Rd is
a lattice, ρ > 0, Kρ = Rd \ (Λ +Bρ(0)). If q ∈ Kρ, v ∈ Sd−1,

τ(q, v; ρ) = inf {t > 0 : q + tv /∈ Kρ} .

Fix q ∈ Rd \ Λ. Then ∃Φ = ΦΛ,q : (0,∞)→ (0,∞),
∫∞

0 Φdt = 1 such that

lim
ρ→∞

λ

({
v ∈ Sd−1 : τ(q, v; ρ) ≥ ξ

ρd−1

})
=
∫ ∞
ξ

Φ(t)dt.

Moreover, ∃Φ0 such that for all Λ, a.e. q, Φ0 = ΦΛ,q

The theorem was proved using the homogeneous dynamical system
?

. . .
?

1

y SLd(R)nRd/SLd(Z)nZd.

Remark 33. For the Poisson forest, the function is different.

Part 3 - Crash course on manifolds. In all the examples we saw a space
G/Γ. We will describe a general context where it is possible to take this factor and
get good properties. In our cases usually Γ is discrete and it is a little easier then
the general case.
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Real algebraic groups⊂ Lie groups ⊂Locally compact second countable (lcsc)
topological groups.

It is not hard to define a Lie group which is not real algebraic. Nevertheless, one
of the big achievements of the 20th century mathematics (Weil, Chevaly, Killing,
Cartan...) was the classification of Lie groups. One of the outcomes of it, is a proof
that any semisimple Lie group have models as real algebraic groups! In the last
context, it is possible to construct the Haar measure.

Definition 34. An n-dim manifold M is a separable topological space, with
an atlas of charts, i.e. {(Uα, ϕα)}α∈A such that

(1) Each Uαis open, M =
⋃
α∈A Uα

(2) ϕα : Uα → Rn is a homeomorphism onto its image, which is homeomorphic
to a ball.

(3) ϕβϕ−1
α : ϕα(Uα ∩ Uβ) → Rn is smooth for any α, β. This is called the

transition maps.

Remark 35. In this course and in many other cases, smooth will mean C∞.
One can take continuous, Ck, analytic.

At each point p ∈ M there is an n-dimensional vector space TpM , called the
tangent space to M at p. The tangent space should tell us something about infini-
tesimal motions along the manifolds.

We give two definitions:
(1) Geometric - Derivatives of smooth paths: Define an equivalence relation

on paths γ : (−ε, ε) → M, γ(0) = p by γ1 ∼ γ2 if for any (some) α such
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that p ∈ Uα,
d

ds

∣∣∣∣
s=0

ϕα ◦ γ1 = d

ds

∣∣∣∣
s=0

ϕα ◦ γ2.

Then Tp(M) = {equivalence classes}.
(2) Algebraic: If f : M → R and γ : (−ε, ε) → M, γ(0) = p then we have a

map: “directional derivative of f at p along γ”
d

ds

∣∣∣∣
s=0

f ◦ γ.

Well defined (depends only on equivalence class of γ. It is a derivation:
D : C∞(M) → R linear such that D(fg) = D(f)g(p) + f(p)D(g). The
algebraic definition of Tp(M) is just the space of all derivations on C∞(M)

Theorem 36. γ 7→ d
ds

∣∣
s=0 f ◦ γ is a bijection. The dimension of the resulting

vector space is n.
Definition 37. (The tangent bundle ofM) T (M) = {(p, v) : p ∈M, v ∈ Tp(M)} =∐

p∈M Tp(M).
This is the definition as a set.
Theorem 38. T (M) is a manifold of dimnesion 2n.
Proof. (Idea) If (U,α) is a coordinate chart on M ,

(Uα × Rn, (ϕα,derivative using ϕα))
is a coordinate chart on T (M). �

Definition 39. A vector field on M is a smooth map X : M → T (M) such
that X(p) = (p, ·). In other words, if π : T (M)→M is the natural projection, then
π ◦X = id.

Definition 40. Riemannian metric is a smooth varying inner product on each
Tp(M). I.e., for each p, we have (·, ·)p : Tp(M)×Tp(M)→ R an inner product, such
that if X,Y are any two vector fields on M , then

p 7→ (X(p), Y (p))
is smooth.

A manifold M , with a fixed Riemannian metric, is called a Riemannian mani-
fold.

Definition 41. Given smooth curve γ : (a, b)→M , the length of γ is∫ b

a

‖γ′(t)‖p dt =
∫ b

a

(γ′(t), γ′(t))
1
2
γ(t) dt.

(This infact only dependens the image of the curve and not the parametriza-
tion).

Using this we can define a metric
Theorem 42. On a riemannian manifold,

d(p, q) = inf `(γ)
where the infimum is over all smooth curves γ : (a, b)→M from p to q and `(γ) is
the length of γ is a metric.
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Part 1. U ⊆ Rn, f : U → Rm, p ∈ U .

Dpf : Rn → Rm

is the linear map that best approximate f , in the sense that

f(p+ h)− f(p) = Dpf(h) + o(‖h‖)
(if there is no such linear map we say that f is not differtiable). In a more

concrete way, if the partial derivatives exist and smooth then this is equal to(
∂fi
∂xj

(p)
)
i=1,...,m,j=1,...,n

.

Theorem 43. (Chain rule) given Rn f→ Rm g→ Rk, we have

Dp (g ◦ f) = Df(p)gDpf

For manifolds, assume f : X → Y is a map between manifolds, if p ∈ X then
Dpf : Tp(X)→ Tf(p)(Y ) is defined by [γ] 7→ [f ◦ γ].

Definition 44. If X is a manifold, {Uα} is a cover by open sets, then partition
of unity subordinate to {Uα} is a collection ψα : Uα → R of smooth functions, such
that ψα(x) ∈ [0, 1] for all x ∈ X, ψα|X\Uα = 0,

∑
α ψα(x) = 1.

Theorem 45. Partitions of unity exist.

A volume element on a Riemannian manifold. Motivation: On Rn, we
have the Riemann integral. For f : U → R, U open in Rn, there exists a change of
variable formula: given g : V → U which is one-to-one,∫

g(V )
f(z)dz =

∫
V

f(g(x)) |Jac(g)(x)| dx.

Other notation: dx = dx1dx2...dxn. Note that we have for example dx1dx2 =
dx2dx1 (this is a consequence of the Fubini’s theorem) (remark about that applying
Fubini’s is only possible when the limits of the integrals are in the right order).

Let g be a Riemannian metric on X, f : X → R smooth, {ψα} is a partition of
unity. f(x) =

∑
α ψα(x)f(x) so it is enough to know how to integrate each one of

the ψαf , and these vanish outside Uα. So we define,∫
X

f(x)dx =
∫
ϕα(Uα)

f ◦ ϕ−1
α (x)

√∣∣det gα
(
ϕ−1
α (x)

)∣∣dx,
where gαi,j(p) = g

(
Dϕα(p)ϕ

−1
α (ei), Dϕα(p)ϕ

−1
α (ej)

)
and {ei}is the standard basis for

Rn (look at the drawing to understand where this formula comes from). We will
discuss two things: well defineness and the sign issue.

Lemma 46. If g is a bilinear form on Rn, A : Rn → Rn linear transformation,

det
(
g (Aei, Aej)i,j

)
= (detA) 2 det

(
g (ei, ej)i,j

)
.

(the matrix on the right side is called the Grahm matrix of g w.r.t. to a basis
e1, ..., en.)
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Proof. DenoteB = (g(ei, ej)) ∈Mn(R). Then g(u, v) = utBv⇒ g(Au,Av) =
(Au)tB(Av) == utAtBAv so

det
(
g (Aei, Aej)i,j

)
= det

(
AtBA

)
= (detA) 2 det (B) = (detA) 2 det

(
g (ei, ej)i,j

)
.

�

We will use this lemma to prove the well defineness of the integral. Assume we
are integrating over Uα ∩ Uβ , by change of variables, y = ϕβ ◦ ϕ−1

α (x), we get∫
ϕα(Uα)

f◦ϕ−1
α (x)·

√
det gα

(
ϕ−1
α (x)

)
dx =

∫
ϕβ(Uβ)

f◦ϕ−1
β (y)·

√
det gα

(
ϕ−1
β (y)

)
·
∣∣∣Jac(ϕα ◦ ϕ−1

β

)∣∣∣ dy.
So we have to prove

√
|det(gβ)| =

∣∣∣det
(
g
(
Dϕ−1

β (ei), Dϕ−1
β (ej)

))∣∣∣ 1
2

=
∣∣∣det

(
g
(
Dϕ−1

α ◦Dϕα ◦Dϕ−1
β (ei), Dϕ−1

α ◦Dϕα ◦Dϕ−1
β (ej)

))∣∣∣ 1
2

=
∣∣∣Jac(ϕα ◦ ϕ−1

β

)∣∣∣ ∣∣∣det
(
g
(
Dϕ−1

α (e
′

i), Dϕ−1
α (e

′

j)
))∣∣∣ 1

2
.

The Lebesgue integral is more general than the Riemann integral, but in prac-
tice we usually use the Riemann integral and the change of variables to make
calculations, rather than using the Lebesgue integral and the Radon-Nikodym de-
rivative. But the truth is that there are some more problems with the Riemann
integral. For example, there exist an integrable function f and a continuous func-
tion g, such that f ◦ g is not integrable. Also in dimension bigger than 1, one need
to carry in mind that the change of variables formula is true only for one-to-one
maps (one dimensional discussion on the Riemann integral and how does the chage
of variables is working also in the non-monotonic case).

This is why one wish to work with a volume form, in order to allow any change
of variables in higher dimensional integration. This is done by some algebra that
is required after realizing that the following should be true:∫

f(x)dx1 ∧ dx2 ∧ ... ∧ dxn = −
∫
f(x)dx2 ∧ dx1... ∧ dxn.

The meaning of this in manifolds is that when Jac
(
ϕα ◦ ϕ−1

β

)
= det

(
Dϕα ◦Dϕ−1

β

)
is positive everywhere we say that X is oriented, and we can replace volume element
by volume form.

Part 2. Now that we know everything there is to know about Riemannian
manifolds...

Theorem 47. Closed subgroup of a Lie group is a Lie group.

Proof. (Not so easy... We prove below the case of SLn(R). see Raghunathan
“discrete subgroups of Lie groups” for the general case). �

Fact 48. (Implicit function theorem) n,m > 0, f : Rn+m → Rm smooth,
p = (a, b) ∈ Rn+m. Assume rankDpf = m, and w.l.o.g. det

(
∂fi
∂yj

(p)
)
6= 0. Then

∃U open in Rn,V ⊆ Rm open, v ∈ V , g(a) = b, g : U → V smooth s.t.
{q ∈ U × V : f(q) = f(p)} = {(x, g(x)) : x ∈ U} .
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Equivalently, there exists a neighborhood W of p such that W ∩f−1(c) is a manifold
where c = f(p), with dimension m.

Theorem 49. SLn(R) is a manifold.

Proof. SLn(R) = det−1(1) and det : Mn(R) → R is smooth. In order to
show that SLn(R) is a manifold, it’s enough to show rank (Dx(det)) = 1 for any
x ∈ SLn(R). Let e ∈ SLn(R) be the identity e = In×n.

Dedet (v) = d

dt

∣∣∣∣
t=0

det


1 + t

1
. . .

1

 = d

dt

∣∣∣∣
t=0

(1 + t) = 1,

for the vector v =


1 + t

1
. . .

1

. Since det has image in R, to prove

full rank, it’s enough to prove De det 6= 0 and we just showed that.
For any g ∈ SLn(R),

Lg−1 : Mn(R) → Mn(R)
h 7→ g−1h

is a diffeomorphism of Mn(R), and its inverse is Lg. We have

det
(
Lg−1h

)
= det

(
g−1h

)
= det

(
g−1)︸ ︷︷ ︸

fixed number

det (h) .

By the chain rule: Dg(Lg−1 ◦det) = De(det)·Dg

(
Lg−1

)
. Therefore by using the

above equality, Dg(det) = det (g)De(det)Dg

(
Lg−1

)
and sinceDe(det) has full rank,

and Lg−1 is invertible (so Dg

(
Lg−1

)
is invertible), Dg(det) also has full rank. �

Review - Nattali and Erez (17/12/13).
If G is lcsc group then G has two measures, µ and ν , called left and right

Haar measures, respectively. We will state things for lcsc groups but prove for Lie
groups.

Definition 50. Let µ be a measure:
(1) µ is called Borel if the σ-algebra is the Borel σ-algebra (the smallest which

contains the all open sets).
(2) µ is regular if for any A ∈ B we have

µ(A) = sup {µ(K) : K ⊆ A is compact} = inf {µ(V ) : V ⊇ A is open} .

(3) µ is Radon, if µis regular and µ(K) <∞ for any compact K.

Theorem 51. (Existence of Haar measure and properties)
(1) There exist invariant measures µ and ν invariant under left and right

multiplication, respectively.
(2) Up to a scalar multiplication, µ and ν are the unique Radon measures

satisfying 1.



28.10 15

(3) There exists a homomorphism ∆G : G → R∗≥ (multiplicative group of
positive reals) so that for any A ∈ B, ∀g ∈ G, µ

(
gAg−1) = ∆G(g)µ(A)

and ν
(
gAg−1) = ∆G(g)ν(A).

(4) µ(K) <∞ when K is compact, µ(O) > 0 if O is open.
(5) µ(G) <∞ ⇐⇒ G is compact.

Proof. (For Lie groups)
(1) We will define µ. We saw that if we have a Riemannian metric on a

manifold, we can use it to define a volume element, and then by partition
of unity - a measure (by Riesz representation theorem, a regular Borel
measure is uniquely determind by the integral of all compactly supported
continuous functions). We will construct a Riemannian metric on T (G)
which is invariant under left multiplication, and this will yield a left in-
variant measure.
Let (·, ·)e denote any inner product on Te(G). For any g ∈ G, we have
Dg

(
Lg−1

)
: Tg(G)→ Te(G) so define

(u, v)g =
(
Dg

(
Lg−1

)
(u), Dg

(
Lg−1

)
(v)
)
e

for any u, v ∈ Tg(G) (“Transporting” the inner product to all Tg(G) by
left multiplication. A discussion about contra vs co variant objects, mea-
sures vs Riemannian metric). By construction and the chain rule it is left
invariant: For any g, g1 ∈ G, u, v ∈ Tg1G, the map Dg1Lg : Tg1G→ Tgg1G
satisfy

(Dg1 (Lg) (u), Dg1 (Lg) (v))gg1
=

(
D(gg1)−1

(
L(gg1)−1

)
Dg1 (Lg) (u), D(gg1)−1

(
L(gg1)−1

)
Dg1 (Lg) (v)

)
e

=
(
Dg1

(
Lg−1

1

)
(u), Dg1

(
Lg−1

1

)
(v)
)
e

= (u, v)g1

(This proof usually does not appear in textbooks because they deal with
the more general case of lcsc groups).

(2) Uniqueness: Let µ1 and µ2 be regular Borel left-invariant measures. Let
µ3 = µ1 + µ2. Then µ1, µ2 � µ3. Enough to show that µ1 is a scalar
multiple of µ3. Let h be the Radon-Nikodym derivative dµ1

dµ3
. I.e., ∀f ∈

Cc(G),
∫
G
fdµ1 =

∫
G
fhdµ3. To show µ1 = cµ3, it is enough to show

h = const µ3-a.e. Let z ∈ G,∫
f(g)h(g)dµ3(g) =

∫
f(g)dµ1(g)

=
∫
f(zg)dµ1(g)

=
∫
f(zg)h(g)dµ3(g)

=
∫
f(g1)h(z−1g1)dµ3(g1)

(Add reasoning above...). Since this identity holds for all f , we have
h(g) = h(z−1g). So h is a.e. constant.
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(3) Let us first show that for any A ∈ B we have that µ(A)
µ(gAg−1) is independent

of A (as long as the denominator 6= 0). Define a measure ν0 by ν0(A) =
µ
(
A−1). Since µ is left invariant:

ν0(Ag) = µ
(

(Ag)−1
)

= µ
(
g−1A−1) = µ

(
A−1) = ν0(A).

Similarly, for any g0 ∈ G, we have that νg0 which is defined by νg0(A) =
µ
(
A−1g−1

0
)
is right invariant. By 2, there is a scalar c(g0) such that

νg0 = c(g0)ν0. Now define
∆G : G → R∗≥
∆G(g0) 7→ c(g0).

Then ∀A ∈ B,
µ
(
A−1g−1

0
)

= νg0(A) = ∆G(g0)ν0(A) = ∆G(g0)µ
(
A−1)

and by left invariance of µ, for all A ∈ B for which µ
(
A−1) > 0, we have

that ∆G(g0) = µ(g0A
−1g−1

0 )
µ(A−1) is independent of A. Now it is clear that

∆G(gg0) =
µ
(
gg0A

−1 (gg0)−1
)

µ (A−1) =
∆G(g)µ

(
g0A

−1g0
−1)

µ (A−1) = ∆G(g)∆G(g0).

(4) Clear.
(5) ⇐= is just 4. For =⇒, Let c = µ(G) <∞. Since µ is regular, there exists

a compact K such that µ(K) > c
2 . For any x ∈ G, µ(K) = µ(xK) so

K ∩ xK 6= ∅, therefore ∃k1 = xk2 k1, k2 ∈ K. So x = k1k
−1
2 ∈ KK−1.

Therefore G is the image of K×K under the map (g1, g2) 7→ g1g
−1
2 which

is clearly continuous. But a continuous image of a compact is compact,
therefore G is compact.

�

4.11

Part 1.

Definition 52. A Lie algebra is a vector space g equiped with a bilinear
g× g → g

(u, v) 7→ [u, v]
called Lie bracket such that:

(1) [x, x] = 0.
(2) [x, [y, z]] + [z, [x, y]] + [y, [z.x]] = 0 (Jacobi identity)

The Lie algebra of a Lie groupG is g = Te(G). To define the bracket, for any
g ∈ G define

intg : G → G

h 7→ ghg−1,

and Ad(g) = De(intg) : g → g. Conjugation satisfies intg1 ◦ intg2 = intg1g2 .
This implies that Ad : G → GL(g) is a homomorphism. So we can take its
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derivative: define ad = De(Ad). Now ad : g → TId(GL(g)) = gl(g). Define
[x, y] = ad(x)(y) ∈ G (follow the diagram...).

Exercise 53. Check that the Jacobi identity is satisfied.

More concretely, if g ∈ G what is Ad(g)? Let v ∈ g be represented by γ :
(−ε, ε)→ G smooth such that γ(0) = e. Then,

Ad(g)(v) = d

dt

∣∣∣∣
t=0

gγ(t)g−1.

If u, v ∈ g are represented by paths α(t), γ(t) then

[u, v] = d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

α(t)γ(t)α(t)−1 = d

ds

∣∣∣∣
s=0

Ad(α(s))(v).

It looks scarry but we can actually make calculations using it. If G is abelian
then nothing interesting is happening because always [u, v] = 0. In general we get
a linear model for the Lie group which is very helpful. What is the relation to haar
measure?

Exercise 54. ∆G(g) = µ(gAg−1)
µ(A) = |det(Ad(g))|.

This is a very important identity. (complete discussion about the algebraic
nature...). There is no analogue for general topological groups.

Finally: the quotient G/Γ. For a topological space X and an equivalence
relation on X we can sometimes talk about the quotient topology Y = X/∼ by
looking on

π : X → Y

x 7→ [x]

and define open sets in Y as U ⊆ Y such that π−1(U) is open in X. Suppose
Γ is discrete, i.e., ∀γ ∈ Γ∃U ⊆ G open set such that Γ ∩ U = {γ}⇐⇒ γn −−−−→

n→∞
γ0

iff γn = γ for all sufficiently lafrge n ⇐⇒ ∃U ⊆ G open such that U ∩ Γ = {e}.

Remark 55. One can form a nice quotient, i.e., a smooth manifold structure
on G/Γ which defines the quotient topology, whenever Γis closed. We will only
carry this out for Γ discrete.

Recall: G is equipped with a right-invariant Riemannian metric therefore the
path metric on G is right-invariant: dG(g1, g2) = inf {`(γ)} where

`(γ) =
∫ b

a

‖γ′(t)‖γ(t) dt.

dG is right-invariant by construction, i.e, dG(g1, g2) = dG(g1h, g2h) for all
g1, g2, h ∈ G. In general dG is not left invariant. If it were then for all g, h ∈ G,

dG(e, h) = dG(g, hg) = d(e, g−1hg).

This is not the case in general: Take G = SL2(R), g =
(

2 0
0 1

2

)
, h =(

1 1
0 1

)
, g−1hg =

(
1 1

4
0 1

)
, g−nhgn =

(
1 1

4n
0 1

)
. Then we can apply the

above equality again and again and get contradiction.
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Definition 56. Let X = G/Γ, π : G → X the natural projection defined by
π(g) = gΓ.

dX (π (g1) , π (g2)) = inf
γ1,γ2∈Γ

dG (g1γ1, g2γ2) = inf
γ∈Γ

dG (g1, g2γ) .

Remark 57. Easy to check that this is a metric. The fact that x1 6= x2 ⇒
dX (x1, x2) > 0 follows from the discreteness of Γ. Also easy to check that inf = min .

Lemma 58. ∀K ⊆ X compact ∃r = r(K) > 0 such that ∀x0 ∈ K.

BG(e, r) → BX(x0, r)(2)
g 7→ gx0

is an isometry. In fact, for K = {x0}, can take

(3) r = 1
4 inf
{γ∈Γ,γ 6=e}

{dG(hγ, h)}

where x0 = π(h).

Proof. Suffices to prove the lemma when K = {x0} , because if r satisfies
that 6 is an isometry then 6 is also an isometry for every x′ ∈ BX(x0,

r
2 ) with r

2
instead of r. Now cover K by finitely many balls to get general case. (add diagram
of G over the quotient...). Note: r in 3 is positive beacuase Γ is discrete. Let
g1, g2 ∈ BG(e, r). Then

dX (g1x, g2x0) ∈ dX (g1π(h), g2π(h)) = inf
γ∈Γ

dG (g1h, g2hγ) = inf
γ∈Γ

dG
(
g1, g2hγh

−1) .
Want to show it is attained for any γ ∈ Γ. γ = e and γ 6= e. For γ ∈ Γ, if
dG
(
g1, g2hγh

−1) = dG (g1, g2) < 2r, Then

dG
(
g2hγh

−1, e
)
≤ d

(
g2hγh

−1, g1
)

+ dG (g1, e) < 3r.

Similarly,

dG
(
hγh−1, e

)
= dG

(
e, hγ−1h−1) ≤ dG (e, g2)+dG

(
g2, hγh

−1) ≤ r+dG (g2hγh
−1, e

)
< 4r.

So dG(hγ, h) < 4r and therefore γ = e. �

Definition 59. For fixed g0 ∈ G, the injectivity radius of π at g0 is

r0(g) =
{
r : BG(e, r)→ BX(π(g0), r)

g 7→gπ(g0)
is and isometry

}
.

Sometimes we denote r0(x) = r0(g) if x = π(g) and call it the injectivity radius of
X at x.

Corollary 60. If K ⊆ X is compact then ∃K ′ ⊆ G compact such that
π(K ′) = K.

Proof. Exercise. �
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Part 2. Some definitions relevant for the exercise sheet:

Definition 61. G is called simple if dimG > 1 if it contains no proper closed
connected normal (Lie) subgroups.

G is called semisimple if G contains simple subgroups G1, ..., Gn, with Gi ∩Gj
discrete for i 6= j, such that ∀g1 ∈ Gi, g2 ∈ Gj , g1g2 = g2g1 and G is generated by
G1, ..., Gn.

We will continue to use the last theorem proved at the end of the last part.

Definition 62. A fundamental domain for G/Γ (sometiomes called fundamen-
tal domain for right action of Γon G) is a measurable F ⊆ G such that ∀g ∈ G
there exists a unique γ ∈ Γsuch that gγ ∈ F . This is true ⇐⇒ G =

∐
γ∈Γ Fγ.

Example 63. G = R2, Γ = Z2. One fundamental domain is F1 = [0, 1)× [0, 1).
Other fundamental domains: take any two vectors v1, v2 ∈ Z2 with |det(v1, v2)| = 1,

F2 = {sv1 + tv2 : s, t ∈ [0, 1)} .

For A = (v1; v2) we have Aei = vi, i = 1, 2 so A(F1) = F2.

Exercise 64. Prove that F2 is a fundamental domain.

Lemma 65. If Γ < G is discrete then there exists a fundamental domain.

Proof. Let π : G→ X be the projection. We claim that there exist sets Bn,
n ∈ N open so that π|Bn is one-to-one and G =

⋃
Bn, and such that the following

diagram commutes: BG(h, r) = BG(e, r)h. Cover G by BG(h, r) with r = r(h) and
take a countable subcover (we can do it since G is σ-compact), and denote Bn =
BG(hn, rn). Now define sets Fn recursively by F1 = B1, F2 = B2 \π−1(π(B1)), and
in general for every n ∈ N define Fn = Bn \ π−1 (π (B1 ∪ ... ∪Bn−1)). Now let

F =
∞⋃
n=1

Fn.

F is a fundamental domain if and only if ∀g ∈ G there is a unique γ ∈ Γ such that
gγ ∈ F . By construction, there is a unique f ∈ F such that π(f) = π(g) so f, g are
in the same coset, therefore there exists γ ∈ Γ such that gγ = f ∈ F . �

Remark 66. Can similarly prove that if Y1, Y2 are measurable subsets of G
such that π|Y1

is injective and π(Y2) = X, then there exists a fundamental domain
F such that Y1 ⊆ F ⊆ Y2.

Lemma 67. If F1, F2 are fundamental domains for G/Γ and ν is right invariant
haar measure on G then ν(F1) = ν(F2).

Proof. ∀x ∈ F1 there exists a unique γ = γx such that xγ ∈ F2. Let F1(γ) =
{x ∈ F1 : γx = γ}. Then F1 =

∐
γ∈Γ F1(γ). So

⋃
F1(γ)γ ⊂ F2 is a fundamental

domain (intersects every Γ orbit since F1 intersects every Γ orbit). Therefore,⋃
F1(γ)γ = F2. Now we use right invariance of the measure ν to get

ν (F1) =
∑
γ∈Γ

ν (F1(γ)) =
∑
γ∈Γ

ν (F1(γ)γ) = ν (F2) .

�
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Remark 68. More generally, the proof will work the same for ν that is only
right invariant under multiplication by all elements of Γ). Note that in this proof we
really use the fact that Γ is discrete. Also, a similar argument shows that if Y ⊂ G,
π|Y1

is injective and F1, F2 are two fundamental domains then (complete...).

Proposition 69. TFAE:
(1) ∃ a G invariant probability measure on G/Γ.
(2) ∃F ⊂ G a fundamental domain for G/Γ with µ(F ) < ∞, where µ is left

haar measure on G, and µ is also right Γ-invariant.

Proof. We will prove only the direction we’ll use. The other direction is a bit
technical and is left as an exercise.

2 ⇒ 1. Define mx on X as follows: mx(A) = 1
µ(F )µ

(
F ∩ π−1(A)

)
for any

A ⊂ X. Clearly, it is aprobability measure. Suppose g ∈ G, A ⊂ X. Then

µ(gA) = 1
µ(F )µ

(
F ∩ gπ−1(A)

)
= 1

µ (g−1F )µ
(
g−1F ∩ π−1(A)

)
= 1

µ(F )µ
(
F ∩ π−1(A)

)
= mx(A),

where the one before last equality follows from the fact that g−1F is also a
fundamental domain (why...). �

Exercise 70. prove the other direction, 1⇒ 2.

Definition 71. Γ is called a lattice in G if G/Γ admits a G-invariant proba-
bility measure.

Γ is called a uniform lattice (cocompact lattice) if additionaly G/Γ is compact.
Otherwise G/Γ is called non-uniform.

Example 72. Zdin Rd is a cocompact lattice. SLd(Z)is a non-uniform lattice
in SLd(R).

Definition 73. A sequence (xn) in X is called divergent (notation: xn −−−−→
n→∞

∞) if ∀K ⊆ X compact ∃n0∀n ≥ n0 xn /∈ K. Equivalently, has no convergent
subsequence.

Proposition 74. Let Γ be a lattice in G, X = G/Γ, (xn). TFAE:
(1) xn −−−−→

n→∞
∞.

(2) r (xn) −−−−→
n→∞

0

Proof. 2 ⇒ 1. If r (xn) −−−−→
n→∞

0 but xn −−−−→
n→∞

∞ then take a convergent
subsequence xnk −−−−→

k→∞
y. We have r(y) > 0 so there exists a neighborhood U of y

such that for any x ∈ U , r(x) > r(y)
2 . A contradiction.

1 ⇒ 2. Suppose xn −−−−→
n→∞

∞. Assume lim sup r (xn) > 0. To get a contradic-
tion, replace xn with a subsequence so that r (xn) > ε for every n. Each

B̄(x, ε) = {x0 ∈ X : dX(x, x0) ≤ ε}
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is compact. xn −−−−→
n→∞

∞ so for each xionly finitely many xj satisfy xj ∈ B̄(x, ε).
By taking another subsequence we can ensure that ∀i 6= j, dX

(
xi,

ε
2
)
are all dis-

joint, and have some measure because they are isometric projections of balls in G.
Contradiction to finiteness of the measure. �

4.11

Part 1. No lecture next week!

Remark 75. π (gn)→ π(g) iff ∃γn ∈ Γ such that gnγn → h.

We will be discussing actions of subgroups H ⊆ G on X = G/Γ.
If x ∈ X then Hx = {hx : h ∈ H} ⊆ X. We have a map H −→ X defined by

h 7→ hx, and it descends to the orbit map

H/Hx −→ X

hHx 7→ hx

where Hx = StabH(x) . This is completetly general that this map is bijection:
Onto is clear. Injective -

h1x = h2x⇒ h−1
2 h1x = x⇒ h−1

2 h1 ∈ Hx ⇒ h1Hx = h2Hx.

We want to understand also the topology of this map. Hx is definitely closed.
If x = π (g0), then

Hx = {h ∈ H : hx = x}
= {h ∈ H : ∃γ ∈ Γ such that hg0 = g0γ}
=

{
h ∈ H : ∃γ ∈ Γ such that h = g0γg

−1
0
}

= H ∩ g0Γg−1
0 .

This map is always continuous, it comes from the fact that our action was
continuous.

Proposition 76. Orbit map is a homeomorphism onto its image (i.e. its
inverse is continuous) ⇐⇒ Hx is closed (we omit the proof, uses Baire category
theorem?)

So, it is interesting to find closed orbits Hx. Schematic picture...
Obviously, if Hx is cocompact (i.e. H/Hx is compact) then Hx is compact,

hence closed.

Proposition 77. If Γis a lattice in G and Hx is a lattice in H then Hx is
closed.

Proof. Take hnx −→ y and show that y ∈ Hx. Denote Λ = Hx.

(1) Suppose πH (hn) has a convergent subsequence, where πH : H −→ H/Λ.
If (after passing to a subsequence) πH (hn) −→ πH (h0). Therefore there
exists λn ∈ Λ such that hnλn −→ h0 . Then y ←− hnx = hnλnx −→ h0x,
so y = h0x.

(2) Suppose πH (hn) has no convergent subsequence. Then (by result of
precious lecture) the injectivity radius of H/Λ at πH (hn) is going to
zero, i.e. ∃λn ∈ Λ \ {0} such that dH (hn, hnλn) −−−−→

n→∞
0. Therefore
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dG (hn, hnλn) −−−−→
n→∞

0. Write λn = g0γng
−1
0 , γn 6= e. Then since the

metric is left invariant,
dG (hng0, hng0γn) = dG

(
hn, hng0γng

−1
0
)
−−−−→
n→∞

0.

So the injectivity radius of G/Γ at πG (hng0) is going to 0. ⇒ πG (hng0) =
hnx, because x = πG (g0).⇒ (hnx) has no convergent subsequence, con-
tradicting hn −−−−→

n→∞
y.

�

Discussion on Ratner theorems (complete...).

Examples: SL2(R)/SL2(Z),. . ., SLn(R)/SLn(Z). First of all, it is only interesting
to understand orbits of subgroups up to conjugacy. This is because

gHg−1(gx) = gHx.

In SL2(R) there are only four closed connected such nontrivial subgroups up
to conjugacy:

(1) gt =
(
et 0
0 e−t

)
(2) hs =

(
1 s
0 1

)
(3) h−s =

(
1 0
s 1

)
(4) hθ =

(
cos θ − sin θ
sin θ cos θ

)
Each element is conjugate to one of these by using Jordan form (argument?...).
These are the geodesic flow and the horocycle flow.

If M is a Riemannian manifold, then a geodesic arc on M is a smooth curve
γ : (a, b) −→M such that

∀s ∈ (a, b)∃ε∀s0 ∈ (s− ε, s+ ε) ∩ (a, b) distM (γ(s), γ(s0)) = |s− s0|
i.e. γ is locally distance minimizing. The unit tangent bundle of M is

UM = {(x, v) : x ∈M,v ∈ Tx(M), ‖v‖x = 1} ⊆ TM.

M is called complete (geodessically complete) if for all (x, v) ∈ UM there exists
a unique geodesic γ : R −→M such that γ(0) = x, γ′(0) = v.

The geodesic flow on UM is defined as follows: gt(x, v) = (y, w) where y = γ(t),
w = γ′(t) where γ is the unique geodesic through x in direction v. This is actually
an action of R on UM .

Part 2. Why gt =
(
e
t
2 0

0 e−
t
2

)
is the geodesic flow? LetH = {x+ iy : y > 0}

be the upper half plane. G acts on H by Mobius transformations on the right (this
is not the usuall notation. Whenever you have a right action you can get a left
action by applying an anti-isomorphism. In our case: transpose) according to the
rule

z ·
(
a b
c d

)
= az + c

bz + d
.

This will be consistent with our notation in the rest of the course.
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Claim 78. G acts transitively.

Proof. For any y > 0,

i ·
(

y
1
2 0

xy−
1
2 y−

1
2

)
= y

1
2 i+ xy−

1
2

y−
1
2

= x+ iy.

�

Claim 79. Stabilizer of i is SO (2,R) =
{
hθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

Proof. i ·
(
a b
c d

)
= i ⇐⇒

i = ai+ c

bi+ d
= (c+ ai) (d− bi)

b2 + d2 =

= ab+ cd

b2 + d2 + i
ad− bc
b2 + d2 = ab+ cd

b2 + d2 + 1
b2 + d2 i

⇐⇒ ab+ cd = 0, b2 + d2 = 1. �

We have established H = SO2(R)\SL2(R) (G equivariant for the right action).
To define a Riemannian metric on H which is G invariant, we start with an inner
product (·, ·)i on TiH which is SO2(R) invariant, and then when i · g = z, define

(u, v)z =
(
Dg−1(z)(u), Dg−1(z)(v)

)
i

and it will be G invariant by construction.
There is only one possible SO2(R)invariant for us to choose up to scaling. So

let (u, v)i be the standard inner product

(u, v) = u1v1 + u2v2.

Using g from previous claim, if z = x+ iy, g =
(

y
1
2 0

xy−
1
2 y−

1
2

)
. We have

g−1 =
(

y−
1
2 0

−xy− 1
2 y

1
2

)
.

Then

(z + h) g−1 = y−
1
2 (z + h)− xy− 1

2

y
1
2

= z + h

y
− x

y

So Dg−1 is scalar multiplication by 1
y , therefore

(u, v)z = (u, v)i
y2 .

(Other notation: ds =
√
dx2+dy2

y ).
We have a way for passing from a Riemannian metric to a volume form

Remark 80. G invariant volume element is dxdy
y2 (we’ll skip the proof. We had

the relevant formulas for the general case).
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SL2(R) acts transitively on H by isometries (w.r.t Riemannian metric we con-
structed). Therefore SL2(R) acts on TH by

(z, u) · g = (z · g,Dg(z)(u)) .

Since G preserves the Riemannian metric, UH is mapped to itself.

Claim 81. G = SL2(R) transitive on UH, and the stabilizer is {±Id} (using
dimension consideration we can hope that it is the case)

Proof. (Idea of...) First check that for any u1, u2 ∈ TiH there exists g ∈
SO2(R) such that Dg(i)u1 = u2. From the computation we’ll get that for u ∈ TiH,
u = (cosα, sinα), ‖u‖i = 1, g ∈ SO2(R)

Dg(i)(u) = (cos(α+ 2θ), sin(α+ 2θ)).

In particular, for any u ∈ TiH, StabG(i, u) = {±Id}. Now, if (z1, u1), (z2, u2) ∈ UH
then by transitivity of the G action on H there exist g1, g2 such that z1g1 = i = z2g2.
Also there exists g3 ∈ SO2(R) such that

Dg3(i) (Dg1(z1)(u1)) = Dg2(z2)(u2)

Then g1g3g
−1
2 maps (z1, u1) to (z2, u2). �

Corollary 82. UH = {±Id}\G = PSL2(R) . In other words, PSL2(R) acts
simply transitively on UH.

This situation is very rare. Actually it is a very big thesis that every Lie group
has exactly one symmetric space on which it acts this way.

Claim 83. The length minimizing path from i to eti is on the line γ(s) = esi =

i ·
(
e
s
2

e−
s
2

)
, and the distance is dist(i, eti) = t.

Proof. (Just a calculation...) �

Denote (temporarily) the geodesic flow on UH by Gt. Previous computation
shows that

Gt(i, i) = (i · gt, iet).
There is an issue about the normalization but whats important is that it still

pointing upwards. Since SL2(R) acts by isometries, it maps geodesics to geodesics.
So

Gt(z, u) = Gt(i · g,Dg(i)(upward pointing vector) = Image (Gt(i, i))

So
Gt(z, u) = Gt (i · gt · g,Dg(i · gt)(i)) .

This is the same as the action of gt on PSL2(R) on the left.

Part 3. Check some movies at www.josleys.com
Applying a mobius transformation to the straight line upward at i gives a

semicircle which is perpendicular to the line y = 0. The geodesic flow is just
moving along a geodesic.

The horocycle flow is just

www.josleys.com
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There is an intersting interplay between these two flows, that is demonstrated
by the equality

gth
−
s g−t =

(
e
t
2 0

0 e−
t
2

)(
1 0
s 1

)(
e−

t
2 0

0 e
t
2

)
=
(

1 0
e−ts 1

)
= h−e−ts

By rewriting he−tsgt = gth
−
s . So, if x = h−s0

y then gty = gth
−
s0
x = he−ts0gtx.

Therefore,
dist (gty, gtx) ≤ length of path s 7→ h−e−tsgtx→ 0.

Corollary 84. {h−s x : s ∈ R} = {y : dist (gty, gtx)→ 0}(we proved ⊆).

Next step, suppose Γ ⊆ G is discrete. Then

UH/Γ = {±Id} \ PSL2(R)/Γ

In general when one is dividing twice he get in to trouble, unless he does it
once from each time. In this case, {±Id} is a central subgroup so up to some
technicalities,

UH/Γ = U (H/Γ)

Example 85. D is a regular n-gon with geodesic edges, right angles, embedded
in H , n ≥ 5. (Such n-gons exist). For each side of D let γ be the rotation
around its midpoint. This will give rise to a tiling of H, invariant under the group
Γ that is generated by those rotations. D is compact so H/Γis compact. H =
SO2(R)/SL2(R) so Γ is compact in SL2(R).

UD = U (H/Γ) = PSL2 (R) /Γ

Example 86. I said that there might be some technicalities. This happens
when your subgroup fixes points. This happens for example in H/PSL2(R). This
space is called the modular surface.

gt y SL2(R)/SL2(Z)

is the geodesic flow. Notice: this surface is not a manifold. It has three punctures
at the edges of the fundamental domain.

25.11

Part 1. For a general Riemanninan manifold which is geodesically complete
(i.e. we can discuss geodesic flow), for each x ∈ UM the set

{y ∈ UM : d (gtx, gty)→ 0}

is called the stable horospherical leaf of x. In our setup, the horospherical leaves
are orbits of h−s (h+

s ).
Pictures complete...

The space of lattices Xd = SLd(R)/SLd(Z). A lattice in Rd is a disrecte
cocompact subgroup (⇐⇒ discrete subgroup so that the quotient has finite volume),
i.e., a group of the form

Λ = Zv1 ⊕ . . .⊕ Zvd,

where v1, . . . , vd ∈ Rd linearily independent (a fundamental domain is
{∑d

i=1 tivi : ti ∈ [0, 1)
}

=
g
(
[0, 1)d

)
.
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A lattice is called unimodular if the volume of the fundamental domain is 1
(This has a different meaning from the use we had to this word earlier). This
happens ⇐⇒ |det(g)| = 1.

If Λ is a lattice in Rd and if v1, . . . , vd generate Λ (as a group), then the vi
are called a basis for Λ. Any two bases for unimodular lattices can be obtained
from each other by applying a linear transformation of det = ±1. Since replacing
vi by −vi does not change the lattice, we can assume det = 1. This means that the
space of unimodular lattices has a transitive action of SLd(R). The stabilizer of Zd
is SLd(Z). Therefore SLd(R)/SLd(Z) parametrizes all unimodular lattices in Rd.
This is not just an abstract correspondence - the coset gSLd(Z) corresponds to the
lattice gZd which is the image of Zd under the linear map g acting from the left.
This is just Zv1 ⊕ . . .⊕ Zvd where g = (v1, . . . , vd) are the columns of g.

Example 87. X2 = SL2(R)/SL2(Z). We can easily interpret the standard
fundamental domain Ω in this language is as follows: Let Λ be a lattice. By choosing
unimodular lattices, we were taking one lattice from each equivalence class Λ ∼ tΛ ,
t 6= 0 (homothety). Instead of using this convention, choose a representative whose
shortest non zero vector has length 1. Applying a rotation by θ which maps v to
e1 = (1, 0) maps the shortest vector v2 such that v1, v2 are linearily independent,
to Ω. Indeed, we can assume y coordinate of v2 is positive. So v2 ∈ H . If the x
coordinate of v2 is not in

[
− 1

2 ,
1
2
]
, we can add an integer multiple of v1 to v2 to

make it shorter, therefore v2 = (x, y), x ≤ 1
2 . Since ‖v2‖ ≥ ‖v1‖ = 1, necessarily

v2 ∈ Ω. We have identified each lattice in R2 up to homothety with a pair (v2, θ),
v2 ∈ Ω. Can think of such a pair as an elemnt of UH.

Next we will show that SLd(R)/SLd(Z) has a finite SLd(R)-invariant measure,
i.e. SLd(Z) is a lattice in SLd(R) . This can be done in many ways including by
explicit calculation (find a fundamental domain and compute its Haar measure),
but we will take an indirect approach.

Remark 88. Suppose Λn −−−−→
n→∞

Λ0 and denote Λn = π (gn). This happens
⇐⇒ ∃γn ∈ SLd(Z) such that gnγn −−−−→

n→∞
g0 ⇐⇒ for every n ∈ N0 ∃ a basis

vn1 , ..., v
n
d of Λn such that vni −−−−→n→∞

v0
i ⇐⇒ Λ0 = {lim vn : vn ∈ Λn a convergent sequence }

is a lattice (in general this is not the case).

Reduction theory (= choice of fundamental domain).

Theorem 89. Let Λ ⊆ Rd be a (not necessarily unimodular) lattice. Define

λk(Λ) = inf {r > 0 : Λ ∩B(0, r) contains klinearily independent vector}

(i.e. λk(Λ) = r ⇐⇒ B̄(0, r) contains k linearily independent vectors of Λ, but
B̄(0, r′) does not, for any r′ < r). Then λ1(Λ) ≤ ... ≤ λd(Λ) and there are constants
c1, c2 (depending only on d) and a basis v1, . . . , vd of Λ such that c1λi(Λ) ≤ ‖vi‖ ≤
c2λi(Λ) and

c1 ≤
λ1(Λ) · · ·λd(Λ)

covol(Λ) ≤ c2.

Here, covol(Λ) is the measure of the fundamental domain for Λ in Rd . These
λks are called the successive minima of Λ.
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Remark 90. Given such a basis v1, ..., vd if we let g be the matrix with colomuns
vi then gZd = Λ , Λ ∼= gSLd(Z). The set of such g’s is a set of coset representatives,
i.e., a choice of fundamental domain.

Remark 91. In general, if one choose v1 to be shortest nonzero vector in Λ
and vi+1 to be the shortest vector linearily independent of v1, ..., vi (by induction),
the resulting v1, . . . , vd will be linearily independent but not necessarily a basis:

Example 92. In R5, let Λ = spanZ
{
e1, e2, e3, e4, e5, u = 1

2
∑5
i=1 ei

}
. Then,

‖u‖ = 1
2
√

5 > 1, but shortest vectors selected in the straightforward way will be
e1, ..., e5.

Remark 93. There are many reduction algorithms Korkine-Zolotarev, Minkowski,
LLL (the last is very useful in computer science). Our proof will involve Korkine-
Zolotarev method for selecting the vis.

Proof. λ1(Λ) ≤ ... ≤ λd(Λ) is clear by definition. Continue by induction.
d = 1 - clear. Suppose we have proved the theorem for d− 1 and d− 2 . Let v1 be
a shortest nonzero vector in Λ. Let W = v⊥1 be the space perpendicular to v1, let
π : Rd →W be the orthogonal projection, and denote Λ′ = π(Λ). Then

covol (Λ′) = covol (Λ)
‖v1‖

.

This is because a fundamental domain Ω′ of Λ′ can be enlarged to a fundamental
domain for Λ by

Ω =
{
w + tv1 : w ∈ Ω′, t ∈

[
−1

2 ,
1
2

]}
.

Indeed, suppose you have a vector x ∈ Rd, then by projecting it to W we find
a representative x′ + w ∈ Ω′. Now w = π(v) so there exist t ∈ R such that
x+v−w = tv1 and we can let n be the integer closest to t. We will use the successive
minima of Λ′ to approximate those of Λ. First claim that λ1(Λ′) ≥

√
3

2 λ1(Λ).
Suppose (by contradiction) that w ∈ Λ′ and ‖w‖ <

√
3

2 ‖v1‖ . Then ∃v ∈ Λ such
that w = π(v). Replace v by v + nv1, n ∈ Z to get v = w + tv1, |t| ≤ 1

2 . v1 is
perpendicular to w so by pythagoras ‖v‖2 = ‖w‖2 + t2 ‖v1‖2 . Therefore

‖w‖2 = ‖v‖2 − t2 ‖v1‖2 ≥
(
1− t2

)
‖v1‖2 ≥

3
4 ‖v1‖2 ,

and taking square roots gives contradiction. Now claim that for k = 1, . . . , d− 1

λk(Λ′) ≤ λk+1(Λ) ≤ cλk(Λ′).

If v1, . . . , vk+1 are linearily independent vectors in Λ with lengths at most λk+1(Λ),
then wi = π(vi) contain at least k independent vectors of Λ′, whose length is not
larger than λk+1(Λ). This proves the left hand side inequality. To prove the right
side inequality, let w1 = π(v2), ..., wk = π(vk+1). Each wi has length at most
λk(Λ′). As before write vi+1 = wi + tv1,|t| ≤ 1

2 .

‖vi+1‖ ≤ λk(Λ′)

....complete
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By induction, c1(d− 1) ≤ λ1(Λ′)···λd(Λ′)
covol(Λ′) ≤ c2(d− 1) this means that

c1(d− 1) ≤ λ1(Λ)λ1(Λ′) · · ·λd(Λ′)
covol(Λ) ≤ c2(d− 1)

Changing lensts gives c1(d) ≤ λ1(Λ)···λd(Λ)
covol(Λ) ≤ c2(d).

The basis v1, . . . , vd in the last assertion is constructed by induction. v1 is the
shortest vector, and v2, ..., vd are such that wi = π(vi+1) are the basis chosen for
Λ′ such that vi+1 = wi + tv1 , |t| ≤ 1

2 . Write ai � bi if ∃c1, c2 such that

c1ai ≤ bi ≤ c2ai

By induction hypothesis, ‖wi‖ � λi(Λ′) � λi+1(Λ).

‖wi‖ ≤ ‖vi+1‖ ≤ ‖wi‖+ 1
2 ‖v1‖ = O(λi+1(Λ)) +O(λ1(Λ))

so ‖vi+1‖ � λi+1(Λ). The vi chosen in this way span Λ (ex...). �

2.12

Part 1.

Theorem 94. (Mahler’s compactness criterion)A ⊆ G = SLd(R), B = π(A).
Then the following are equivalent:

(1) B is compact.
(2) ∃δ > 0∀Λ ∈ B, λ1(Λ) ≥ δ.
(3) ∃δ > 0∀g ∈ A∀v ∈ Zd \ {0} , ‖gv‖ ≥ δ.

Equivalently, π(gn) = Λn → ∞ in Xd ⇐⇒ λ1(Λn) → 0 ⇐⇒ ∃vn ∈ Zd \ {0}
‖gnvn‖ → 0.

Proof. 2⇐⇒ 3 is obvious.
1⇒ 2: Suppose B is compact, and (by contradiction) there exists a sequence

Λn ∈ Bn such that λ1(Λn) → 0. There exists a convergent subsequence, denote it
by Λn, Λn → Λ0. Let 0 < ε < λ1 (Λ0). For all suffieciently large n, Λn contains
a vector vn of length less than ε. Multiplying vn by an integer, we can assume
‖vn‖ ≥ ε

2 . vn ∈ Λn, vn ∈ B(0, ε). Passing to a subsequence, vn → v , ε2 ≤ ‖v‖ ≤ ε.
But v ∈ Λ0, contradiction.

2⇒1: Let Λn ∈ B be a sequence, we need to show it has a convergent subse-
quence. Since Λn are unimodular, we have by Theorem 89

δd−1λd (Λn) ≤ λ1 (Λn)d−1
λd (Λn) ≤ λ1 (Λn) · · ·λd (Λn) ≤ c2.

Therefore λd(Λn) ≤ c2
δd−1 . Let vn1 , . . . , vnd be a basis to Λn with ‖vni ‖ ∈ [c1λi(Λn), c2λi(Λn)]

as in the Theorem 89, and gn = (vn1 , . . . , vnd ) ∈ G. det gn = ±1, by changing vni
with −vni we can assume that det gn = 1. all columns of gn are bounded in norm
by c2λd(Λn) ≤ c2

2
δd−1 . So all matrices gn have bounded entries, so by passing to a

subsequence assume gn → g . Then Λn → π(g) . �

Denote Kε = {Λ ∈ Xd : λ1(Λ) ≥ ε}. Clearly
⋃
ε>0Kε = Xd. By Mahler’s

compactness theorem this is an exhaustion of Xd by compact sets, i.e. all Kεare
compact and any bounded subset of Xd is contained in some Kε. ... (complete)
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Part 2. X ∈ Rd is very well approximable (VWA) if ∃ε > 0 and sequences
pn ∈ Zd, qn ∈ N such that ∥∥∥∥x− 1

qn
pn
∥∥∥∥ < 1

q
1+ 1

d+ε
n

.

X ∈ Rd is very well multiplicatively approximable (VWMA) if ∃ε > 0 and pn =
(pn1 , ..., pnd ) ∈ Zd, qn ∈ N such that

d∏
i=1
|qnxi − pni | <

1
q1+ε
n

.

X is badly approximable (BA) if ∃c > 0 such that for all pn ∈ Zd, qn ∈ N∥∥∥∥x− 1
qn

pn
∥∥∥∥ > c

q
1+ 1

d
n

.

Both VWA and BA have lebesgue measure zero.

Remark 95. If one wish to approximate X by∥∥∥∥x− (p1

q1
, . . . ,

pn
qn

)∥∥∥∥ < 1
max qi

then one gets the one-dimensional problem.

Proposition 96. VWA⇒ VWMA

Proof. WLOG, we use the sup-norm. We have maxi=1,...,d |qnxi − pni | <
1

q
1
d

+ε
n

. Then
∏d
i=1 |qnxi − pni | <

1
qnqdεn

.

Some notation:

gt =


et

. . .
et

e−dt

 , , gt =


et1

. . .
etd

e−[t]

 τ(x) =


1 x1

. . .
...

1 xd
1


where [t] =

∑d
i=1 ti, and

Λx = π (τ(x))
where π : SLd+1(R)→ Xd+1. �

Theorem 97 (Dani ’86). x ∈ Rd is BAd ⇐⇒ {gtΛx : t ≥ 0} is bounded in
Xd+1.

Proof. vectors in gtΛx are of the form gtτ(x)v, where v ∈ Zd+1. Write v =
(−p, q) with p ∈ Zd. Then

gtτ(x)v =
(
et (qx1 − p1) , . . . , et (qxd − pd) , e−dtq

)
.

First show⇐: By Mahler’s compactness criterion, ∃δ > 0 such that v ∈ Zd+1 \
{0}, ‖gtτ(x)v‖ ≥ δ. Let’s use sup-norm and specialize to v = (−p, q). WLOG
δ < 1. Choose t so that e−dtq = δ

2 (t > 0). So maxi=1,...,d |et (qixi − pi)| ≥ δ.
Divide by etq and we get∥∥∥∥x− 1

q
p
∥∥∥∥
∞
≥ δ

qet
= δ

q
· δ

1
d

2 1
d q 1

d

= c

q1+ 1
d

.
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⇒: x ∈ BAd ⇒ ∃c > 0 such that
∥∥∥x− 1

qp
∥∥∥ ≥ c

q
1+ 1

d
for all p ∈ Zd, q ∈ N. Write

v = (−p, q). Suppose first that q = 0. Then
‖gtτ(x)v‖ = et ‖p‖ ≥ et ≥ 1.

If q 6= 0 we can assume q ∈ N, t ≥ 0. If e−dtq ≥ 1, then ofcourse ‖gtτ(x)v‖ ≥ 1.
Else, ⇒ e−dtq ≤ 1 ⇒ q−

1
d ≥ e−t. We have∥∥∥∥x− 1

q
p
∥∥∥∥
∞
≥ c

q1+ 1
d

⇒ ∃i |qxi − pi| ≥
c

q1+ 1
d

≥ ce−t

hence ∃i such that et |qxi − pi| ≥ c. �

Part 3. Dani’s theorem is almost a trivial calculation, but it will be very

profound. Suppose d = 1. gt =
(
et

e−t

)
y X2 = SL2(R)/SL2(Z), Λx =(

1 x
1

)
= π (h+

x ). {h+
x : x ∈ R} is a closed loop in the space of lattices. Dani’s

theorem says that the geodesic flow starting from Λx in direction i. The basic
philosophy will be to track the flow of the whole closed loop. At each step we’ll get
a much longer loop, recall the relation gth+

x g−t = h+
e2tx.

For general d,
et

. . .
et

e−dt




1 x1
. . .

...
1 xd

1




e−t

. . .
e−t

edt

 =
(

nothing multiplied by e(d+1)t

multiplied by e−(d+1)t nothing

)

Theorem 98. (Kleinbock-Margulis thm - “Dani’s correspondence”) X ∈ VWA⇐⇒∃δ >
0, tn ↗ ∞ such that λ1 (gtnΛx) ≤ e−δtn⇐⇒ ∃δ > 0, tn ↗ ∞ such that gtnΛx /∈
Ke−δtn . (infinitely many excursions at time t, outside Ke−δtn . Equivalent also to
d (x0, gtnΛx) ≥ ctn for some c > 0 - a faster than linear escape)

X ∈ VWMA⇐⇒∃δ > 0, tn ∈ Zd≥0, ‖tn‖ → ∞ such that gtnΛx /∈ Ke−δ[tn]⇐⇒∃δ >
0, tn ∈ Rd≥0, ‖tn‖ → ∞ such that gtnΛx /∈ Ke−δ[tn] .

Proof. Exercise (very similar to the proof of the original Dani’s theorem) �

Theorem 99. (Kleinbock-Margulis ’98) Let C = {ϕ(s) : s ∈ I}, where I ⊆ R
is an interval and ϕ : I → Rd is an analytic map such that C is not contained in
an affine hyperplane. Then for a.e. s, ϕ(s) is not VWMA.

Remark 100. In 1930’s Mahler conjectured that for a.e. s,
(
s, s2, . . . , sd

)
∈

Rd is not VWA. Proved by Spirdzhuk in the 60’s. Theorem of KM (resolving
conjectures of Spirdzhuk and Alan Baker) extended to arbitrary curves and replaced
VWA by VWMA.

Remark 101. KM also discuss higher dimensional manifolds and relax the
condition that ϕ is analytic. Assumption that C is not contained in an hyperplane
is replaced by the assumption that at a.e. point the image of Taylor approximation
of ϕ is not contained in an affine hyperplane for large enough degree. Such curves are
called non-degenerate. The statement fails if C is contained in an affine hyperplane
defined over Q.

To prove KM theorem we will have to prove three theorems:
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Theorem 102. ϕ : I → Rd as in Theorem 99. Then ∃C̃, α > 0 such that for
any ε > 0 and t ∈ Zd>0 (this is true of course for any real vector but we need it this
way), ∣∣{s ∈ I : gtΛϕ(s) /∈ Kε

}∣∣ ≤ |I| · C̃εα.
Reminder of the Borell-Cantelli lemma: µ is a finite measure, A1, A2, . . . mea-

sureable such that
∑∞
n=1 µ (An) <∞. Then for a.e. x, # {i : x ∈ Ai} <∞.

Proof. (Of Theorem 102⇒Theorem 99) Fix δ > 0, {t1, t2, . . .} ⊆ Zd≥0.Let
An =

{
s ∈ I : gtnΛϕ(s) /∈ Ke−δ[tn]

}
. By Theorem 102 we have |An| ≤ |I| C̃e−δ[tn].

So
∞∑
n=1

µ (An) ≤ |I| C̃
∞∑
n=1

e−δ[tn] ≤ O

( ∞∑
t=1

td−1e−αδt

)
<∞

where the last inequality is because there are O
(
td−1) vector tn with [tn] = t.

Therefore by Borell-Canteli lemma |lim supAn| = 0. Taking δk → 0, get that

0 =
∣∣{s : ∃k∃∞n gtnΛϕ(s) /∈ Ke−δk[tn]

}∣∣ = |{s : ϕ(s) ∈ VWMA}| .

�

Definition 103. f : J → R, J ⊆ R an interval, C,α > 0. f is called (C,α)-
good on J if ∀ε > 0

|{s ∈ J : |f(s) ≤ ε|}|
|J |

≤ C
(

ε

‖f‖J

)α
where ‖f‖J = sups∈J |f(s)|. Add picture...

dDenote by W the space of rational linear subspaces of Rd+1. So if V ∈ W,
V ∩ Zd+1 is a lattice in V . Define `V : G→ R by

`V (g) = covol
(
gV/g

(
V ∩ Zd+1))

i.e., `V (g) is the dimV -dimensional volume of the image by g of the fundamental
domain for V/V ∩ Zd+1.

Theorem 104. ∀C,α > 0∃C ′ > 0 such that if I ⊆ R is an interval, h : I →
SLd+1(R), 0 < ρ ≤ 1, s0 ∈ I, I0 is an interval (s0 − r, s0 + r) so that 3I0 ⊆ I and
the following for all V ∈ W:

(1) `V ◦ h is (C,α)-good on 3I0.
(2) ‖`V ◦ h‖I0

≥ ρ.

Then
∣∣{s ∈ I0 : Λh(s) /∈ Kε

}∣∣ ≤ C ′ ( ερ)α |I0| .
We will apply Theorem 104 h(s) = gt(τ(ϕ(s)).

9/12

Part 1. Add picture and explantion about a curve not spending to much time
in the cusp. Theorem 104 has many applications, among them the non-escape of
mass. We first prove it implies Theorem 102.

Theorem 105. Theorem 104 =⇒ Theorem 102
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Proof. Define h(s) = gtτ(ϕ(s)) ( t is a vector). The conclusion of Theo-
rem 104 implies the conclusion of Theorem 102 (expand the analytic map to 3I0).
Therefore it is enough to verify the conditions of Theorem 104. Recall

`V (g) = covol
(
gV/g

(
V ∩ Zd+1))

and we compute it using the exterior algebra
∧k
i=1 Rd+1. This is a vector space of

dimension
(
d+ 1
k

)
. If e1, . . . , ed+1 is the standard basis for Rd+1. J = (j1 <

. . . < jk), ji ∈ {1, . . . , d+ 1}. The tensors eJ = ej1 ∧ . . . ∧ ejk form a basis for∧k
i=1 Rd+1. Extend ∧ to

⊕d+1
k=0

∧k
i=1 Rd+1 by demending:

(1) u ∧ v = −v ∧ u for u, v ∈ Rd+1.
(2) If u1, . . . , u` limearily independent then u1 ∧ . . . ∧ u` = 0.
(3) ∀a1, a2, u1, u2, v (a1u1 + a2v2) ∧ v = a1 (u1 ∧ v) + a2 (v2 ∧ v).
(4) If g ∈ GLd+1(R) then g(u ∧ v) = gu ∧ gv.
(5) If g ∈ GLd+1(R) then g(eJ) = gej1 ∧ . . . ∧ gejk .
(6) Choose an inner product which makes {eJ} an orthonormal basis and take

the resulting norm. Then if v1, . . . , vk generate V ∩ Zd+1 then

covol
(
gV/g

(
V ∩ Zd+1)) = ‖g (v1 ∧ . . . ∧ vk)‖ .

(7) A standard fact that the covolume of a lattice is the determinant of a
matrix.

So back to our proof, if V is a rational subspace in Rd+1 of dimension k such that
v1, . . . , vk generate V ∩ Zd+1. Then`V (g) = ‖g (v1 ∧ . . . ∧ vk)‖ Goal: find C,α, ρ
such that 1 and 2 are satisfied.

Lemma 106. If f1, . . . , fk are all (C,α)-good , λ ∈ R. Then
(1) max |fi| is (C,α)-good.
(2) λfi is (C,α)-good.
(3)

√
f2

1 + . . .+ f2
k is (k α2 C,α)-good.

Proof. 1 and 2 are trivial. For 3:∣∣∣∣{s ∈ I :
√∑

f2
i < ε

}∣∣∣∣ ≤ |{s ∈ I : max |fi| < ε}|

≤ C

(
ε

‖max |fi|‖I

)α

≤ Ck
α
2

 ε∥∥∥√∑ f2
i

∥∥∥
I

α

where we have used ‖·‖∞ ≤ ‖·‖2 ≤
√
k ‖·‖∞. �

The following Lemma is called Remez Lemma from the 30’s. KM proved it
independently but then there was a question about the most efficient constant, and
it appeared to be done by Remez.

Lemma 107. ∀d∃C,α such that for any interval I ⊆ R, any polynomial P ∈
R[x] of degP ≤ d is (C,α)− good on I.
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Proof. Let α = 1
d , C = 2d(d + 1) 1

d . Write b = |I| , σ = |{s∈I:|P (s)|<ε}|
b . We

want to show σ ≤ C
(

ε
‖P‖I

)α
. Choose s1, . . . sd+1 with si+1−si ≥ σb

2d and such that

|P (s)| ≤ ε. Then by Lagrange interpolation formula P (s) =
∑d
i=1 P (si)

∏
j 6=i

s−sj
si−sj .

By the triangle inequality

|P (s)| ≤ dε
bd(
σb
2d
)d = ε

2ddd+1

σd
=⇒

σ ≤ 2d1+ 1
d

(
ε

|P (s)|

) 1
d

≤ C
(

ε

‖P‖I

) 1
d

.

To choose s1, . . . sd+1 let s1 = inf {s : |P (s)| ≤ ε}. Inductively si+1 = inf
{
s ≥ si + σb

2d : |P (s)| ≤ ε
}
.

If this procedure stops before we have d+1 points, we will have a cover of {s : |P (s)| ≤ ε}
by less then d intervals of length σb

2d - contradiction to the definition of σ. �

We will continue the proof assuming h is a polynomial map instead of analytic.
Remez Lemma have a nice extension which might be used here to analytic maps.
Verifying condition 1: τ ◦ ϕ is a matrix valued polynomial in 1 variable. h(s) =
gtτ(ϕ(s)) is a matrix valued polynomial of degree independent of t. We have

`V (h(s)) =
∥∥∥gtτ(s)

(∑
aJeJ

)∥∥∥ =
∥∥∥∑ aJgtτ(ϕ(s))ej1∧...∧jk

∥∥∥
where

∑
aJeJ is element of representing V ∩ Zd+1. This is a (complete...) So the

only thing we had to care about is that the degree of the polynomial is independent
of t.

Verifying 2: Choose ρ > 0 such that for every affine hyperplane L ⊆ Rd,
‖dL(ϕ(s))‖ ≥ ρ where dL(x) = dist (x,L). This exists by a compactness argument
(the collection of subspaces is compact, but although the collection of affine hyper-
planes is not, the collection of relevant affine hyperplanes, i.e., that intersect the
curve, is compact). Let V ∈ W, V ∩Zd+1 generated by (pi, qi) , i = 1, ..., k = dimV ,
qi ∈ Z, pi ∈ Zd. WLOG we can assume q2 = . . . = qk = 0.

Case: 1: q1 = 0, i.e., V ⊆ V0 = {(x1, . . . , xd, 0)}. gtτ(ϕ(s) uniformly
expends all vectors in V0. Thereore

` (gtτ(ϕ(s)) ≥ `(id) ≥ 1

V is represented by an integer in exterior
∧k
i=1 Rd+1.

Case: 2: q1 6= 0. ‖gtτ (ϕ(s)) (v1 ∧ . . . ∧ vk)‖ (will appear on webpage). The
idea is to decompose

∧k
i=1 Rd+1 = V + ⊕ V 0 ⊕ V − to invariant subspaces

for gt. gt expands all vectors in V +. compute τ(ϕ(s))(v1∧ . . .∧vk). It has
a nonzero component in V +. The size of this component can be computed
explicitly, and it is ≥ dL(ϕ(s)) ≥ ρ > 0 for some affine hyperplane L
(depending on V and v1, . . . , vk). Since gt expands V +,

‖gtτ (ϕ(s)) (v1 ∧ . . . ∧ vk)‖ ≥ ρ

for all t.
�
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Part 2. More applications of Theorem 104.

Theorem 108. (folklore)G = SL2(R), Γ = SL2(Z), h+
s =

(
1 s

1

)
. Then

there are no divergent trajectories for h+
s y G/Γ.

Theorem 109. (Margulis ’71)G = SLn(R), Γ = SLn(Z) {us} is a one parame-
ter unipotent subgroup of G. Then there are no divergent trajectories for us y G/Γ.

This was a big theorem when proved, answering a question of Piastetsky-
Shapiro. Margulis proved this theorem while he was less then 20! This was a
key part in his proof of the arithmeticity theorem (and will play a role in our future
proof that SLn(Z) is a lattice in SLn(R)) that says that any lattice comes from a
certain algebraic construction, extension of scalars. By the time he was 21 he had
more theorems than most of us will ever have. The proof of Margulis is using a
crazy induction. For a long time no one understood why it works. One of the first
was Dani who was able to repeat it in the more accurate following two theorem:

Theorem 110. (Dani ’79) Same notation as in previous theorem. Then ∀x ∈
G/Γ∀δ > 0∃ a compact set K ⊆ G/Γ such that

lim sup 1
T
|{s ∈ [0, T ] : usx ∈ K}| ≥ 1− δ.

Theorem 111. (Dani 86’)∀n∃C̃, α∀x ∈ SLn(R)/SLn(Z)∃ρ > 0∀ {us} unipo-
tent and all 0 < ε < ρ ∀T

1
T
|{s ∈ [0, T ] : usx /∈ Kε}| ≤ C̃

(
ε

ρ

)α
This is an extremely uniform estimate. The only thing that depends on the

starting point can be ρ. Also, it applies equally well to any unipotent flow.
Clearly Theorem111=⇒Theorem110=⇒Theorem 109 and we are going to prove

Theorem 112. Theorem 104=⇒Theorem 111

Proof. Let x = π(g0), g0 ∈ SLn(R). Let h(s) = usg0. We only need to verify
the hypotheses for this choice.

`V ◦ h(s) = ‖h(s)v1 ∧ . . . ∧ vk‖
where V ∩ Zn generated by v1, . . . , vk. {us} = unipotent group = polynomial map
in matrix entries, of degree ≤ n − 1. To see this, just think of the Jordan form.
Since it is a one parameter group, we can put all the matrices in Jordan form
simultanuously. Each block will have 1 on the diagonal. The exponent map will be
a polynomial since the matrices are unipotent.

Each entry of h(s)v1 ∧ . . .∧ vk ∈
∧k
i=1 Rn is a polynomial of degree ≤ k(n− 1).

By Lemma , 1 is verified.
Now take ρ = ρ(x), ρ = infV ∈W `V (g0). complete... �

Independent proof of Theorem 108 and Theorem 110 in dimension 2.
Add picture...
Think of SL2(R)/SL2(Z) ∼= UH/Γ. There are two kinds of nilpotent trajec-

tories. One is periodic (“closes up”) - sure it is not going to ∞. Otherwise, we
can push the trajectory to the fundamental domain, and evetually it will return
to Ω ∩ {|z| = 1}. If (by contradition) h+

x → ∞. ∀s ≥ s0 projection of h+
s x to H
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would miss Ω ∩ {|z| = 1}. So ∀s ≥ s0 h
+
s is a horizontal line, therefore periodic -

contradiction.
A theorem of hedlund from the 30’s is that any trajectory is either periodic

or... complete
Let draw `v(s) = ‖h+

s g0v‖∞ ,v ∈ Z2, for v 6= 0, v primitive (not equal to
multiple of another vector in Z2)∥∥h+

s g0v
∥∥
∞ =

∥∥∥∥( 1 s
1

)(
xv
yv

)∥∥∥∥ =
∥∥∥∥( xv + syv

yv

)∥∥∥∥ = max {|xv + syv| , |yv|}

Claim: @v1, v2 primitive, v1 6= ±v2, and s0 such that∥∥h+
s0
g0v1

∥∥
∞ ,
∥∥h+

s0
g0v2

∥∥
∞ <

1√
2
.

If we did have such v1, v2 then
∥∥h+

s0
g0v1

∥∥
2 ,
∥∥h+

s0
g0v2

∥∥
2 < 1. Then the area of

the parallelogram spanned by h+
s0
g0v1, h

+
s0
g0v2 is less than 1. But det (h+

s g0) = 1
and the parallelogram spanned by v1, v2 has integer vertices so the area must be
bigger than 1 - contradiction.

Proof of Theorem 3 (for n = 2): Draw a dotted line y = ρ where ρ > 0,
ρ < 1√

2 , all horizontal in are of height ≥ ρ. At every fixed s, the set of values
{`v(s) : v vector as above} is discrete. So ρ exists. Let T0 be a number such that
`v(s) ≥ ρ for s = T0. (By claim). Let v1, . . . , vn be the set of v as above for which
∃s ∈ [0, T ] such that `v(s) < ε.

{s ∈ [0, T ] : usx /∈ Kε} = {s ∈ [0, T ] : ∃V `V (s) < ε}

⊆ [0, T0] ∪
n−1⋃
i=1
{s ∈ [0, T ] : `vi(s) < ε} ∪ {s ∈ [0, T ] : `vn(s) < ε} .

Therefore,

|{s ∈ [0, T ] : usx /∈ Kε}| ≤ T0+ ε

ρ

n−1∑
i=1
|{s ∈ [0, T ] : `vi(s) < ρ}|+2ε

ρ
|{s ∈ [0, T ] : `vn(s) < ρ}| ≤ T0+2ε

ρ
T

Diving by T and taking T →∞ gives the result.

15.12

Part 1 - Proof of nondivergence.

Part 2 - Ergodicity and mixing. We spent time to get a very strong form
of nondivergence. The proof of a much weak statement is not simpler.

G is lcsc, (X,B, µ) is a probability space. Gy X preseving µ.

Definition 113. The action is ergodic if any set A ∈ B which is invariant (i.e.
∀g ∈ G gA = A), µ(A) = 0 or µ(A) = 1.

Remark 114. Ergodicity is the natural notion of “indecomposability” in the
measurable actions category. If not ergodic we can decompose X = A ∩ (X \A),
µ(A) > 0 , µ(X \ A) > 0 and normalize the measure on each piece and study
seperately.
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Proposition 115. Suppose X is second countable, B Borel σ algebra and sup-
pose suppµ = X (any open subset of X has positive measure). If the action is
ergodic, then almost every orbit is dense.

Proof. Let O1, O2, . . . be open sets generate the topology. For each i let
Ui = GOi =

⋃
g∈G gOi. µ (Ui) ≥ µ(Oi) > 0. Each Ui is invariant so µ (Ui) = 1.

Ω =
⋂∞
i=1 Ui, µ(Ω) = 1. If x ∈ Ω then for each i, x ∈ Ui = GOi so ∃g ∈ G such

that x ∈ gOi, i.e. g−1x ∈ Oi. So orbit of x intersects every Oi, so is dense. �

For G = R or G = Z a stronger stetment is:

Theorem 116 (Birkhoff pointwise ergodic theorem). If R y (X,B, µ), the
action is ergodic and f ∈ L1(X), then for a.e. x ∈ X

(4) 1
T

∫ T

0
f(t.x)dt→

∫
X

fdµ

In particular, if X is lcsc then a.e. x ∈ X is generic, i.e. ∀f ∈ Cc(X), 4 is satisfied.

A one page proof is in Hasselblat-Katok

Definition 117. The action is mixing if ∀A,B ∈ B and any gn →∞
µ (gnA ∩B) −−−−→

n→∞
µ(A)µ(B).

Note that this is only interesting when G is noncompact.

Theorem 118. If G is noncompact then mixing⇒ergodic

Proof. If A ∈ B is invariant, gn −−−−→
n→∞

∞ in G . Then

µ(A) = µ(A ∩A) = µ (gnA ∩A)→ µ(A)µ(A) = µ(A)2 ⇒
µ(A) = µ(A)2 ⇒

µ(A) = 1 or µ(A) = 0.
�

Example 119. Tx = x + α is adition mod 1, where x ∈ R/Z, α /∈ Q . T is
invertible map S1 → S1 so we get an action of Z:

k.x = T k(x).
This action preserve Lebesgue measure.

Claim 120. T is ergodic but not mixing.

Proof. Note that this is an isometric action: For any k ∈ Z if I ⊆ S1 an
interval then k.I = T k(I) is an interval of same length. Since α is irrational, orbit
of 0 is dense (exercise. Hint: A closed subgroup of a Lie group is a Lie group, and in
particular, the only infinite closed subgroup of R which is not discrete is R ). Hence
(recall T is an isometry) any orbit is dense (when T k`(0)→ x0, T

k`(y)→ x0 + y).
Let A = B = (0, 1

3 ) (projected to S1). Let k` be a sequence such that
T k`(0)→ 1

2 . T
k`(A) very close to ( 1

2 ,
5
6 ). In particular for large ` , T k`(A)∩A = ∅

contradicting mixing.
Suppose (by contradiction) that A is T -invariant 0 < µ(A) < 1. Let B be

S1 \ A, and x, y be density points for A,B respectively, i.e. for any ε > 0 ∃r such
that for any interval I of length < r containing a (resp. b), µ(I∩A)

µ(I) ≥ 1 − ε (resp.
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µ(I∩B)
µ(I) ≥ 1−ε). Aplly with ε = 1

3 . Let I be as in definition of density pt for a . Let
k` be a sequence such that T k`(a)→ b. For large ` T k`(I) is an interval containing
b, also of length < r .
2
3µ(I) ≤ µ(I∩A) = µ

(
T k`(I) ∩ T k`(A)

)
= µ

(
T k`(I) ∩A

)
= 1−µ

(
T k`(I) ∩B

)
≤ 1

3µ(I)

contradiciton. Add picture... �

Goal: If X = G/Γ where Γ is a lattice in G µ is G invariant

Theorem 121 (Howe-Moore). Suppose G is a simple connected Lie group with
finite center. Γ is a lattice in G. H y G/Γ is mixing (and ergodic) if H̄ is not
compact.

Note: This is almost nescessary, minus the case that G = H̄ is compact.

23.12

Part 1. Mixing for G-action ⇒ Mixing for any subgroup H ⊆ G ⇒ Ergod-
icity of any unbounded subgroup H. So mixing has a property that it passes to
subgroups.

This is certainly not true for ergodicity. Take any R y X and any homomor-
phism R2 → R.

Theorem 122 (Howe-Moore 1). Suppose G is a simple connected Lie group
with finite center. Then any ergodic action of G on a propabiblity space is mixing.

Corollary 123. Γ is a lattice in G. H y G/Γ is mixing (and ergodic) if H
is unbounded.

Proof. Let X = G/Γ, µ G-inv probability measure. G is transitive on X,
hence ergodic . Now apply Theorem 122 to get that the G action is mixing. �

Corollary 124. If Γ < SL2(R) is a lattice then the action of gt and h+
s are

ergodic.

Associated with any action of G on a measure space is the Koopman represen-
tation: G y L2 (X,µ) =

{
f : X → C : f is measureable,

∫
X
|f(x)|2 dµ(x) <∞

}
by (gf(x)) = f

(
g−1x

)
(use the inverse to get a left action. Use C and not R to get

...)
This is a unitary representation, i.e. ∀g ∈ G g is unitary. Indeed, ∀f1, f2 ∈

L2(X,µ),

< gf1, gf2 >=
∫
X

f1
(
g−1x

)
f2
(
g−1x

)
dµ(x) =

∫
X

f1 (x) f2 (x) dµ(x) =< f1, f2 > .

Continuuity: complete...
Remark: we did not use finiteness of µ.

Definition 125. Let G → U (H) be a unitary representation on a Hilbert
space. A matrix coefficient is a map G→ C of the form g 7→< gv1, v2 >, v1, v2 ∈ H.

Theorem 126 (Howe-Moore 2). Suppose G is a simple connected Lie group
with finite center. Then any ergodic action of G on a Hilbert space H by unitary
operators, without non-zero G-invariant vector. Then all matrix coefficient tend to
zero as g →∞.
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Theorem 127 (The Mautner phenomenon). G,H as above. suppose g ∈ G
not belonging to a conpact subgroup. Then any v ∈ H which is fixed by g is fixed by
G.

Remark 128. We will deal only with the case G is simple. There are ana-
loguous theorems with weaker hypothesis on G. In particular, for semisimple Lie
groups.

Reinterpretation of ergodicity and mixing in terms of the Koopman represen-
tation:

Exercise 129. G is ergodic on (X,B, µ) ⇐⇒ f ∈ L2 (X,B, µ) invariant ⇒ f
is a.e. constant.

G is mixing on (X,B, µ)⇐⇒∀f1, f2 ∈ L2 (X,B, µ), < gf1, f2 >→g→∞
∫
f1dµ

∫
f2dµ.

Note that gA = A ⇒ µ(gA4 A) = 0 but not the converse. But it is the same
in the definition of ergodicity. On the other hand, indicator functions are dense in
L2.

Howe-Moore 2 implies Howe-Moore 1. Let L2(Xµ) and take H = 1⊥ =
L2

0 (X,µ) to be the zero mean functions, where 1 is the constant function f ≡ 1. The
orthogonal projection is f → f −

∫
X
fdµ. By ergodicity H has no nonzero G-fixed

vectors. Now we can apply Theorem126 to get ∀f1, f2 ∈ H < gf1, f2 >→g→∞ 0. If
f1, f2 ∈ L2(X,µ), f̄1, f̄2 are the orthogonal projections on H then

< gf1, f2 > = < g

(
f̄1 +

∫
f1dµ

)
, f̄2 +

∫
f2dµ >

= < gf̄1, f̄2 > + < g

∫
f1dµ, f̄2 > + < gf̄1,

∫
f2dµ > + < g

∫
f1dµ,

∫
f2dµ >

=
∫
f1dµ

∫
f2dµ < g1, 1 >=

∫
f1dµ

∫
f2dµ

�

Lemma 130 (Cartan KA+K decomposition). Any g ∈ SLd(R) can be written
as k1ak2 where ki ∈ SOd(R) and a ∈ A+ = {diag (et1 , . . . , etd) :

∑
ti = 0, t1 ≥ . . . ≥ td}

(This is a Weyl chamber. Finite center is used here).

Proof. g · gt is symmetric positive definite ((g · gt)t = g · gt. If g · gtv = λv
then λ < v, v >=< g · gtv, v >=< gv, gv >. ∃k ∈ SOd(R) such that kggtk−1 is
diagonal, with eigenvalues arranged in decreasing order. a = a2

0, a0 ∈ A+. Now we
want to show ∃` ∈ K such that g = ka0`. Let ` = a−1

0 k−1g and check:

``t = a−1
0 k−1ggtka−1

0 = a−1
0 k−1kak−1ka−1

0 = a−1
0 aa−1

0 = e.

�

Two facts about Hilbert spaces:
• For every linear functional f ∈ H∗ ∃!v = vf such that ∀v ∈ H f(u) =<
v, u > .

• Weak-∗ topology on H∗: fn, f ∈ H∗ say that fn → f if ∀v ∈ H fn(v) →
f(v). Banach-Alaoglu: The unit ball in H∗ is compact with respect to
the weak-∗ topology.
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Mautner implies Howe-Moore 2. Fix u, v ∈ H and let gn ∈ G gn → ∞.
Using Cartan decomposition write gn = knan`n, kn, `n ∈ K, an ∈ A+. Since gn →
∞ and K is compact, we have an →∞. Reduce the problem to the case gn = an.
Indeed, enough to show that for any subsequence there exists a subsequence such
that the matrix coefficients tend to zero. So assume kn → k and `n → `.∣∣< gnv1, v2 > − < an`v1, k

−1v2 >
∣∣ =

∣∣< knan`nv1, v2 > − < an`v1, k
−1v2 >

∣∣
≤

∣∣< an`nv1, k
−1
n v2 > − < an`nv1, k

−1v2 >
∣∣+
∣∣< an`nv1, k

−1v2 > − < an`v1, k
−1v2 >

∣∣
≤ ‖an`nv1‖

∥∥k−1
n v2 − k−1v2

∥∥+ ‖an`nv1 − an`v1‖
∥∥k−1v2

∥∥
= ‖v1‖

∥∥k−1
n v2 − k−1v2

∥∥+ ‖`nv1 − `v1‖ ‖v2‖ → 0.

So now gn = an and we’re looking on < anu, v >. Vectors anu are vectors of fixed
norm in H. By facts 1 and 2 , after passing to a subsequence, exists w ∈ H such
that anu → w in the weak-∗, i.e. for all v ∈ H < anu, v >→< w, v >. Enough to
show w = 0. ∃h ∈ SLd(R) unipotent upper triangular 6= e such that a−1

n han → e.

< hw, v >=< w, h−1v >= lim < anu, h
−1v >= lim < a−1

n hanu, a
−1
n v >= lim < u, a−1

n v >= lim < anu, v >=< w, v >

This holds for all v, so w is fixed by h, i.e. hw = w. By Mauntner, w is fixed by
G. By assumption , there are no nonzero G-invariant vectors so w = 0. �

Lemma 131. G is lcsc, H a Hilbert space, π : G→ UH a unitary representation.v0 ∈
H is fixed by a subgroup L of G. Then v0 is also fixed by any h ∈ G such that for
all δ > 0 BG (h, δ) ∩ LBG (e, δ)L 6= ∅.

Remark 132. The hypothesis means (taking δ = 1
n ) ∃gn → h, `n, `

′
n ∈

L `ngn`
′
n → e. This is the same as ∃gn → e, `n, `

′
n ∈ L `ngn`′n → h

Proof. ‖hv0 − v0‖ ← ‖`ngn`′nv0 − v0‖ =
∥∥gn`′nv0 − `−1

n v0
∥∥ = ‖gnv0 − v0‖ →

‖v0 − v0‖ = 0 �

Example 133. G = SL2(R), L = {h+
s }, h = gt, t > 0. Want to show

that ∃gn → e, `n, `
′
n ∈ L `ngn`

′
n → h. Let gn =

(
cos
( 1
n

)
− sin

( 1
n

)
sin
( 1
n

)
cos
( 1
n

) )
. To

prove that ∃`n, `′n ∈ L `ngn`
′
n → h, enough to show that π(h) is in the closure

{Lπ (gn) : n = 1, 2, . . .} in G/L.

of Mautner phenomenon. (Mautner actually proved a special case, we prove
for SLn(R)). For G = SL2(R) We want to show that for any g ∈ G with {gn}
unbounded, if g fixes v0 then so does G.

Claim 134. Enough to prove for a conjugate of g. I.e., if h = g0gg
−1
0 , g fixes

v0 then h fixes g0v0. Since h has the property, G fixes g0v0, in particular

Fact 135. Any matrix SL2(R) conjugate to one of the following:

(1) a = ±
(
et 0
0 e−t

)
, t > 0 (hyperbolic)

(2) u = ±
(

1 t
0 1

)
(parabolic)

(3) k =
(

cos θ − sin θ
sin θ cos θ

)
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Therefore we only need to prove it for g = a and g = u (k does not satisfy the
condition of the lemma). We have a−nuan → e. By the lemma, if a fixes v0 so does
u. We have also that anu−a−n → e so again by the lemma u− fixes v0.

Exercise 136. {u, u−} generate G.

Assume u fixes v0 . Then a fixes h (by the lemma and the example).
The upshot is that G fixes v0.
For G = SLn(R), let g ∈ SLn(R) and assume v0 is fixed by g. Define two

groups
U± =

{
h ∈ G : g∓nhg±n → e

}
.

Suppose first that g has at least one eigenvalue of abssulute value 6= 1 . By det g = 1
there are eigenvalues |λ1| > 1 > |λ2|. In the Jordan form of g look in the places
correspond to these eigenvalues. Therefore U± are non-trivial.

Exercise 137. U+, U− generate a normal subgroup of G and hence generate
G.

By the Lemma, any element of U± fixes v0 so we are done in this case.
If g has all eigenvalues with absolute value = 1 and does not belong to a

compact group. Again look on the Jordan form to find a block of the from...

Fact 138 (Jacobson-Morosov). (Easy for SLn(R)) There is a copy of SL2(R) ↪→
SLn(R) which contains g.

By proof for SL2(R), SL2(R) fixes v0. SL2(R) contains an element g with
eigenvalue with absolute value6= 1. �

30.12.13

Part 1. Applications of Howe-Moore + Mautner.
SLn(Z) is a lattice in SLn(R). Gauss, Hermite 1905, Siegel 1931, Borel-

Harishchandra 1961. Proofs were made by finding a superset of the fundamental
domain and prove that it has finite volume. The superset nowadays is called a
Siegel set. To compute the volume exactly is much harder (also done by Siegel).
We will not do any explicit calculation at all, we use Mautner phenomenon and
Howe-Moore to prove:

Theorem 139. G is a semisimple real algebraic group defined over Q, Γ =
G(Z). Then Γ is a lattice in G. More generally, Γ commensurable to G(Z) i.e.
Γ ∩ G(Z) is of finite index in Γ and in G(Z). These lattices are called arithmetic
lattices.

Proof. First assume G = SLn(R), Γ = SLn(Z). Let u(t) be a unipotent
one-parameter subgroup of G. H = L2 (G/Γ, µ). µ is the measure induced on
G/Γ by Haar measure on G. Since µ is invariant, G y H is a unitary action.
By Mautner, any function in H which is {u(t)} invariant is G invariant, i.e. a.e.
constant. Let B be a ball in G/Γ , so B̄ compact and 0 < µ(B) < ∞. Re-
call the notation: W={rational subspaces of Rn} , for V ∈ W , g ∈ G, `V (g) =
covol (gV/g (V ∩ Zn)). For any V , g 7→ `V (g) is continuous and for any g, the set
of values {`V (g) : V ∈ W} is discrete. The set of values {`V (g) : V ∈ W} depends
only on π(g), i.e. if g1 = γg2, γ ∈ Γ then {`V (g1) : V ∈ W} = {`V (g2) : V ∈ W}.
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Therefore (since B̄ is compact) ∃ρ>0 s.t. for every g ∈ B, inf {`V (g) : V ∈ W} > ρ
By Kleinbock-Margulis ∃ε > 0 such that for all T > 0 and all x ∈ B

1
T
|{t ∈ [0, T ] : u(t)x /∈ Kε}| <

1
2 .

Let f = χKε ∈ H. Define f(y) = lim inf 1
n

∫ n
0 f(u(t)y)dt. If y ∈ B then f(y) ≥ 1

2 . f
is {u(t)} invariant, because if y0 = u(s)y∣∣∣∣ 1n
∫ n

0
f(u(t)y)dt− 1

n

∫ n

0
f(u(t)y0)dt

∣∣∣∣ ≤ 1
n

∫ n

0
|f(u(t)y)dt− f(u(t+ s)y)| dt

≤ 1
n

[∫ s

0
|f(u(t)y)| dt+

∫ n+s

n

|f(u(t)y)| dt
]

≤ 2s
n
→ 0.

Claim 140. f ∈ H.

Proof. By Cauchy-Schwartz∥∥∥∥ 1
n

∫ n

0
f(u(t)x)dt

∥∥∥∥2

2
= 1

n2

∫ n

0

∫ n

0

∫
G/Γ

f(u(t1)y)f(u(t2)y)dµ(y)dt1dt2

≤ 1
n2

∫ n

0

∫ n

0
‖f‖22 dt1dt2 = ‖f‖22

By Fatou:

‖f‖22 =
∫
G/Γ

lim inf
[

1
n

∫ n

0
f(u(t)y)dt

]2
dµ(y) ≤ lim inf

∫
G/Γ

[
1
n

∫ n

0
f(u(t)y)dt

]2
dµ(y) ≤ ‖f‖22 <∞.

f ∈ H, {u(t)} invariant ⇒ by Mautner, f is G invariant ⇒ f is a.e. constant,
f(y) ≡ c > 0 ⇒ ‖f‖2 = cµ(G/Γ) ⇒ µ(G/Γ) <∞. �

Sketch of the argument for the generalization: Need a Mautner theorem for
a unipotent {u(t)} ⊆ G. Need a Kleinbock-Margulis theorem for G/Γ . There
is an embedding G ↪→ SLN (R) such that Γ = G(Z) = G ∩ SLN (Z). If we
had G/Γ ↪→ SLN (R) /SLN (Z), then since Kleinbock-Margulis theorem is valid
in SLn(R)/SLn(Z) for all orbits of all unipotent groups, we have an estimate
for the amount of time trajectories for {u(t)} spend outside compact subsets of
SLn(R)/SLn(Z). We will see that G/Γ is a closed orbit in SLN (R)/SLN (Z). By
general principles, orbit map of a closed orbit is proper, i.e. a pre-image of a com-
pact subset of SLN (R)/SLN (Z) in G/Γ is compact . Sketch of the proof: Recall
that GSLN (Z) is closed in SLN (R)/SLN (Z). The orbit map is when G y X
x0 ∈ X

G/StabG (x0) → X

[g] 7→ gx0

In our case, X = SLN (R)/SLN (Z), x0 = SLN (Z), G/Γ→ SLN (R)/SLN (Z) is the
orbit map. Duality principle (complete diagram... ). HxΓ is closed as an H-orbit
in G/Γ ⇐⇒ HxΓ is closed as a subset in G/Γ ⇐⇒ HxΓ is closed as a Γ-orbit in
H \ G. This is trivail since we’re using the quotient topology. Applying it to our
case, in order to prove GSLN (Z) is closed (as a G-orbit in SLN (R)/SLN (Z)) it
suffices to show it is closed as a Γ-orbit.
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Fact 141 (From algebraic groups). Assumption that G is real algebraic semisim-
ple defined over Q implies G\SLN (R) is a variety defined over Q , SLN (Z) action
is via polynomials defined over Q. Hence discrete ⇒ closed.

�

Part 2. Recall the lattice point counting question answered by Margulis in his
thesis (a translation to english appeared three years ago!). For R > 0, Γ a lattice
in SL2(R), `, p ∈ H, define

N(R) = # (B(p,R) ∩ `Γ) .

Compute asymptotics of N(R) as R → ∞. We’ll see that analoguously to the
euclidean case, N(R) ∼ area(B(p,R))

area(H/Γ) .
Let Λ ⊆ R2 a lattice , p, ` ∈ R2

# (Λ + ` ∩B(p,R)) � πR2

covolΛ
this is proved by Gauss. (complete...)

For hyperbolic metric and volume

area(B(p,R)) = 4π
(

sinh2
(
R

2

))
� πeR

area (d neighborhood of B(p,R)) � π
(
eR+d − eR−d

)
= πeR

(
ed − e−d

)
Therefore, from the same argument as in the euclidean case, for hyperbolic lattice
counting problem, we get ∃C1, C2 such that C1e

R ≤ N(R) ≤ C2e
R. (Add drawing

of on the canceletion argument used by Margulis...).

Theorem 142. Let Γ be a lattice in SL2(R), `, p ∈ H. Then N(R) � area(B(p,R))
covol(Γ) �

πeR

covol(Γ)

Theorem 143. gt =
(
e
t
2

e−
t
2

)
, K =

{
rθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ [0, 2π]

}
,

Σ = H/Γ, p ∈ H is any point S(p, t) = πΣ ({z ∈ H : d(p, z) = t}) the sphere around
p of radius t projected to Σ. νt is the uniform measure on S(p, t), i.e.,∫

Σ
fdνt = 1

π

∫
f (gtrθπΣ(p)) dθ.

Then νt → vol weak-* convergence, i.e., ∀f ∈ Cc(Σ),
1
π

∫
f (gtrθπΣ(p)) dθ →

∫
Σ
fdvol,

where vol is a normalized measure.

Part 3.

Proof. (Theorem 143 ⇒ Theorem 142) Let ε > 0, f ≥ 0 with
∫

Σ fdvol = 1.
f is supported on the ball of radius ε around πΣ(`). f̃ = f ◦ πΣ (Bump function in
H, supported on ε-neighborhood of points). For any x ∈ Σ let

βR(x) = # geodesics of length ≤ R joining x to πΣ(p)
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Equivalently, βR(x) is the cardinality of the fiber over x for πΣ|B(p,R). Since
N(R) = # {`Γ ∩B(p,R)} =

∑
x∈`Γ∩B(p,R) 1 we have

N(R− ε) ≤
∫
B(p,R)

f̃(x)dvol(x) =
∫

Σ
f(x)βR(x)dvol(x) ≤ N(R+ ε).

Alternatively:

(5)
∫

Σ
f(x)βR−ε(x)dvol(x) ≤ N(R) ≤

∫
Σ
f(x)βR+ε(x)dvol(x).

Think of βR(x)dvol(x) as continuous convex combination of integrals along spheres
of radius t, where 0 ≤ t ≤ R. I.e., βR(x)dvol(x) is a convex combination of integrals
w.r.t. νt . As t → ∞,

∫
fdνt →

∫
fdvol, by Theorem 143. So, as R → ∞ RHS of

5 will be asymptotic to∫
Σ
fdvol ·B(p,R+ ε) =

∫
Σ
fdvol · πeR.

LHS is asymptotic to
∫

Σ fdvol · B(p,R − ε). Any limit point of N(R)·area(Σ)
area(B(p,R)) ∈[

πeR−ε

eR
, πe

R+ε

eR

]
. �

Proof. (of Theorem 143)(complete heuristics...) Let f ∈ Cc(Σ), f̃ = f ◦ πΣ
as before, fix ε > 0. Let U be a neighborhood of e in G (complete from the course
webpage...) �

Lemma 144 (Main point (waveront Lemma)). For any neighborhood of e in G
∃V ⊆ G such that gtV K ⊆ UgtK for all t ≥ 0.

This is important because: Think of V K as a small fatening of the infinitesimal
circle.I.e., V K is the support of a bump function around infinitesimal circle. gtK is
a circle of radius t. The lemma says that a bump function around the infinitesimal
circle, when pushed by gt stays in a uniformly bounded neighborhood of S(p, t).

6/1/14

Part 1. Additional lecture on 20.1.14 9-12 at schriber 08. Exercise sheet is
completed (after some corrctions).

Today we will prove some elementary private case of Ratner’s theorem.
Classification of invariant measures and orbit-closures for horospherical group

actions.
Start with G = SL2(R), Γ a lattice in G. U the positive unipotent groups.

U y U (H/Γ).

Theorem 145 (Hedlund ’36). If Γ is cocompact, then all U orbits on G/Γ are
dense (i.e., the action is minimal). If Γ is non-uniform, then any U orbit is either
dense or compact.

Remark: This is not the case for the geodesic flow, where one can have very
complicated orbit closures (add drawing...). (see exercise sheet).

Reminder: If Γ = SL2(R) (add drawing...)
Applications: Let Γ cocmpact lattice act on R2 by linear transformations.

Then, for any v ∈ R2 \ {0} its orbit closure is dense in R2. If Γ is non-uniform, any
orbit on R2 is either dense or discrete. This becomes an application of Hedlund’s
Theorem if we use the duality principle. Note that R2 \ {0} = U \ G. U orbit of
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π(x) = xΓ is dense ⇐⇒ UxΓ is dense in G ⇐⇒ Γ orbit of Ux = p(x) is dense.
Also, we need to show that a closed orbit for a countable group is discrete. By
contradiction, assume vγn → v0. ⇒ v0 = vγ0. For any vγ1 ∈ vΓ1, vγ1 = v0γ

−1
0 γ1 =

lim vγnγ
−1
0 γ1. So any point is an accumulation point. Therefore this set is perfect

and cannot be countable.
The following is a more difficult theorem which implies Theorem 145.
Theorem 146 (Furstunburg ’72). If Γ is cocmpact lattice in SL2(R), then

U action on X = G/Γ is uniquely ergodic, i.e., the only U invariant probability
measure on X is µX (coming from the Haar measure).

Two arguments for deriving Hedlund’s theorem (in the cocompact case) from
Furstungburg.

(1) For any x0 ∈ G/Γ and any f ∈ C(X),

(6) 1
T

∫ T

0
f
(
h+
s x0

)
ds→

∫
X

fdx

i.e., every point is generic. To this end, define a measure νT on X by∫
X

fdνT = 1
T

∫ T

0
f
(
h+
s x0

)
ds.

Equation 6 is equivalent to the convergence νT → µX in the weak-* topol-
ogy. Since the collection of all probability measures on a compact space
is weak-* compact, νT has convergent subsequences. Enough to show (by
unique ergodicity) that any convergent subsequence of νT converges to a
U invariant measure. So, if νTn → µ, let s0 ∈ R. Need to show that µ is
h+
s invariant. Indeed,∣∣∣∣∫
X

f(x)dµ(x)−
∫
X

f
(
h+
s x
)
dµ(x)

∣∣∣∣ =

∣∣∣∣∣ lim
n→∞

1
T

∫ T

0
f
(
h+
s x0

)
ds

∣∣∣∣∣ .
Since µX(O) > 0 for any open O ⊆ X, ∀O can find f ∈ C(X) which has
support in O with

∫
X
fdµX > 0. Since every orbit is generic, every orbit

visits O (even with the right frequency).
(2) Show U action on X is minimal. Assume by contradiction that ∃X0 ⊂ X

closed invariant non-empty. Take x0 ∈ X0, define νT as before. This is
a probability measure supported on X0 and X0 is compact, so we can
take a convergent subsequence νTn → µ with µ supported on X0. µ is
U invariant therefore µ = µX - contradiction. (Somehow, this is a softer
argument which one can use even when not havong one parameter group,
only amenable group).

Theorem 147 (Dani ’81). If Γ is non-uniform, then U ergodic, U invariant
measure on X is either µX or is the length measure (normalized) on a compact U
orbit, i.e., if Ux0 is compact, Ux0 = {h+

s x0 : s ∈ R} = {h+
s x0 : s ∈ [o, T ]} (justifi-

cation by closed orbit iff orbit map is a homeomorphism onto its image) with T > 0,
x0 = h+

T x0, T smallest positive such number, normalized measure ν on Ux0 is∫
X

fν = 1
T

∫ T

0
f
(
h+
s x0

)
ds.

Theorem 148. Γ non-uniform, any orbit Ux is generic for one of the U in-
variant measures as in previous theorem.
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Part 2. We will prove a generalization of Furstenberg’s unique ergodicity the-
orem.

Theorem 149 (Dani ’86 - proof by Margulis using ideas in his thesis). Let
G be a Lie group with finite center, let a ∈ G be Ad-diagonalizable, let H+ =
{g ∈ G : a−ngan → e}. Let Γ be a cocompact lattice inG. Then the onlyH+invariant
probabillity measure on X = G/Γ is µX (the G invariant measure).

Why does this implies Theorem 146? Take G = SL2(R), a =
(
λ

1
λ

)
,

λ > 1.

a−n
(
α β
γ δ

)
an =

(
λ−n

λn

)(
α β
γ δ

)(
λn

λ−n

)
...

i.e., in this case H+ = U .
Terminology: Ad : G → Aut(g) is the derivative of conjugation by g at the

identity. a is Ad-diagonalizable if Ad(a) is a diagonalizable linear operator on g.
The group H+ is called the expanding horospherical group for a.

Example 150. G = SL3 (R) , a =

 λ
1

1
λ

, λ > 1,

a−1 (xij) a =

 x11 λ−1x12 λ−2x13
x22 λ−1x23

λ2x31 x33


therefore H+ =

 1 ∗ ∗
1 ∗

1

. The only possible other options in SL3 (R) (up to

what?) are

 1 ∗ ∗
1 0

1

 and

 1 0 ∗
1 ∗

1

.

Before we get to the proof, some
P− =

{
g ∈ G :

{
anga−n

}
is bounded

}
.

Fact 151. a
(1) H+, P− are groups.
(2) They are complementary, in the sense that dimH+ + dimP− = dimG

and H+ ∩ P− = {e}.
(3) There are neighborhoods V1, V2 of e in P−, H+ respectively such that

V1 × V2 → G

(p, h) 7→ ph

is a homeomorphism onto its image.
(4) Let mH+,mP− denote right (respectively left) Haar measure on H+, P−.

Then the image of mH+ ×mP− under that map is mG.
(5) ∀x ∈ X,

H+ → X

h 7→ hx

is injective.
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Proof. Ideas of... for 1, just note that Ad(a) is an automorphism. For 2, note
that

Lie
(
H+) =

⊕
λ>0

gλ

Lie
(
P−
)

=
⊕
λ≤0

gλ

where
gλ =

{
Y ∈ Lie(G) : Ad(a)Y = eλY

}
.

For 3, compute rank of the map P− ×H+ to G at (e, e). By 2 this has a full rank.
Then it follows from the implicit inverse function theorem. 4 is just a computation
we omit. For 5, if hx = x, h 6= e then since a−nhan → e we have

z ← a−n = a−nhana−nx→ z

along a subsequence since X is compact. Therefore there does not exist a neigh-
borhood of z such that the map

G → X

g 7→ gz

is injective. This implies that the injectivity radius at z is zero which is a contra-
diction. �

In the context of 4, note that during this course we haven’t done any compu-
tation using the Haar measure and the reason is that this is somewhat tricky. Here
it is easier because the group has a lattice in it and therefore is unimodular.

Proof. (of Theorem 149) Let V1, V2 be as in 3. Let B0 ⊆ H+, B0 a neighbor-
hood at e such that mH+ (∂B0) = 0, B0 bounded. Define Bn = anB0a

−n. We will
show that for every f ∈ C(X), for every x ∈ X:

(7) 1
mH+ (Bn)

∫
Bn

f (ux0) dmH+(u)→
∫
X

fdµX .

Why this is enough? Let µ be an H+ invariant measure. Then by Fubini and the
dominated convergence theorem∫

X

fdµ = 1
mH+ (Bn)

∫
Bn

∫
X

f (ux) dµ(x)dmH+(u)

= 1
mH+ (Bn)

∫
X

∫
Bn

f (ux) dmH+(u)dµ(x)

→
∫
X

∫
X

fdµXdµ =
∫
X

fdµX .

Therefore
∫
X
fdµ =

∫
X
fdµX for every f ∈ C(X) so µ = µX .

To prove it, let ε > 0. Enough to show that anny convergent subsequence of
the LHS has a subsequence which converges to a limit which is within ε of the RHS.
since X is compact , f ∈ C(X), f is uniformly continuous. So there is δ > 0 such
that ∀y ∈ X∀h ∈ G with dG(h, e) < δ,

|f(hy)− f(h)| < ε
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(We may have to make δ even smaller). Let V ⊆ P− be small enough neighborhood
of e so that mP− (∂V ) = 0. d (anha−n) < δ for any n ∈ N, h ∈ V . Then

(8) 1
mH+ (Bn)mP− (anV a−n)

∫
Bn

∫
anV a−n

f (hux) dmP−(h)dmH+(u)

is within ε of the LHS of 7. Since Bn = anB0a
−n

(9) 1
mG (B0V )

∫
B0V

f
(
anga−nx

)
dmG(x)

�

Since H+ 3 h 7→ hx is injective, making δ smaller we can assume by compact-
ness that B0V 3 g 7→ gx is injective. Take a subsequence so that a−nkx→ z.∥∥χB0V a

−nkx − χB0V z

∥∥
2 → 0

(Since these sets have boundaries of measure zero).

1
mG (B0V )

∫
X

χB0V (x)f
(
anga−nx

)
dmG(x) = 1

mG (B0V )

∫
X

f (any)χB0V a−nx(y)dmG(y)

= 1
mG (B0V ) < anf, χB0V a−nx >

� 1
mG (B0V ) < anf, χB0V z >→

∫
X

fdµ

where the last move is by mixing...

Remark 152. We used compactness of G/Γ few times during the proof. The
most crucial point we needed it wasd to have a subsequence a−nkx → z. The
upshot is that the ptoof carries thorough unless x satsfies a−nx → ∞. It also
carries thorough if we have x′ = hx, h ∈ H+ is small and a−nx′ is bounded. Other
places where we used compactness can be avoided by being more carefull. This is
done very nicely in the Einsiedler-Ward book.

Same ideas prove the two mentioned Dani’s theorems. To prove both theorems
simultanuously. Idea: first prove that Equation7 is enough to show on a full measure
set (in particular, only for x such that a−nx not bounded). Then prove that if
a−nx → ∞ then Ux is compact. Now if µ is some measure not supported on a
compact orbit, ergodic, then for a.e. x w.r.t µ.

Applicatinos to number theory: If Ux compact, U = H+ ⊆ SL2(R)/SL2(Z)
then a−nx → ∞ (injectivity radius argument as before). But, anx is bounded
(possibly replacing x with x′ near by x in Ux). Similar argument as before: a−nUx
gets equidistributed. So

1
mG (a−nUx)

∫
a−nUx

f
(
a−nux

)
dmU (u)−

∫
X

fdµ→ 0

Theorem 153 (Sarnak ’81). Riemann hypothesis ⇐⇒ ∀f ∈ C∞c (G/Γ) ∀ε > 0
the rate of convergence is O

(
n−

1
2 +ε
)
.
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13.1.14

Part 1. Upcoming events about the diagonal group:
Today 14:30 - Pankaj Vishe
Tomorrow 14:00 - Uri Shapira
Next week, same time, schriber 008.
Two applications of Ratner theorem:

Theorem 154 (Ratner’s Theorems). Let G be a connected Lie group, Γ < G
a lattice, H a connected subgroup generated by an Ad-unipotent elements. Then:

(1) Orbit closure theorem: ∀x ∈ G/Γ there exists L = L(H,x) connected sub-
group of G with H ⊆ L ⊆ G such that Hx = Lx and Lx has finite volume,
i.e. Lx is a lattice in L. An orbit Lx as above is called a homogenuous
subspace.

(2) Measure classification theorem: For any H-invariant, H-ergodic finite
measure µ there exists x ∈ G/Γ, L < G such that µ is the pushforaward
of L-invariant measure on L/Lx under the orbit map. Such a measure is
called a homogenuous measure.

(3) Genericity theorem: Suppose H = {ht} is a one-parameter Ad-unipotent
group. ∀x ∈ G/Γ there exists µ = µ(H,x) homogenuous such that x is
equidistributed with respect to µ, i.e., ∀f ∈ Cc(G/Γ),

1
T

∫ T

0
f (htx) dt→

∫
G/Γ

fdµ.

Definition 155. A matrix (linear transformation) is called unipotent if all its
eigenvalues are equal to 1. An element g of a Lie group G is called Ad-unipotent if
Ad(g) ∈ Aut(g) is unipotent.

Remark 156. This definition depends on G.

Example 157. gt =
(
et

e−t

)
, G = SL2(R). Eigenspaces for Ad(g) are(

0 ∗
0 0

)
,
(

0 0
∗ 0

)
,
(
a 0
0 a−1

)
and the corresponding eigenvalues are e2t, e−2t,

1 . For g =
(

1 t
0 1

)
, with respect to the same basis - Ad(g) =

 1 t t2

2
1 t

1

,

therefore Ad-unipotent. Note that if we take G as
(
∗ 0
0 ∗

)
, gt is unipotent!

This cannot happen if G satisfies some condition, in particular:

Proposition 158. If G is a semisimple linear algebraic group, Ad(g) is unipo-
tent ⇐⇒ g is a unipotent matrix.

L ⊆ Gy G/Γ, x = π(g) ∈ G/Γ. We have a map
L → G/Γ
` 7→ `xΓ

that factors through the stabilizer
Lx = {` ∈ L : `x = x} ,
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i.e.,

L/Lx ↪→ G/Γ
`Lx 7→ `xΓ.

This is called the orbit map and it is always injective, and

Proposition 159. The orbit is closed ⇐⇒ the orbit map is proper, i.e., a
homeomorphism onto its image.

Proposition 160. Lx has finite volume (with respect to inner product on G/Γ
induced by a right invariant Riemannian metric on G) ⇐⇒ Lx is a lattice in L.

Note: Lx = L∩gΓg−1. (In leterature, ratner theorem may be phrased analogu-
osly using these propositions.

Example 161. G = SL2(R), Γ = SL2(Z), the only relevant one-parameter
subgroup of G (for G itself the consequences of the theorems are not interesting) is

h+
t =

(
1 t
0 1

)
. The theorem says that there exist L such that H ⊆ L ⊆ G and

the only options are L ∈
{
H,P =

(
∗ ∗
∗

)
, G

}
. But as in the exercise sheet,

P is not unimodular so cannot satisfy conditions (since by the theorem L must
contain a lattice), therefore we have L ∈ {H,G}. Consequence:

(1) Any H-orbit is either closed or dense (Hedlund’s theorem).
(2) Any H-invariant ergodic measure is either G-invariant on the entire space

or length measure on a closed orbit (Dani’s theorem).
(3) Any H-orbit is either periodic or equidistributed in G/Γ.

The correct strategy to prove the Ratner’s theorem is 2 → 3 → 1. The wanted
result is the orbit closure theorem (and there is a current project of LMM to prove
it directly withour using measure classification and benefit effectivness?).

Extensions:
(1) IfH “contains many unipotents” but is not generated by them, analoguous

of Ratner’s theorem have been established: For example if H = P by a
theorem of Shah and Mozes.

(2) If H is discrete, but Zariski dense then analoges of 1,2 were established
by Benoist-Quint very recently. Their work studied random walk on these
spaces. Example: A,B ∈ SL2(Z) are large generic matrices (don’t com-
mute). Then generically, the group < A,B > is a free Zariski dense in
SL2(R) and one can apply Benoist-Quint.

(3) H = A ⊆ SLn(R), n ≥ 3 is the most challenging remaining case. Con-
jectures and partial results about analogues of Ratner’s theorems for this
case (EKL).

Part 2. Oppenheim conjecture15. The state of the art result before Margulis
proved it was a result by Devenport-Ridout on ’59 for n ≥ 21. We will prove the
stronger restatement of the oppenheim conjecture:

Theorem 162 (Dani-Margulis ’89). P = Primitive vectors in Zn. If Q is in-
definite nondegenerate quadratic form which is not a scalar of a rational form then
Q(P) is dense in R.
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Take n = 3, Q(x) = x2 +y2−z2 of signature (p, q) = (2, 1). The level set Q = 0
is just the standard cone. Q = −1 we get two sheets hyperbolid and for Q = 1 we
get one-sheet hyperboloid. In this context (after a change of variables) think of Z3

as any lattice in R3. So the statement of the theorem is equivalent of having lattice
points between any two level sets Q−1(a), Q−1(b) a < b. The group that is going
to play a role is, let H be the component of e in

SO(Q) = {g ∈ SLn(R) : ∀v ∈ Rn, Q(v) = Q(gv)} =
{
g ∈ SLn(R) : gtrBg = B

}
.

Fact 163. SO(Q) acts transitively on each level set Q−1(c).

Since some level sets of Q are disconnected, SO(Q) is not connected.

Fact 164. Some algebraic facts:
(1) H is semisimple (simple unless (p, q) = (2, 2).
(2) Generated by unipotents when n ≥ 3 , H is maximal i.e., H ⊆ L ⊆

SLn(R), L connected implies H = L or L = PSLn(R).
(3) The centralizer of H in GLn(R) consists scalar matrices, i.e., if A ∈

GLn(R), Ah = hA for every h ∈ H then A = λI for some λ ∈ R∗.

This fact have geometric meaning also (think by yourself).
We will show two statements:
(1) For any x ∈ SLn(R)/SLn(Z) Hx is either closed or dense.
(2) If Hx0 is closed, where x0 = π(e), π : SLn(R) → SLn(R)/SLn(Z) then

Q is a multiple of a rational form.

Proof of the theorem assuming these statements. By the assumptions,
Q is not a multiple of a rational form, so by 2, Hx0 is not closed therefore by state-
ment 1 Hx0 is dense, i.e., H · SLn(Z) is dense in SLn(R). Given z ∈ R, let v ∈ Rn
such that Q(v) = z. Let g ∈ G such that ge1 = v. Let hk ∈ H, γk ∈ Γ such that
hkγk → g.

z = Q(v) = Q (ge1) = Q (lim hkγke1) = limQ (hkγke1) = limQ (γke1)

and γke1 ∈ P since e1 ∈ P. �

Proof of 1: By fact 6 we can apply Ratner’s orbit closure to get Hx = Lx, H ⊆
L ⊆ G. Since H is maximal, L = H or L = G and we get that Hx is either closed
or dense.

Proof of 2: Hx0 is closed (since H is a connected component of SO(Q)). Let
∆ = H ∩ Γ , let Q′ be an indefinite nondegenerate form of the same signature.
Claim that if ∆ ⊆ SO(Q′) then Q′ is a multiple of Q. Indeed, let {u(t)} be a
one-parameter unipotent subgroup of H, and let p ∈ Rn. Define

fp : H → R
fp(h) = Q′

(
h−1p

)
.

Since ∆ ⊆ SO (Q′) the map fp factors through the quotient by ∆. Define q(t) =
fp(u(t)). q : R→ R is a polynomial. By Margulis non-diveregence there isK ⊆ G/Γ
compact such that {t ∈ R : u(t)x0 ∈ K} is unbounded. The orbit mapH/∆ ↪→ G/Γ
(here we use Hx0 is closed?) is proper, let K ′ be the preimage of K under the orbit
map. Then K ′ is compact. q(t) = fp(u(t)) = fp (u(t)x0), u(t)x0 ∈ K ′ for an
unbounded set of t’s. Therefore q is constant! Q′(u(t)p) = Q′(p) ⇒ since this
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is true for all p we get {u(t)} ⊆ SO(Q′) ⇒ H ⊆ SO(Q′). Now let B,B′ be the
matrices representing Q,Q′ respectively, let and h ∈ H. Since h ∈ SO(Q′) we have

hB′B−1h−1 = hB′htrh−trB−1h−1 = B′B−1

⇒ B′B−1 centrelizes any element of H. By fact 6 B′B−1 is a scalar matrix ⇒ B′

is proportional to B. This proves the claim. Remains to prove that Q is a multiple
of a rational form, i.e., B is a multiple of a rational matrix. Define

V =
{
S ∈Mn (R) : ∀γ ∈ ∆ γtrSγ = S

}
.

By the claim, all elements in V are multiples of B. V is defined over Q becuase each
γ ∈ ∆ imposes a Q-linear condition. So V contains a rational matrix, concluding.

These are useful tricks for onee who is going to work in this field. We give a
more conceptual idea of why these ideas of applying Ratner’s theorem be present.

Geometrical explanation:
Qp,q = SO(p, q) \ SLn(R). We should think of this space as the space of

quadratic forms of signature (p, q) up to scaling. We are intrested in the “set
valued map” which maps Q ∈ Qp,q to Q (Zn). This map is from Qp,q to a strange
space (subsets of R) factors through SLn(Z), i.e., to

Qp,q/SLn(Z) = SO(p, q) \ SLn(R)/SLn(Z).
To understand this space we look at SO(p, q) orbit on SLn(R)/SLn(Z) and apply
the duality principle.

Part 3.
Conjecture 165 (Littlewood’s conjecturee ’20s). ∀α, β ∈ R, lim inf n 〈nα〉 〈nβ〉 =

0 where 〈x〉 = dist (x,Z).
Recall, α /∈ BA means that ∀ε > 0∃p, n such that

∣∣α− p
n

∣∣ < ε
n2 ⇐⇒ n 〈nα〉 ≤

n |nα− p| < ε. Since 〈x〉 ≤ 1
2 for every x ∈ R , for any (α, β) with α /∈ BA

conjecture is true. So the conjecture is true for a.e. (α, β). The state of the art of
results about this conjecture is:

Theorem 166 (Einsiedler-Katok-Lindenstrauss ’05). The pairs of (α, β) for
which Littlewood’s fails has Hausdorf dimension 0.

Relation to homogeneous dynamics (will be introduced vaguley): Write
n 〈nα〉 〈nβ〉 = n |nα− p1| |nβ − p2|

and think of it as a special case of functions of the form F = |L1| |L2| |L3| where
each Li is a linear functional on R3. We are asking a question about values taken
by such functions F on Z3. G = SL3(R) acts transitively on the space of products
of 3 linear functionals up to scaling. This space is A\SL3(R) where A is essentialy
the diagonal group (A ⊆ StabG(F ) where F = |xyz|. Infact there are additional
finite index permutations of things you can do).

Conjecture 167 (Margulis). Let Ay X = SL3(R)/SL3(Z).
(1) Any A-orbit which is bounded is compact.
(2) Any A-invariant measure is homogenuous.

Proposition 168 (Margulis, following Cassels Swinnerton-Dyer in the ’50s).
1 ⇒ 2 ⇒ Littlewood’s conjecture.

Theorem 169 (EKL). Any A-ergodic invariant measure on X which has pos-
itive entropy with respect to some a ∈ A is homogenuous.
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20.1.14

Part 1. Gap distributions in {
√
n mod 1}. This sequence is equidistributed in

[0, 1]. This is since
√
n+ 1 −

√
n = 1√

n+1+
√
n
−−−−→
n→∞

0 and for any k2 ≤ N <

(k + 1)2, k2

N −−−−→
N→∞

0. Let an =
{√

1
}
, order it in this way {a1, . . . , an} =

{b1, . . . , bn}, 0 ≤ b1 < . . . < bN . A gap is bi+1 − bi for some 0 ≤ i < N . The
average gap is of order 1

N .

Problem 170. For each N we have N numbers N (bi+1 − bi) of average 1
N .

How are they distributed?

Fact 171. If an are chosen randomly independently with uniform distribution
in [0, 1] then 1

N# {i : N |bi+1 − bi| ∈ (α, β)} −−−−→
N→∞

∫ β
α
e−tdt.

Theorem 172 (Elkies and McMullen ’02). There are explicit analytic dunctions
F2, F3 such that

F (t) =


6
π2 0 ≤ t ≤ 1

2
F2(t) 1

2 ≤ t ≤ 2
F3(t) 2 ≤ t

is continuous, positive,
∫∞

0 F (t)dt = 1 and 1
N# {i : N |bi+1 − bi| ∈ (α, β)} −−−−→

N→∞∫ β
α
F (t)dt.

Boshernitzan made computer experiment and predicted that the situation for√

is different than other roots. F (t) is charachterized by
∫ β
α
F (t)dt = µ ({L ∈ Y2 : L ∩ T (σ) 6= ∅})

where Y2 = SL2(R) nR2/SL2(Z) n Z2 the space of unimodular grids and µ is the
natural probability measure on Y2, T (σ) ⊆ R2 triangle with vertices (0, 0), (1, 0),
(1, 2σ) of area σ.

There is a proper map between Yd to Xd.
Gap distribution for visible lattice points
Let L0 be a unimodular grid in Rd, d ≥ 2, let Sd−1 be the unit sphere in Rd with

normalized volume. Let T, σ > 0 and for v ∈ Sd−1 defineDT,σ,v be the disk around v
in Sd−1 of radius r = r(T, σ) � T−

d
d−1 chosen so that vol (DT,σ,v)·vol (B(0, T )) = σ.

Let
NT,σ(v) = #

{
u ∈ L0 : ‖u‖ ≤ T, u

‖u‖
∈ DT,σ,v

}
our normalization insures that∫

Sd−1
NT,σ(v)dvol(v) = vol (DT,σ,v) # (L0 ∩B(0, T )) ∼ σ.

Call L0 = L+x rational grid, if ∃q ∈ N such that qx ∈ L, otherwise, it is irrational.

Theorem 173 (Marklof-Strombergson ’07). ∃c1 > 0 ∀L0 irrational grid,
lim
T→∞

vol
({
v ∈ Sd−1 : NT,σ(v) = r

})
= µ ({L ∈ Yd : |L ∩ C(σ)| = r})

where C(σ) =
{
x ∈ Rd : x1 ∈ (0, 1) , ‖(x2, . . . , xd)‖ ≤ x1c1σ

1
d−1

}
.

Note that µ ({L ∈ Yd : |L ∩ C(σ)| = r}) can be expressed by∫ ∞
σ

Φr(x)dx
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for some positive continuous piecewise analytic function.
Free path length statistics for a “periodic Lorentz gas”.
Fix a grid L ∈ Yd and ρ0 > 0 such that 0 /∈ L(ρ0) =

⋃
x∈LB (x, ρ0). Fix

v ∈ Sd−1 and ρ < ρ0 define τ = τ (L, v, ρ) = inf
{
t > 0 : tv ∈ L(ρ)}. Physical

intuition: the probability of hitting a scatterer is inverse proportional to the surface
area of a ball so thinking of v as chosen randomly, the expectation of τ should behave
like 1

ρd−1 .

Theorem 174 (Marklof-Strombergson ’07). There is a piecewise analytic pos-
itive Φ such that for any irrational L for any ξ > 0

lim
T→∞

vol
({
v ∈ Sd−1 : ρd−1τ (L, v, ρ) ≥ ξ

})
= µ ({L0 ∈ Yd : |L0 ∩ D(ξ)| = ∅}) ,

where D(ξ) =
{
x ∈ Rd : x1 ∈ (0, 1) , ‖(x2, . . . , xd)‖ ≤ 1

ξd−1

}
, and it equals

∫∞
ξ

Φ(s)ds.
(In particular it does not depend the original grid)

Part 2. Common point in the proof of all three theorems is to set up a sequence
of measures νT on a homogenuous space (in applications, Yd). Show that the
asymptotics that one wish to analyze follow from a result of the form νT → µ
weak-* convegence. Similar problem comes up in the proof of Ratner’s theorems
and in the Dani-Smillie equidistribution theorems. 2⇒ 3 is modelled on the same
argument used to prove Dani theorem: If G/Γ = SL2(R)/SL2(Z), then any ergodic
measure is either µ or is the length measure on a closed periodic orbit.

Theorem 175 (Dani and Smillie). Any ht orbit on SL2(R)/SL2(Z) is either
periodic or equidistributed.

How to use Dani’s theorem in order to prove Dani&Smille? Define νT =
1
T

∫ T
0 f (htx) dt. Goal: prove that νT → µ in weak-*. Step 1: Form the one-point

compactification to establish non-escape of mass, i.e., one of the three equivalent
statements:

(1) If X = SL2(R)/SL2(Z) ∩ {∞} and νTn → ν then ν ({∞}) = 0.
(2) ∀ε > 0 ∃K ⊆ SL2(R)/SL2(Z) compact such that ∀T νT (K) ≥ 1−ε (This

follows from the Dani-Margulis non-divergence).
Step 2: Since X is compact, the space of ptobability measures on X is also compact
(in the weak-*). So any sequence (νTn) has a convergent subsequence. Enough to
show that any such convergent subsequence tends to µ.

Step 3: Suppose that νTn −−−−→
n→∞

ν and show ν = µ. It is easy to show that
ν is ht invariant. Using the measure classification result we know that ν is some
convex combination of µ and additional measures on closed orbits. One needs to
rule out positive mass of measures which are length measures on closed orbits. For
this, prove that {htx : t ∈ [0, T ]} spends a negligible proportion of time near any
specific closed orbit.

Idea of proof: ρd−1τ (L, v, ρ) ≥ ξ ⇐⇒ L has no points in the ρ neighborhood of
the segment

{
tv : t ∈

[
0, ξ

ρd−1

]}
(up to boundary effects ignoring the caps) ⇐⇒ L

has no points in R = Rρ,v,ξ = O
([

0, ξ
ρd−1

]
×Bd−1(0, ρ)

)
where O is an orthoganal
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transformation that takes e1 to v ⇐⇒ L′ = O−1L has no points in
[
0, ξ

ρd−1

]
×

Bd−1(0, ρ) ⇐⇒



ρd−1

ξ

ξ
1
d−1

ρ

. . .
ξ

1
d−1

ρ

L
′ ∩ D(ξ) = ∅.

Choosing v at random corresponds to choosing O at random with respect to
normalized Haar measure on K = SOd(R). Let ν0 be the pushforward of Haar
measure on K under the map k 7→ kL. Need to prove gtν0 → µ and then by
applying equidistribution to the indicator of {L0 : L0 ∩ D(ξ) = ∅} we get what we
wanted.

Idea for 2: Find a matrixO ∈ K which rotates v to e1. For S =
{
u ∈ Rd : ‖u‖ ≤ T, u

‖u‖ ∈ DT,σ,v

}
find a diagonal matrix gt which maps O(S) to a fixed sector (independent of T, v).
This sector turns out to be C(σ). The theorem follows from gtν0 → µ as before.

Idea for 1: We want
1
N

# {i : N |bi+1 − bi| ∈ (α, β)} −−−−→
N→∞

µ ({L ∈ Y2 : L ∩ T (α) = ∅, L ∩ T (β) 6= ∅}) .

By Elkies and McMullen, it suffices to analyze (for x, t fixed, N parameter) the
probability (when choosing x ∈ [0, 1] uniformly) that there is 0 ≤ n < N such that
{
√
n} ∈

[
x, x+ t

N

]
. I.e., ⇐⇒ ∃a ∈ Z 0 ≤ n < N such that a+x ≤

√
n ≤ a+x+ t

N .
⇐⇒ ∃a ∈ Z 0 ≤ n < N such that (a+ x)2 ≤ n ≤ (a+ x)2 + 2t

N (a+ x) + t2

N2 .
⇐⇒ (up to boundary effects) ∃a ∈ Z 0 ≤ n < N such that (a+ x)2 ≤ n ≤
(a+ x)2 + 2t

N (a+ x) ⇐⇒

2 (a+ x)x ≤ n+ x2 − a2 ≤ 2 (a+ x)
(
x+ t

N

)
.

Let b = n− a2 and note that b ∈ Z and therefore this is ⇐⇒ T ∩ Z2 6= ∅ where

T =
{

(a, b) : 2 (a+ x)x ≤ b+ x2 ≤ 2 (a+ x)
(
x+ t

N

)}
.

T is a triangle of area t. Let g be an affine map which maps T to a standard triangle
T ′ of area t. T ′ is the triangle with vertices (0, 0), (1, 0), (1, 2t) to get ⇐⇒

T ′ ∩ Λx,t,N 6= ∅
where Λx,t,N is the image of Z2 under g. After doing explicit calculations, for fixed t

and varying x between 0 and 1 the grids Λx,t,N are described by
(
et
′

e−t
′

)[(
1 2x

1

)
,

(
x2

x

)]
Z2

where t′ −−−−→
N→∞

∞.
[(

1 2x
1

)
,

(
x2

x

)]
Z2 is a one-parameter unipotent group

and it is a closed loop in Y2. Therefore the diagonal flow equidistributes.
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