Homogeneous dynamics introduction talk

Alon Agin

January 2024

In case you find mistakes please let me know (alonagin@mail.tau.ac.il).

1 Lie & lcsc groups; topology and Haar measure

• Informally, a smooth d-dimensional manifold \((G, \tau)\) is a topological space that locally looks like \(\mathbb{R}^d\) in such a way such that if we a map \(f : G \to \mathbb{R}^k\) then we can do calculus on the map \(f\) via this resemblance, "as if \(f\) was a map from \(\mathbb{R}^d\) to \(\mathbb{R}^k\)."

• Formally, \((G, \tau)\) is a smooth \(d\)-dim manifold if there exist an atlas \((U_\alpha, \varphi_\alpha)_\alpha\) where \(U_\alpha\) is a family of open sets with \(G = \bigcup_\alpha U_\alpha\), where \(\varphi_\alpha\) is a map \(\varphi_\alpha : U_\alpha \to \mathbb{R}^d\) which is a homeomorphism on its image for all \(\alpha\), and such that for each pair \(\alpha, \beta\) the composition \(\varphi_\beta \circ (\varphi_\alpha)^{-1}\) is a smooth map from a subset of \(\mathbb{R}^d\) to \(\mathbb{R}^d\).

• This also tells us that if we have two manifolds \(G_1\) and \(G_2\) an a map \(F : G_1 \to G_2\) we have a way of saying that \(F\) is smooth map between the manifolds using both atlases of \(G_1\) and \(G_2\).

• A Lie group is a smooth d-dimensional manifold, with the extra property that the group operations of multiplication and inversion are smooth maps. i.e. both of the maps below are smooth

\[
\begin{align*}
G \times G & \to G \quad g \mapsto g^{-1} \\
G & \to G \quad (g, h) \mapsto g \cdot h
\end{align*}
\]

(1) (2)

It is also a topological-group, where for topological group we only ask for these maps to be continuous.

• If \(G\) is a Lie group then \(G\) is a also a lcsc topological group – Hausdorff, locally-compact (every point \(g \in G\) has a compact neighbourhood) and second countable (topology admits a countable basis). So it is also separable.

• Most important example from now on: \(G = SL_d(\mathbb{R})\) with matrix multiplication, where \(SL_d(\mathbb{R})\) is the space of \(d \times d\) square matrices with determinant 1.
 – We give \(M_d(\mathbb{R})\) (not a group for multiplication) a topology via the natural identification with \(\mathbb{R}^{d^2}\).
 – So \(SL_d(\mathbb{R})\) has the the subspace topology induced from \(M_d(\mathbb{R})\). We have that:
 * \(SL_d(\mathbb{R})\) is a closed group – since det is continuous and \(SL_d(\mathbb{R}) = \text{det}^{-1}\{1\}\).
 * not bounded, so not compact. Take for example \(\{\text{diag}(1/t, t, 1, ..., 1) \mid t \in \mathbb{R}\}\).
 * path-connected – exercise. Use the fact that any \(g \in SL_d(\mathbb{R})\) can be written as \(g = RP\) where \(R\) is a rotation matrix and \(P\) is a symmetric & positive semi-definite.
 – \(SL_d(\mathbb{R})\) is a \((d^2 - 1)\) smooth manifold – exercise. Can use implicit function theorem applied on \(M_d(\mathbb{R})\) with det function.
 – It is a \((d^2 - 1)\) Lie group with respect to matrix multiplication.
• Motivation: find a measure on \(G \) which is nice – behaves nicely with respect to the topology and to the group operation. We call this kind of measure a right/left Haar measure on \(G \), which is a right/left \(G \)-invariant Radon measure.

• We do not claim that the measure would be both left and right invariant; a-priori these are two different measures. but as we shall see, for some groups they coincide.

1. Given a topological space \((G, \tau)\) we define the Borel \(\sigma \)-algebra to be the smallest \(\sigma \)-algebra which contains all the open sets of the topology.
 - Particularly, this means that open and closed sets are always measurable.
 - In our case, where \(G \) is second-countable, it is the \(\sigma \)-algebra which is generated by a countable basis of the topology.

2. \(\mu \) is a Radon measure if it is Borel (a measure on the Borel \(\sigma \)-algebra), if it is locally-finite, and if it is regular. this means that
 - if \(K \subseteq G \) is compact then \(\mu(K) < \infty \).
 - For any \(B \subseteq G \) Borel we have that \(\mu(B) = \inf\{\mu(U)|B \subseteq U \text{ open}\} = \sup\{\mu(K)|K \subseteq B \text{ compact}\} \).

3. right/left \(G \)-inv means that for all \(B \) Borel and every \(g \in G \) we have that
 \[
 \mu(B) = \mu(gB) \quad \text{(left)} \quad \mu(B) = \mu(Bg) \quad \text{(right)}
 \]

Theorem 1. Let \(G \) be an Lie group (or lcsc). Then

(a) there exists a right/left \(G \)-inv metric on \(G \) which induces the topology.
(b) there exists a right/left Haar measure on \(G \).
(c) Up to scalar multiplication, it is unique.
(d) \(\mu(G) < \infty \iff G \) is compact.
(e) If \(U \subseteq G \) is open then \(\mu(U) > 0 \).

- sketch of proof of (a),(b) for Lie groups:
 * if \(G \) is a Lie group then \(G \) admits a right/left \(G \)-invariant Riemannian metric which induces the topology of \(G \). (Roughly speaking, an inner product on tangent space)
 * Riemannian metric \(\Rightarrow \) right/left \(G \)-inv metric
 * Riemannian metric \(\Rightarrow \) volume form on \(G \).
 * Use Riesz representation theorem to define a Haar measure via this volume form.
- In total,
 * left Riemannian metric \(\Rightarrow \) left Haar measure.
 * right Riemannian metric \(\Rightarrow \) right Haar measure.

- \(G \) is unimodular if the right and left Haar measures of \(G \) coincide.

- Haar measure on \(G = SL_d(\mathbb{R}) \) – Cone construction. Given \(B \subseteq SL_d(\mathbb{R}) \) Borel define
 \[
 \text{Cone}(B) := \{tb|b \in B 0 \leq t \leq 1\} \subset M_d(\mathbb{R}) \approx \mathbb{R}^{d^2}.
 \]

Now define a measure on \(SL_d(\mathbb{R}) \) by
\[
\text{m}_{SL_d(\mathbb{R})}(B) = m_G(B) := vol_{M_d(\mathbb{R})}(\text{Cone}(B)).
\]
- the map \(h \mapsto (\det(h),\det(h)^{-1/d}h) \) is continuous \(\Rightarrow \text{Cone}(B) \) is the inverse image \([0,1] \times B\), so volume is well defined.
we have two one-to-one correspondences

\[\text{Motivation: for an interesting subgroup } \Gamma \]

\[\bullet \quad \text{Define (a tricky name)} \]

\[\bullet \quad \text{claim: If } \]

\[\quad \text{On both } \]

\[\text{Gauss and Lagrange studied lattices already in the 18th century, while the study of } \]

\[\text{quotients of Lie groups gained popularity later on.} \]

\[\quad \text{On both } X_d \text{ and } \overline{X}_d \text{ we have a metric called the Chabauty-Fell metric. Although it is } \]

\[\text{explicit – its difficult to use it, and it does not help us to construct nice measures.} \]
\[-d_{CF}(L_1, L_2) := \inf \left\{ \varepsilon \mid \forall x \in L_1 \text{ with } x \in B(0, 1/\varepsilon) \exists y \in L_2 \text{ with } \|x - y\| < \varepsilon \right\} \]

- Claim: The topology induced from this metric coincide with the quotient topology of \(SL_d(\mathbb{R})/SL_d(\mathbb{Z}) \), so in fact the correspondence from above is a homeomorphism.

- We keep this example in mind when we now try to give structure to arbitrary \(G/\Gamma \).

3 The quotient \(X := G/\Gamma \)

- From now on, \(G \) is lscs endowed with right invariant metric \(d_G \) and with right Haar measure \(\mu_G \). The reason why we take right is because we are going to work with right quotient \(G/\Gamma \) (with left cosets of the form \(g\Gamma \)).

- Assume also from now on that \(\Gamma \subseteq G \) is discrete, and define \(X := G/\Gamma \). For \(g \in G \) and \(g_0\Gamma = x_0 \in X \) we denote \(gx_0 := (gg_0)\Gamma \) the left action of \(G \) on \(X \).

- we say \(\Gamma \subseteq G \) is discrete if for all \(\gamma \in \Gamma \) there exists open \(U \subseteq G \) such that \(\Gamma \cap U = \{\gamma\} \). Since \(G \) is lscs, it is the same as asking that there exists an open \(U \) such that \(\Gamma \cap U = \{e\} \) (open mapping theorem for locally compact groups implies that for each \(g \in G \), multiplication by \(g \) is an open map).

- Let \(\pi : G \rightarrow X \) be the natural projection to the quotient defined by \(\pi(g) = g\Gamma \). Recall that if \(G \) is a topological space and \(\Gamma \) divides \(G \) into equivalence classes, we have the quotient topology on \(X \) where \(V \in X \) is open iff \(\pi^{-1}(V) \) is open in \(G \).

- Define a metric \(d_X(\cdot, \cdot) \) on \(X \) by

\[d_X(g_1\Gamma, g_2\Gamma) := \inf_{\gamma_1, \gamma_2 \in \Gamma} d_G(g_1\gamma_1, g_2\gamma_2) = \inf_{\gamma \in \Gamma} \min_{\gamma \in \Gamma} d_G(g_1, g_2\gamma) \]

where the first equality follows from the fact that \(d_G \) is right-inv, and the second follows from the fact that \(\Gamma \) is discrete.

Theorem 3. We have the followings:

\(a \) The topology induced by the metric \(d_X \) coincide with the quotient topology. Furthermore, \(G \) and \(X \) are "locally isometric": for any \(x_0 \subseteq X \) there exists \(r = r(x_0) > 0 \) such that the following map is an isometry

\[B_G(e, r) \rightarrow B_X(x_0, r) \quad g \mapsto g : x_0 \]

\(b \) \(g_n\Gamma \rightarrow g_0\Gamma \iff \exists \gamma_n \text{ such that } g_n\gamma_n \rightarrow g_0. \)

- In this case, we say say that \(X \) is a locally \(G \)-homogeneous space – a quotient space of \(G \) which locally looks the same everywhere.

- There is a bit of ambiguity in the literature regarding the definition of a "homogeneous space". The definition of a locally homogeneous space is fairly new, but it is more suitable due to Theorem 3.

- Motivation: construct a Borel measure on \(X \) which is invariant under the left \(G \)-action.

- We say \(\Omega \subseteq G \) is a fundamental domain of \(X = G/\Gamma \) (usually just say "fundamental domain") if \(\Omega \) is Borel, and if for all \(g \in G \) there exists a unique \(\gamma \in \Gamma \) such that \(g\gamma \in \Omega \).

\[\iff \Omega \text{ is a choice of representative from each coset of } X, \text{ which is also measurable.} \]
Theorem 4. If $\Gamma \leq G$ is discrete there exists a fundamental domain Ω for $X = G/\Gamma$.

- proof

 * For $g \in G$ define $r_g > 0$ by $r_g := \sup \{ r > 0 | \pi_{|B_{G}(g, r)} \text{ is injective} \}$. This is well defined by discreteness of Γ. Indeed, if not then there exists $h_n \neq k_n$ with $h_n\Gamma = k_n\Gamma$ with $h_n \rightarrow g$ and $h_n \rightarrow g$

 $\implies \exists \gamma_n \in \Gamma$ with $k_n h_n^{-1} = \gamma_n$

 $\implies \gamma_n \rightarrow e$, cannot hold for since Γ discrete.

 * Notice that if for some $g, k \in G$ we have that $d_G(g, k) < \frac{r_k}{r_k}$, then $r_g \geq \frac{r_k}{r_k}$.

 So we have $k \in B_G(g, \frac{r_k}{r_k})$.

 * Now take a countable dense sequence $(g_n)_{n=1}^\infty$ in G (lcsc \rightarrow separable), and denote for convenience $r_n := r_{g_n}$. and $B_n = B_G(g_n, \frac{r_n}{r_n})$.

 * So $G = \bigcup_{n=1}^{\infty} B_n$, and $\pi_{|B_n}$ is injective on for each n.

 Indeed, for $k \in G$ and by density, there exists n such that $d_G(g_n, k) < r_k$

 $\implies k \in B_G(g_n, \frac{r_n}{r_n}) = B_n$.

 * Now define $\Omega := \bigcup_{n=1}^{\infty} B_n \setminus (\bigcup_{j<n} B_j \Gamma)$. check that $\pi_{|\Omega}$ is a bijection and that Ω is Borel.

Theorem 5. Let $\Omega_1, \Omega_2 \subset G$ be two fundamental domains of X. Then for every Borel $A \subset X$ we have $\mu_G(\Omega_1 \cap \pi^{-1} A) = \mu_G(\Omega_2 \cap \pi^{-1} A)$. In particular, $\mu_G(\Omega_1) = \mu_G(\Omega_2)$.

- Note that this is true for any right invariant measure on G, not only right Haar measure.

- proof

 * Notice that by definition of fundamental domains we have $\Omega_1 \cap \pi^{-1} (A) = \bigcup_{\gamma \in \Gamma} [\Omega_1 \cap \pi^{-1} (A)] \cap [\Omega_2 \cap \pi^{-1} (A)] \cdot \gamma$

 * By discreteness of Γ and the fact that is lcsc, Γ is countable. so we have $\mu_G(\Omega_1 \cap \pi^{-1} (A)) = \sum_{\gamma \in \Gamma} \mu_G([\Omega_1 \cap \pi^{-1} (A)] \cap [\Omega_2 \cap \pi^{-1} (A)] \cdot \gamma) = \sum_{\gamma \in \Gamma} \mu_G([\Omega_1 \cap \pi^{-1} (A)] \cdot \gamma^{-1} \cap [\Omega_2 \cap \pi^{-1} (A)]) = \mu_G(\Omega_2 \cap \pi^{-1} (A))$.

- Using theorem 2 and 3, we can finally construct a nice measure on the quotient.

Theorem 6. Assume $\mu_G(\Omega) < \infty$ for some (all) fundamental domain $\Omega \subset G$ of X. Then G is unimodular.

Theorem 7. Assume that G is unimodular, and let μ_G be the Haar measure on G.

(a) For Borel $A \subset X$ define

$$
\mu_X(A) := \mu_G(\pi^{-1}(A) \cap \Omega) \quad \text{if } \mu_G(\Omega) = \infty
$$

$$
\mu_X(A) := \mu_G(\Omega)^{-1} \mu_G(\pi^{-1}(A) \cap \Omega) \quad \text{if } \mu_G(\Omega) < \infty
$$

Then μ_X is a radon (probability) measure on X which is invariant for the left G-action on X.

(b) Up to scalar multiplication, μ_X is the unique G-inv radon measure on X.

- proof

 * First notice that if Ω is a fundamental domain for X then so does $g\Omega$, for all $g \in G$.

 * Now let $A \subset X$ Borel. Then by theorem 5 and left G-inv of μ_G we have

$$
\mu_X(gA) = \mu_G(\pi^{-1}(gA) \cap \Omega) = \mu_G(g \pi^{-1}(A) \cap \Omega)
$$

$$
= \mu_G(\pi^{-1}(A) \cap g^{-1} \Omega) = \mu_G(\pi^{-1}(A) \cap \Omega) = \mu_X(A).
$$
• For $\Gamma \leq G$ discrete we say Γ is a lattice in G if X admits a left G-inv probability measure. For example, if G is unimodular and there exists Ω a fundamental domain for X with $\mu_G(\Omega) < \infty$.

• Γ is called a uniform (or cocompact) lattice if in addition X is compact. Otherwise, Γ is called non-uniform.

• A sequence $(x_n)_{n=1}^{\infty}$ in X is called divergent (notation $x_n \to \infty$) if the sequence eventually leaves any compact set; if for all $K \subseteq X$ compact we have $x_n \notin K$ for all sufficiently large n.

• Back to $G = SL_d(\mathbb{R})$. Define $\Gamma = SL_d(\mathbb{Z})$ (which is discrete), and define from on $X_d := G/\Gamma$. Recall that we have seen the correspondence $X_d := \{\text{Lattices in } \mathbb{R}^d \text{ covol = 1}\} \leftrightarrow SL_d(\mathbb{R})/SL_d(\mathbb{Z}) \quad \text{g} \mathbb{Z}^d \leftrightarrow g SL_d(\mathbb{Z})$.

• We have seen that the measure m_G (cone construction) is both left and right Haar measure on G, and that any lcsc group admits a fundamental domain. So by theorem 7 we have a radon left G-inv measure on X_d, which we denote by m_{X_d}. At this point we do not know weather it is finite or not.

• Motivation: although it is difficult to explicitly find a fundamental domain $\Omega \subset SL_d(\mathbb{R})$ of X_d, we want to show that m_{X_d} is a probability measure.

• Notice that the names are a bit confusing with this correspondence – $g \mathbb{Z}^d$ is a lattice in \mathbb{R}^d of covolume 1 for all $g \in G$, and we also want to show that Γ is a lattice in G; the correspondence is between the space of all lattices in \mathbb{R}^d of covolume 1, and the quotient space G/Γ when Γ is a lattice in G.

Theorem 8. We have the following:

(a) **Siegel summation formula (SSF):** Let $f \in L^1(\mathbb{R}^d, \text{Vol})$. Then

$$\int_{\mathbb{R}^d} f(\vec{v}) \text{Vol}(\vec{v}) = \int_{X_d} \sum_{\vec{v} \notin L} f(\vec{v}) \ dm_{X_d}(L)$$

(b) $SL_d(\mathbb{Z})$ is a lattice in $SL_d(\mathbb{R})$.

- Proof of (b) assuming (a)

 * Let $f = 1_E$ where $E = [-2,2]^d$. $\text{Vol}(E) = 2^d$, so by Minkowski’s 1st theorem, any lattice $L \in SL_d(\mathbb{R})$ contains at least one non-zero point in E, so $\sum_{\vec{v} \notin L} 1_E(\vec{v}) \geq 1$ for all $L \in X_d$. Let 1_{X_d} be the indicator function of the all space X_d.

 * So we have

$$m_{X_d}(X_d) = \int_{X_d} 1_{X_d}(L) \ dm_{X_d}(L) \leq \int_{X_d} \sum_{\vec{v} \notin L} 1_E(\vec{v}) \ dm_{X_d}(L) = \text{SSF} \int_{\mathbb{R}^d} 1_E \text{Vol} \leq \text{Vol}(E) < \infty.$$

Theorem 9. **Mahler compactness criterion** – the following are equivalent

(a) A sequence of lattices $(g_n \mathbb{Z}^d)_{n=1}^{\infty} = (L_n)_{n=1}^{\infty}$ is divergent (eventually leaves any compact set)

(b) There exists a sequence $0 \neq \vec{v}_n \in L_n$ such that $\|\vec{v}_n\| \to 0$
4 actions of subgroups \(H \leq G \) on \(X \)

- \(G \) is a Lie group. \(H \leq G \) is closed, then \(H \) is also a Lie group.
- For \(H \leq G \) and for \(g_0 \Gamma = x \in X \), the stabilizer of \(x \) w.r.t the action of \(H \) on \(X \) is
 \[\text{stab}_H(x) := \{ h \in H \mid hx = x \} = H \cap g_0 \Gamma g_0^{-1}. \]

So in particular, \(\text{stab}_H(x) \) is discrete.

- By the orbit-stabilizer Theorem, there is a 1-1 correspondence via the orbit map
 \[Hx \rightarrow H/\text{stab}_H(x) \quad hx \mapsto h\text{stab}_H(x). \]

- This is only a 1-1 map in terms of sets, but this is not necessarily a homeomorphism.

- So now, after we have developed a good theory on quotients of discrete subgroups of Lie groups, we can try to use this theory to understand better the orbits \(Hx \).

Theorem 10. \(Hx \) is closed in \(X \) \iff the orbit map is a homeomorphism.

Theorem 11. Assume \(H \) is unimodular. If \(\Gamma \) is a lattice in \(G \) and \(\text{stab}_H(x) \) is a lattice in \(H \), then \(Hx \) is closed.

- Motivation: although \(Hx \) is not necessarily homeomorphic to \(H/\text{stab}_H(x) \), we want to use the quotient to put a measure on \(Hx \).

- Recall that for \(A \subseteq X \) we have defined
 \[\mu_X(A) := \mu_G(\Omega \cap \pi^{-1}(A)) = \mu_G(\{ \omega \in \Omega \mid \omega \cdot e_X \in A \}). \]

- Let \(\mu_H \) be the right Haar measure on \(H \), \(\Omega_H \) a fundamental domain for \(H/\text{stab}_H(x) \).

- If \(H \) is unimodular, then we can define a "new" measure on \(X \) by
 \[\text{vol}_{Hx}(A) := \mu_H(\{ \omega \in \Omega_H \mid \omega x \in A \}). \]

- Claim: \(\text{vol}_{Hx} \) is Borel and left \(H \)-inv.

- But it is not necessarily Radon because it is not necessarily locally finite.

- Notice that since \(H \) is unimodular, there is a unique left \(H \)-inv Radon on \(H/\text{stab}_H(x) \).

- So if \(Hx \) is closed and Theorem 10 holds, \(\text{vol}_{Hx} \) is locally finite, hence the unique Radon left \(H \)-inv measure on \(X \).

- Let \(U = \{ u_t \mid t \in \mathbb{R} \} \leq G \) be a one-parameter subgroup of \(G \).

- Let \(\nu_X \) be a probability measure on \(X \) which is left \(U \)-inv.
 We say \(\nu_X \) is homogenous (or algebraic) if there exists a closed & connected & unimodular subgroup \(H \) with \(U \leq H \leq G \) and there exists \(x \in X \) with \(Hx \) a closed orbit, such that \(\nu_X = \text{vol}_{Hx} \), where in this case \(\text{vol}_{Hx} \) is the unique left \(H \)-inv Radon measure on \(X \).

- In the following talks will study some Ergodic theory, and discuss Ratner theorem’s which deals with the classification of homogeneous measures.