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Lie & lcsc groups; topology and Haar measure

Informally, a smooth d-dimensional manifold (G, T) is a topological space that
locally looks like R? in such a way such that if we a map f : G — RF then we can do

calculus on the map f via this resemblance, ”as if f was a map from R to R*”.

Formally, (G, 7) is a smooth d-dim manifold if there exist an atlas (Uy, pa)a where U,
is a family of open sets with G = U,U,,, where ¢, is a map ¢, : U, — R which is a
homeomorphism on its image for all c, and such that for each pair «, 8 the composition
¢p 0 (o)t is a smooth map from a subset of R? to R

This also tells us that if we have two manifolds Gy and G5 an a map F': G; — G2 we
have a way of saying that F' is smooth map between the manifolds using both atlases
of G1 and Gbs.

a Lie group is a smooth d-dimensional manifold, with the extra property that the
group operations of multiplication and inversion are smooth maps. I.e. both of the
maps below are smooth

G—G g gt (1)
GxG—G (g, h)—g-h (2)

It is also a topological-group, where for topological group we only ask for these maps
to be continuous.

If G is a Lie group then G is a also a lcsc topological group — Hausdorff, locally-
compact (every point g € G has a compact neighbourhood) and second countable
(topology admits a countable basis). So it is also separable.

Most important example from now on: G = SL4(R) with matrix multiplication, where
SL4(R) is the space of d x d square matrices with determinant 1.

— We give M;(R) (not a group for multiplication) a topology via the natural iden-
tification with R?".

— So SL4(R) has the the subspace topology induced from M;(R). We have that:
* SLq(R) is a closed group — since det is continuous and SLq(R) = det ™' {1}.
* not bounded, so not compact. Take for example {diag(1/t,t,1,...,1)|t € R}.

* path-connected — exercise. Use the fact that any g € SLy(R) can be written
as ¢ = RP where R is a rotation matrix and P is a symmetric & positive
semi-definite.

— SL4(R) is a (d?> — 1) smooth manifold — exercise. Can use implicit function
theorem applied on My(R) with det function.

— It is a (d®> — 1) Lie group with respect to matrix multiplication.



e Motivation: find a measure on G which is nice — behaves nicely with respect to the
topology and to the group operation. We call this kind of measure a right /left Haar
measure on G, which is a right/left G-invariant Radon measure.

e We do not claim that the measure would be both left and right invariant; a-priory
these are two different measures. but as we shall see, for some groups they coincide.

1.

Given a topological space (G, 7) we define the Borel o-algebra to be the smallest
o-algebra which containes all the open sets of the topology.
— Particularly, this means that open and closed sets are always measurable.
— In our case, where G is second-countable, it is the o-algebra which is gener-
ated by a countable basis of the topology.

1 is a Radon measure if it is Borel (a measure on the Borel o-algebra), if it is
locally-finite, and if it is a regular. this means that
— if K C G is compact then p(K) < co.
— For any B C G Borel we have that
w(B) = inf{u(U)|B C U open} = sup{u(K)|K C B compact}.

right /left G-inv means that for all B Borel and every g € G we have that
u(B) = pu(gB) (left) u(B) = p(Byg) (right)

Theorem 1. Let G be an Lie group (or lcsc). Then

(a) there exists a righ/left G-inv metric on G which induces the topology.
(b) there exists a right/left Haar measure on G.

(c) Up to scalar multiplication, it is unique.

(d) W(G) < oo < G is compact.
(e) If U C G is open then pu(U) > 0.

— sketch of proof of (a),(b) for Lie groups:

* if G is a lie group then G admits a right/left G-invariant Rimannian metric
which induces the topology of G. (Roughly speaking, an inner product on
tangent space)

* Rimannian metric = right/left G-inv metric
* Rimannian metric = volume form on G.

* Use Riesz representation theorem to define a Haar measure via this volume
form.

— In total,

* left Rimannian metric = left Haar measure.
* right Rimannian metric = right Haar measure.

e (G is unimodular if the right and left Haar measures of G coincide.

e Haar measure on G = SL4(R) — Cone construction. Given B C SL4(R) Borel
define

Cone(B) = {th|be B0<t<1}C My(R)~ R".

Now define a measure on SLg(R) by

mSLd(R)(B) = mG(B) = 'UOlMd(R)(COTLe(B)).

— the map h + (det(h),det(h)~/? . h) is continuous == Cone(B) is the inverse

image [0, 1] x B, so volume is well defined.



— Can check locally-finite and regular due to properties of Vol in R,

Theorem 2. mg is the left and right Haar measure of G. Particularly, SLq(R)
s unimodular.

need to show — for all B Bore all g € G we have mg(B) = mg(9B) = mg(Bg).
Lets show right-inv.

<= wolp,r)(Cone(B)) = voly, ) (Cone(Byg))

<= wolp,r)(Cone(B)) = voly, ) (Cone(B) - g)

= enough to show — for all measurable A C M4(R) we have that

UOlMd(R) (A) = UOlMd(R) (Ag).

For a € A write a = . If we identify My(R) with R? via the row

g
vector @ =: (a1,1,01,2,...,41,d,02,1, .., Ad,q) and write a =~ @, we have that ag ~
adiag (9,9, ...,g). In particular

voly,r)(Ag) = volga (X -diag (9,9, - g)) = det(g)d V0l a2 (A) = voly,w)(A),
where the last equality holds as g € SL4(R).

We do this analogously for left-invariancy. O

2 Motivation for G/I"

Motivation: for an interesting subgroup I' < G (not necessarily normal), give structure
to the space G/T" (not necessarily a group) via the structure of G.

L € R? is a lattice if there exists linearly-independent @1, @ ... %; such that
L = spanz(0y, 7, ... Tg) <= exists h € GLq4(R) such that L = hZ.
In this case we also say that h is a basis of L. Example: Z? with h = I,;.

Define (a tricky name) GL4(Z) := {z € Maxa(Z) such that det(z) = +1 }.
Notice this is a group.

claim: If L = hiZ® = hyZ9 then there exists z € GL4(Z) such that hy = hoz. Le. a
lattice L = hZ< is invariant under the conjugate group h - GLg(Z) - h™1.

So we define the covol(L) := | det h|, where h is any basis of L. This is well defined by
the previous claim.

Claim: we have two one-to-one correspondences
— X4 := {Lattices in R4} +— GL4(R)/GL4(Z) hZ4 «— h GLq(7Z).
— X4 := {Lattices in R? covol = 1} +— SL4(R)/SL4(7Z) gZ% +— g SL4(Z).

Gauss and Lagrange studied lattices already in the 18th century, while the study of
quotients of Lie groups gained popularity later on.

On both Xy and Xz we have a metric called the Chabauty-Fell metric. Although it is
explicit — its difficult to use it, and it does not help us to construct nice measures.



e | Yo € Ly with x € B(0,1/¢) 3y € Ly with ||z —y|| < e
— dep(Ly, Ly) := inf Yy € Ly with y € B(0,1/¢) 3z € Ly with ||z —y| <e

1

Claim: The topology induced from this metric coincide with the quotient topology of
SL4(R)/SL4(Z), so in fact the correspondence from above is a homeomorphism.

We keep this example in mind when we now try to give structure to arbitrary G/T.

3 The quotient X :=G/I’

From now on, G is Iscs endowed with right invariant metric dg and with right Haar
measure pg. The reason why we take right is because we are going to work with right
quotient G/T' (with left cosets of the form gI').

Assume also from now on that I' < G is discrete, and define X := G/T.
For g € G and goI' = 29 € X we denote gz := (ggo)I" the left action of G on X.

we say [' < G is discrete if for all v € T" there exists open U C G such that TNU =
{7}. Since G is lesc, it is the same as asking that there exists an open U such that
I'NU = {e} (open mapping theorem for locally compact groups implies that for each
g € G, multiplication by ¢ is an open map).

Let m : G — X be the natural projection to the quotient defined by 7(g) = gT'.
Recall that if G is a topological space and I' divides G into equivalence classes, we
have the quotient topology on X where V € X is open iff 771(V) is open in G.

Define a metric dx (-,-) on X by

dx (911, g2') := inf _da(g171,9272) = inf da(g1, 927v) = mindg (g1, 927)
Y1,72€l ~er ~yel

where the first equality follows from the fact that dg is right-inv, and the second
follows from the fact that I' is discrete.

Theorem 3. We have the followings:

(a) The topology induced by the metric dx coincide with the quotient topology. Fur-
thermore, G and X are "locally isometric”: for any xo C X there exists r =
r(xzo) > 0 such that the following map is an isometry

Bg(e,r) = Bx(zo,T) g g- I
(b) g .T' — goI' <= vy, such that gnVvn — go-

In this case, we say say that X is a locally G-homogeneous space — a quotient
space of G which locally looks the same everywhere.

There is a bit of ambiguity in the literature regarding the definition of a ”homoge-
neous space”. The definition of a locally homogeneous space is fairly new, but it is
more suitable due to Theorem 3.

Motivation: construct a Borel measure on X which is invariant under the left G-action.

We say @ C G is a fundamental domain of X = G/T (usually just say ”funda-
mental domain”) if 2 is Borel, and if for all g € G there exists a unique v € T such
that gy € Q.

<= (1 is a choice of representative from each coset of X, which is also measurable.



Theorem 4. IfT" < is discrete there exists a fundamental domain Q for X = G/T.

— proof

*

For g € G define ry > 0 by 4 := sup {r > 0| T, (g,r,) is injective}.
This is well defined by discreetness of I'. Indeed, if not then there exists
hp # ky with h, I’ = k,I" with h,, — g and h,, — ¢

= Iy, € T with k,h,t =,

= 7, — e, cannot hold for since I' discrete.
Notice that if for some g,k € G we have that dg(g,k) < 7, then ry > o
So we have k € Bg(g, ).
Now take a countable dense sequence (g,)52; in G (lcsc — separable), and
denote for convenience r, := 74, and B, = Bg(gn, 3-)-
So G =UpZ By, and 7, is injective on for each n.
Indeed, for k£ € G' and by density, there exists n such that dg(gn, k) < 7,
= k€ Bg(gn, %) = B,.
Now define 2 := U2 B, \ (Uj<n B;I"). check that m is a bijection and that
Q) is Borel.

Theorem 5. Let Q21,05 C G be two fundamental domains of X. Then for every Borel
A C X we have ug(Q N7 tA) = pag(Qe Nw=LA). In particular, uc(Q1) = pa(Qa).

— Note that this is true for any right invariant measure on G, not only right Haar
measure.

— proof

ES

ES

Notice that by definition of fundamental domains we have

D NaHA) =Uyer N7 AN QN H(A)] -y

By discreetness of I' and the fact that is lesc, I' is countable. so we have
16 (@1 N1 (A)) = Soer pa( [N a1 (A)] N [ N 7L (A)] - 7) =

Sher ne([Q1 N7 (A)] -y 1 N[N r (A)]) = pg (@ N7 (4)).

e Using theorem 2 and 3, we can finally construct a nice measure on the quotient.

Theorem 6. Assume pg(Q) < oo for some (all) fundamental domain Q C G of X.
Then G is unimodular.

Theorem 7. Assume that G is unimodular, and let ug be the Haar measure on G.

(a) For Borel A C X define

Hx(4) = po(r=(4) N Q) if ne(Q) = o

px(A) = pe() pe(r (A NQ)  if pe(Q) < oo

Then ux is a radon (probability) measure on X which is invariant for the left
G-action on X.

(b) Up to scalar multiplication, ux is the unique G-inv radon measure on X.

— proof

* First notice that if €2 is a fundamentla domain for X then so does ¢f2, for all

g €q.

* Now let A C X Borel. Then by theorem 5 and left G-inv of ug we have

px(gA) = pa(r " (gA) N Q) = pa(gn'(A) N Q)

= 16(m 1 (A) Ng7'Q) = pe(r ' (A) NQ)) = jx (A).



For I' < G discrete we say I' is a lattice in G if X admits a left G-inv probality
measure. For example, if G is unimodular and there exists 2 a fundamental domain
for X with pug(Q) < co.

T is called a uniform (or cocompact) lattice if in addition X is compact. Other-
wise, I' is called non-uniform.

a sequence (x,)%2; in X is called divergent (notation z, — oo) if the sequence
eventually leaves any compat set; if for all K C X compact we have x,, ¢ K for all
sufficiently large n.

Back to G = SLg(R). Define I' = SL4(Z) (which is discrete), and define from on
X4 = G/T'. Recall that we have seen the correspondence

X4 := {Lattices in R? covol = 1} +— SL4(R)/SL4(Z) g7 «— g SLq(7),

We have seen that the measure mg (cone construction) is both left and right Haar
measure on GG, and that any lesc group admits a fundamental domain. So by theorem
7 we have a radon left G-inv measure on X, which we denote by mx,. At this point
we do not know weather it is finite or not.

motivation: although it is difficult to explicitly find a fundamental domain @ C SL4(R)
of X4, we want to show that mx, is a probability measure.

Notice that the names are a bit confusing with this correspondence — gZ? is a lattice
in R¢ of covolume 1 for all g € G, and we also want to show that I is a lattice in G;
the correspondence is between the space of all lattices in R? of covolume 1, and the
quotient space G/T" when T is a lattice in G.

Theorem 8. We have the followings:

(a) Siegel summation formula (SSF): Let f € L*(R%, Vol). Then
£5) aVol(d) = [ Sosrer £(5) dmx, (L)
R X4

(b) SLq4(Z) is a lattice in SLq(R).

— proof of (b) assuming (a)

x Let f = 1g where E = [-2,2]¢. Vol(E) > 2¢, so by Minkowski’s 1st
theorem, any lattice L € SL4(R) contains at least one non-zero point in F,
s0 Yoxger 1g(U) > 1 for all L € X4. Let 1x, be the indicator function of
the all space Xj.

* So we have
mx,(Xa) = [, 1x,(L) dmx, (L) < [y, Yozser 15(7) dmx, (L) =57
Jpa1E dVol = Vol(E) < occ.

Theorem 9. Mahler compacitness criterion — the following are equivalent

(a) a sequence of lattices (9,2%)5%, = (L)%, is divergent (eventually leaves any
compact set)

(b) there exists a sequence 0 # U, € Ly, such that ||| — 0



actions of subgroups H < G on X

G is a Lie group. H < G is closed, then H is also a Lie group.

For H < G and for goI' = x € X, the stabilizer of x w.r.t to the action of H on X is

staby () ;= {h € H|hx =z} = HNgolgy "

So in particular, staby(z) is discrete.

By the orbit-stabilizer Theorem, there is a 1-1 correspondence via the orbit map

Hx — H/stabg(x) ha — hstaby (z).

This is only a 1-1 map in terms of sets, but this is not necesserily a homeomorphism.

So now, after we a have developed a good theory on quotients of discrete subgroups
of Lie groups, we can try to use this theory to understand better the orbits Hzx.

Theorem 10. Hzx is closed in X <= the orbit map is an homeomorphism.

Theorem 11. Assume H is unimodular. If T is a lattice in G and staby(x) is a
lattice in H, then Hx is closed.

Motivation: although Hz is not necessarily homeomorphic to H/staby (x), we want to
use the quotient to put a measure on Hx.

recall that for A C X we have defined

ix(4) = 5@ N7 (A) = pa({w € Q|w-ex € A}).

Let pgy be the right Haar measure on H, Qy a fundamental domain for H/staby (x).

If H is unimodular, then we can define a "new” measure on X by

volp,(A) = pg({w € Qp |wz € A).
claim: volg, is Borel and left H-inv.
But it is not necessarily Radon because it is not necessarily locally finite.

Notice that since H is unimodular, there is a unique left H-inv Radon on H/stab (z).
So if Hzx is closed and Theorem 10 holds, voly, is locally finite, hence the unique
Radon left H-inv measure on X.

Let U = {u: |t € R} < G be a one-parameter subgroup of G.

Let vx be a probality measure on X which is left U-inv.

We say vx is homogenuous (or algebraic) if there exists a closed & connected &
unimodular subgroup H with U < H < G and there exists x € X with Hz a closed
orbit, such that vx = volg,, where in this case voly, is the unique left H-inv Radon
measure on X.

In the following talks will study some Ergodic theory, and discuss Ratner thoerem’s
which deals with the classification of homogeneous measures.
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