Russian Math. Surveys 31:3 (1976), 1-68
From Uspekhi Mat. Nauk 31:3 (1976), 5-70

REPRESENTATIONS OF THE GROUP GL(n,F)
WHERE F IS A NON-ARCHIMEDEAN LOCAL
FIELD

1. N. Bernshtein and A. V. Zelevinskii

This article is a survey of recent results in the theory of representations of reductive @ -adic groups.
For simplicity of presentation only the groups GL(n) are treated. Chapter I provides general information
on representations of locally compact zero-dimensional groups. Chapter II presents Harish—Chandra’s
method of studying the representations of GL(n), which is based on reduction to cuspidal representations.
Some finiteness theorems are proved by this method. In Chapter IIl we study another approach to the
representations of GL(n), due to Gel'’fand and Kazhdan; it is based on restricting the representations
from GL(n) to a subgroup P,. All theorems are presented with detailed proofs. No prior information
is assumed on the part of the reader except the most elementary familiarity with the structure of non-
Archimedean local fields.
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Introduction

This paper is a survey of the theory of representations of reductive
% -adic groups by the example of the group GL(n, F), where F is a locally
compact non-Archimedean field. Before presenting the contents of the
paper, we recount the history of the problem.
0.1. The theory of representations of reductive ¥ -adic groups began to
develop comparatively recently. The first paper in this direction was written
1
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by Mautner [28] in 1958, in which spherical functions on the groups
SL(2, F) and PGL(2, F) were studied.

In 1961 Bruhat [4] defined the “principal series” of representations for
the ¥ -adic Chevalley groups by analogy with the real case. These are
representations induced by a one-dimensional representation of a Borel sub-
group B (in the case of GL(n, F), B is the subgroup of upper triangular
matrices). Using his apparatus of distributions on locally compact groups,
he proved some sufficient conditions for these representations to be
irreducible.

In 1963 Gel’fand and Graev showed that, in addition to the principal
series, there exist several series of irreducible unitary representations of
SL(2, F) that occur in the regular representation of SL(2, F) (the so-
called representations of the discrete series). In their construction these
representations correspond to the multiplicative characters of quadratic
distributions of F. Gel’fand and Graev wrote down explicit formulae for
these representations, computed their characters, and, in the case when the
characteristic p of the residue field of F is different from 2, obtained the
Plancherel formula for SL(2, F) (see [11], [12]).

Later other, more transparent constructions of representations of discrete

series of SL(2, F) were obtained by Shalika [38] and Tanaka [32].
Relying on the results of Gel’fand and Graev, Kirillov proved that for

p ¥ 2 these representations, together with the representations obtained
from the principal series, exhaust all the irreducible unitary representations
of SL(2, F) (see [12], Ch. 2, Appendix). At present a complete list of
irreducible representations exists only for SL(2, F) and the groups close to
it (such as GL(2, F), the group of quaternions over F; all for p #+ 2).

In papers of Gel’fand and Pyatetskii—Shapiro a connection was revealed
between the theory of representations of ®-adic groups (and, more gen-
erally, adele groups) and the theory of automorphic forms (see [15], [12]).

The next important step was taken by Harish—Chandra [33]. He
investigated the general properties of irreducible representations of reductive
@-adic groups. By analogy with the real case, he studied those irreducible
representations whose matrix elements are finite modulo the centre of the
group. We call such representations cuspidal.!Harish—Chandra showed that
any irreducible unitary representation of a reductive group G can be induced
from a cuspidal representation of some subgroup. Thus, the study of
arbitrary representations reduces, in a certain sense, to that of cuspidal
representations. He showed that any irreducible cuspidal representation of
G is admissible; that is, for each open subgroup N C G the space of
N-invariant vectors is finite-dimensional. This enabled him to develop the
theory of characters for cuspidal representations.

1 Harish—Chandra himself used the term cuspidal for unitary representations whose matrix elements are
square-integrable modulo the centre. He called absolutely cuspidal representations whose matrix coefficients
are finite modulo the centre. However, recently there has been a tendency to call the latter cuspidal (see
[18], [13]), and we follow it.
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A great stimulus to the subsequent development of the theory of repres-
entations of ®-adic groups was the book by Jacquet and Langlands
Automorphic Forms on GL(2) (see [23]) published in 1970. This book
pointed out an astonishing connection between this theory and the theory
of numbers: the so-called non-commutative reciprocity law (for more details,
see 0.3). This book, in many respects, determines the present direction of
research in the theory of representations.

In 1971 Gel’'fand and Kazhdan [14] extended the main technical tool
used by Jacquet and Langlands, Kirillov’s model and Whittaker’s model,
from GL(2, F) to GL(n, F) for all n. A more precise form of the hypo-
thetical reciprocity law for GL(n, F) is also presented in this paper.

In 1970—1973 Jacquet (see [22], [19]) and Howe (see [35], [36])
obtained a number of important results on the representations of GL(n, F).
Their methods readily carry over to a wide class of groups (see [9], [34]).
We present part of their results in our survey.

Throughout this entire period the theory of representations of reductive
@-adic groups had its eye on the admissibility conjecture, which kept
resisting theorem status. This conjecture is that all irreducible unitary
representations of a reductive group G are admissible. For GL(2, F) it
was proved by different methods in [24] and [29].

Harish—Chandra in [33] reduced the proof of the conjecture to the
assertion that for a cuspidal representation the dimension of the space of
N-invariant vectors does not exceed a certain number depending only on N
(where N is an open subgroup of G). With the help of this result the con-
jecture was proved by Howe [36] for GL(n, F) and by Bernshtein [2] for
the general case.

0.2. In our paper we present mainly the results obtained by Harish—
Chandra, Jacquet, Howe, Gel’fand, Kazhdan, and Bernshtein (as they apply
to GL(n, F)). No preliminary knowledge is required on the part of the
reader, except a familiarity with the structure of locally compact non-
Archimedean fields (it is sufficient to know Chapters I and II of Weil’s
Basic Number Theory [10]).

We also use some standard facts on modules over infinite-dimensional
algebras; in all such cases we give precise references. An exception is the
Appendix, for whose understanding it is necessary to know the chapter on
algebraic geometry in [3]; however, the article can be read entirely
independently from the Appendix.

We now briefly present the contents of this paper.

Chapter I is of a preliminary nature. In §1 we study locally compact
zero-dimensional spaces and groups (we call them /-spaces and I-groups).
We construct (following Bruhat [4]) the theory of distributions on
Ispaces. In this case it is considerably simpler than the corresponding theory
for real varieties. In addition, we introduce the new concept of an I-sheaf,
which turns out to be very useful in the study of representations, and we
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treat the distributions on these sheaves.

In §2 general information on representations of /-groups is presented.
Here, as throughout the article, we work with algebraic representations and
do not treat unitary representations. In fact, studying algebraic represent-
ations is significantly simpler, because it is not necessary to introduce a
topology in the representation space, and so all investigations are of a
purely algebraic nature. On the other hand, as is shown in 4.21, the study
of irreducible unitary representations reduces to that of algebraic
representations.

Jacquet and Langlands [23] were the first to investigate algebraic
representations systematically; we reproduce many of their results. We also
note that in writing Chapter I we have used Rodier’s article [30].

Chapter II is devoted to the general theory of representations of the
group G, = GL(n, F). In §3 Harish—Chandra’s theory is presented. First
we introduce the functors i, and rz,, which make it possible to reduce
the study of all representations of G, to that of certain special representa-
tions, which we call quasi-cuspidal. Next we prove that quasi-cuspidal
representations are precisely those whose matrix elements are finite modulo
the centre (Harish—Chandra’s theorem). Using this theorem and the theory
of finite representations developed in §2, we study the properties of quasi-
cuspidal representations. As a corollary, we obtain the theorem that each
irreducible representation of G, is admissible.

In writing §3 we have used [19].

In §4 two fundamental theorems are proved: Howe’s theorem that any
admissible finitely generated representation of GL(n, F) has finite length,
and the admissibility theorem (for each open subgroup N C G, the di-
mension of the space of N-invariant vectors in any irreducible representation
of G, does not exceed a constant depending only on N).

Next we deduce some important corollaries from the admissibility theorem.
In particular, in 4.21 we explain how the admissibility theorem for
irreducible unitary representations follows from it.

The results of 4.1—-4.8 are due to Howe [35], [36]. The proofs given
here are due to Bernshtein and are based on the methods of §3.!

In Chapter III the Gel’fand—Kazhdan theory is presented. In comparison
with the original paper [14] we have used the following technical improve-
ments: a) l-sheaves are used systematically; b) the representations of the
group P, (see 5.1) are investigated in detail; this investigation is based on
the inductive passage from the representations of P,_; to those of P, (the
idea of this inductive passage is due to Kazhdan).

In §5 we classify the representations of P,. Next, with the help of this,
we construct the models of Whittaker and Kirillov for irreducible
representations of G,,.

! We recommend the reader to become acquainted with Howe’s very beautiful original papers.
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At the end of §5 we derive an important criterion, due to Kazhdan, for
a representation of G, or P, to have finite length. From this it follows, in
particular, that an irreducible representation of G, has finite length under
its restriction to P,. The results obtained generalize the Jacquet—Langlands
theorem to the effect that in Kirillov’s model for GL(2, F) the space of
finite functions has codimension not greater than 2. This is shown in 5.24.

In §7 the main technical theorems stated in §5 are proved. Here the
general theorem on invariant distributions proved in §6 (Theorem 6.10) is
used. It asserts that if an l-group G and an automorphism ¢ act on an
I-sheaf %, then under certain conditions any G-invariant distribution on %
is invariant under o. The idea of using this theorem is due to Gel’fand and
Kazhdan, but the conditions we use are much simpler, because they are
stated in topological terms and not in terms of algebraic varieties.

In the Appendix we prove a theorem from algebraic geometry, which
greatly simplifies the verification of the conditions of Theorem 6.10 for
algebraic groups. The proof is Bernshtein’s.

0.3. We now dwell briefly on those questions that we do not touch
upon in our survey.

1. The results and formulations of Chapter II of our survey carry over to
an arbitrary reductive group G. The complications that arise are of a
technical nature and are connected with the necessity of analyzing the
geometric structure of G in detail (see [33], [8], [2]).

The main theorem of Gel’fand and Kazhdan, Theorem 5.16, can be
proved for an arbitrary decomposable group with a connected centre (see
[14], [30]). Moreover, the Gel-fand—Kazhdan theory is completely pre-
served for a finite field F.

Throughout the paper G denotes a reductive ¥ -adic group, and 7 an
irreducible admissible representation of G.

2. CONJECTURE. The character tr 7 of a representation = is a locally
summable function on G and is locally constant on the set G’ of regular
elements.

This conjecture was proved by Harish-Chandra [33] for the case when
7 is cuspidal and char K = 0, and by Jacquet and Langlands [23] for
G = GL(2, F). See also [35], [36], [9].

3. CONJECTURE. A Haar measure can be chosen on G such that the
formal dimensions of all cuspidal representations of G are integers.

This conjecture is discussed in [33] and is proved for GL(n, F) in [36].

4. Macdonald’s survey article [27] on spherical functions on  -adic
groups is excellent.

5. The non-commutative reciprocity law. This is the name given to Lang-
land’s conjecture, which connects the representations of GL(n, F) with the
n-dimensional representations of the Weyl group Wg of F (Wg is a subgroup
of the Galois group Gal(F/F); it is defined in [10]). This conjecture is dis-
cussed in [23] for GL(2, F) and is proved in [20] for GL(2, Qp).
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Generalizations of this conjecture are discussed in Langland’s lectures [26].

A more precise statement of the conjecture for GL(n, F) is given by
Gel’fand and Kazhdan (see [13], [16]).

6. One of the most unexpected results of Jacquet and Langlands is the
connection they discovered between the representations of GL(2, F) and the
group of quaternions over F (this connection is discussed in detail in §15
of their book [23]). Apparently, for any groups G and G' that are iso-
morphic over the closure of F some correspondence must exist between
their representations. The results of [37] confirm this.

In conclusion, we wish to thank I. M. Gel’fand, who gave us the idea of
writing this survey, and D. A. Kazhdan for much useful advice. We wish to
stress the strong influence on our work of Weil’s lectures on the theory of
Jacquet and Godement, which he gave at the Moscow State University in
May—June 1972. We are also grateful to A. G. Kamenskii for reading the
manuscript and making several valuable comments.

CHAPTER I
PRELIMINARY INFORMATION
§ 1. Distributions on I-spaces, I-groups, and /-sheaves
I-SPACES AND /-GROUPS

1.1. We call a topological space X an I-space if it is Hausdorff, locally compact,
and zero-dimensional; that is, each point has a fundamental system of open com-
pact neighbourhoods. We call a topological group G an l-group if there is a
fundamental system of neighbourhoods of the unit element e consisting of
open compact subgroups.

It can be shown that a topological group is an I-group if and only if it
is an l-space.

1.2. LEMMA. Let X be an l-space and Y C X a locally closed subset
(that is, Y is the intersection of open and closed subsets of X, or,
equivalently, Y is closed in a neighbourhood of any of its points). Then Y
is an l-space in the induced topology.®

1.3. LEMMA. Let K be a compact subset of an l-space X. Then any
covering of K by open subsets of X has a finite refinement of pairwise
disjoint open compact subsets of X.m

1.4. PROPOSITION. Let G be an l-group and H a closed subgroup of G.
We introduce the quotient topology on H\ G (U is open in
H\ G <= p™ (U) is open in G, where p. G > H \ G is the natural
projection). Then H \ G is an I-space in this topology, and p is a continuous
open map.

This will be proved in 6.5.

1.5. Throughout, when we say that “G acts on an l-space X*°, we always
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mean a continuous left action.

PROPOSITION. Suppose that an I-group G is countable at infinity and
acts on an l-space X: (g, X) v v(g)x). We assume that the number of G-
orbits in X is finite. Then there is an open orbit Xo C X, and for any
point xo € X, the mapping G - X, defined by g > Y¥(g)x, is open. (G is
countable at infinity means that G is the union of countably many compact
sets.)

PROOF. Let N be an open compact subgroup of G, {g;} ¢ =1, 2, ...)
coset representatives of G/N, and x,, ..., x,, € X orbit representatives.

Then G = G g;N and hence,
i X = Uea;

is the union of countably many compact sets. It is easy to verify that any
{-space is a Baire space, in other words, is not representable as the union
of countably many nowhere dense closed subsets. Therefore, one of the sets
¥(g;N)x; contains an interior point 7y(g;n)x;. But then x; = 'y(gin)“'y(g,-n)x]-

is an interior point of Y(N)x; = ¥(g;n)™" ¥(g:N)x;.

It is clear that for one of the points x; this fact is true for arbitrarily
small subgroups N. Therefore, the mapping g = v(g)x; is open. The
proposition now follows from this.

1.6. COROLLARY. If an l-group G is countable at infinity and acts
transitively on an l-space X, x, € X, and H is the stability subgroup of xg,
then the natural map of H \ G into X: Hg = v(g~')x, is a homeomorphism.

DISTRIBUTIONS ON [-SPACES

1.7. DEFINITION. Let X be an I-space. We call locally constant complex-
valued functions on X with compact support Schwartz functions on X. We
denote the space of these functions by S(X). We call linear functionals on
S(X) distributions on X. We denote the space of distributions on X by
S*(X). Note that S(X) and S*(X) are treated without any topology. If
F € S(X) and T € S*(X), then the value of T at f is denoted by (T, /) or

S f(x)dT(x) (or briefly 5 fdT). If xo € X, then the Dirac distribution e,
X

is defined by (8xp ) = f(xo)-

We denote by C~(X) the space of all locally constant complex-valued
functions on X.

1.8. Let Y be an open and Z a closed subset of an /-space X. We define
the mappings iy: S(Y) = S(X) and p,: S(X) = S(Z) as follows: iy (f) is the
continuation of f by zero outside Y, and p;(f) is the restriction of f to Z.

PROPOSITION. The sequence

PX\Y

0—->S(Y)-i1> SX) —> S(X\Y)—=>0
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is exact.

PROOF. The proof requires only the fact that py,y is epimorphic, that
is, that any Schwartz function on X \'Y can be continued to a Schwartz
function on X. This follows easily from 1.3.

1.9. COROLLARY. The dual sequence is also exact:

* =%
0 S* (X\Y) =% 8% (X) ——> §*(Y) - 0.

1.10. DEFINITION. We say that a distribution T € S*(X) is equal to 0
on an open subset ¥ C X if iy (T) = 0. The set of points x € X such
that T is not equal to O in any neighbourhood of x is called the support
supp T of T. It is clear that supp T is closed. A distribution T is called
ﬁ;zite if supp T is compact. We denote the space of finite distributions by
S, (X).

1.11. For each T € S:(X) we construct a functional on C™(X) (see 1.7).
If X = supp 7, then by virtue of 1.9 and 1.10 there exists a unique
To € S*(K) such that p,"} (Ty) = T. Since K is compact, for any f € C(X)

we have pg (f) € S(K), and we set ide = S px () dT,.
X

1.12. Let E be a vector space over C. We denote by C”(X, E) the space
of locally constant functions on X with values in E, and by S(X, E) the
subspace of C™(X, E) consisting of functions with.compact support. Using
1.3, we can easily show that S(X, E) = S(X) ® E. Therefore, to each
T € S*(E) there corresponds a mapping S(X, E) = E defined by
f£E> AT, f)-¥ where f € S(X) and ¢ € E. Foreach T € S:(X) a mapping

C™(X, E)— F is constructed just as in 1.11 (notation: f+ S f(x) dT(x),
X
where f € S(X, E) or f € C7(X, E)).

I-SHEAVES AND DISTRIBUTIONS ON THEM

1.13. In what follows we find it necessary to deal with vector functions
that take values in distinct spaces at distinct points. To do so, we now
introduce the concept of an l-sheaf, which we shall use constantly
throughout.

DEFINITION. Let X be an l-space. We say that an l-sheaf is defined on
X if with each x € X there is associated a complex vector space F . and
there is defined a family & of cross-sections (that is, mappings ¢ defined
on X such that p(x) € F . for each x € X) such that the following
conditions hold:

(1) # is invariant under addition and multiplication by functions in
C(X).

(2) If ¢ is a cross-section that coincides with some cross-section in %
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in a neighbourhood of each point, then ¢ € #.

B)Ifp €F, x €X, and ¢x) = 0, then ¢ = 0 in some neighbourhood
of x.

(4) For any x € X and ¢ € F « there exists a ¢ € F such that ¢(x) = &.
The Il-sheaf itself is denoted by (X, &) or simply &#. The spaces & «
are called stalks, and the elements of ¥ cross-sections of the sheaf. We call
the set supp ¢ = {x € X | o(x) # 0} the support of the cross-section

¢ € # . Condition (3) guarantees that supp ¢ is closed.

We call a cross-section ¢ € F finite if supp ¢ is compact. We denote the
space of finite cross-sections of (X, #) by %.. It is clear that F_ is a
module over S(X), and that S(X) « . = F.. It turns out that this
property can be taken as the basis for the definition of an /-sheaf.

1.14. PROPOSITION. Let M be a module over S(X) such that
S(X) M = M. Then there exists one and up to isomorphism only one
I-sheaf (X, ) such that M is isomorphic as an S(X)-module to the space
of finite cross-sections ¥ ..

PROOF. For each x € X we denote by M(x) the linear subspace of M
generated by elements of the form f - & where f € S(X), ¢ € M, and
fix) = 0. (An equivalent definition: M(x) = { ¥ € M | for some f € S(X),
fixy# O and f+ ¢ = 0}))

We define the stalk F, of # at x € X by Fx = M/M(x). The
elements of M become cross-sections in a natural way. We denote by #
the set of cross-sections that coincide with some cross-section of M in a
neighbourhood of each point. Conditions (1)—(4) in 1.13 are obvious, and
it is easy to verify with the help of 1.3 that #. = M. .

Thus, defining an /sheaf on X is equivalent to defining an S(X)-module
M such that S(X) - M = M.

EXAMPLE. M = S(X). In this case .F = C™(X) is the sheaf of locally
constant functions.

EXAMPLE. Let g: X = Y be a continuous mapping of /-spaces. Then
S(X) can be turned into an S(Y)module in a natural way, and this defines
an [sheaf % on Y. It is easy to verify that the stalk %, of ¥ at
y € Y is isomorphic to S(g~'y).

1.15. DEFINITION. Let (X, #) be an Isheaf. We call linear functionals
on the space #. of finite cross-sections of F distributions on F. We
denote the space of distributions on .# by #*. It is clear that #* is a
module over the ring C™(X) (see 1.7) with respect to the multiplication
(T, p)= AT, foX(TE F*, 9o € F,, f E CTX)).

1.16. Let Y be a locally closed subset of X. Let us define a sheaf
(Y, £ (Y)), which we call the restriction of ¥ to Y. The stalks of
(Y, F (Y)) coincide with the corresponding stalks of %, and & (Y) con-
sists of the cross-sections that coincide with the restriction of some cross-
section of & in a neighbourhood of each y € Y. Conditions (1)—(4) from
1.13 are obviously fulfilled.
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Let Y be an open and Z a closed subset of X. The mappings
ly:Fe(Y) > F.(X) and py: Fe(X) > Fc(2) are defined exactly as in
1.8. With the help of 1.3, it is easy to verify that these mappings are well-
defined and that the results of 1.8—1.11 generalize to the case in question
in an obvious way.

1.17. DEFINITION. Let 7: X > Y be a homeomorphism of I-spaces. We
define an isomorphism S(X) - S(Y), which we also denote by 7, by setting
(NG = iy 'y) f € S(X), y € V).

Let (X, #) and (Y, &) be lsheaves. By an isomorphism v: & > & we
mean a pair consisting of a homeomorphism X — Y and a linear isomorphism
F > &. (we denote both these mappings also by 7) such that
Y(fo) = v(f)y(p), where f € S(X) and ¢ € F.. It is clear that 7 induces
an isomorphism v: ¥ x > &,x for any x € X.

If v: & = & is an isomorphism, then we define y: #* > &* by
(YD), o) =AT, y 1 (e (T € F*, p € &).

By the action of an I-group G on an Isheaf (X, %) we mean a system
of isomorphisms y(g) (g € G) of (X, &) having the natural group
properties. Here we assume that the mapping v: G X X = X is continuous.

A distribution T € F * is called G-invariant if y(@)T = T for all g € G.

HAAR MEASURE

1.18. Let us consider the action of an /-group G on itself by left
translations y(g)g’ = gg' and right translations 8(g)g’ = g'g”L.

PROPOSITION. There exists one and up to a factor only one left-invariant
distribution pg € S*(G), that is, a distribution such that

| fgog) dug o) = { &) dug (@) for all f € S(G) and g, € G. We can take
ped G

ug to be a positive functional (that is, (ug, f) > O for any non-zero non-
negative function f € S(X)). We call such a distribution pg a (left-invariant)
Haar measure.

A right-invariant Haar measure »; is defined in a similar manner.

PROOF. Let {Na}, o €YU, be a family of open compact subgroups of
G that form a fundamental system of neighbourhoods of the unit element;
suppose that there exists an index ap € A such that N, C N, for all
a €A WesetS, ={f€ SG)|&G)S = f for anngN }. It is clear
that S, C S, for N D N; and that S(G) = U §,. Obviously each space

[+

S, is invariant under left translations and to define a left-invariant
distribution on G comes to the same thing as to define a system of
mutually compatible left-invariant functionals u, € S}. It is clear that S,
is generated by the left translations of the characteristic function of N,,

hence that u; is unique. To prove the existence, we define p, by
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Bo (f)=| Noo/No |- 2} f(g), where f€S,,

and the sum is taken over g € G/N,. Since supp f is compact, in this
sum only finitely many summands are non-zero, and it can be verified
immediately that the functionals pu; are left-invariant, compatible, and
positive.

The assertions pertaining to a right-invariant distribution are proved
similarly.

1.19. We call a locally constant homomorphism of an /-group G into
the multiplicative group of complex numbers a character of G.

PROPOSITION. a) Under the conditions of 1.18, for each g € G there
exists a unique number A;(g) > 0 such that 8(gug = Ag @ug. The
function Ag is a character of G.

b) The restriction of Ag; to any compact subgroup T VC G is trivial,

) The distribution Ag'* ug is right-invariant. If T > T is the trans-
formation in S*(G) corresponding to the homeomorphism g »> g~ (see
1.16), then the distribution [i; is right-invariant and coincides with
Adug.

The character A; is called the modulus of G. If A; = 1, then G is
called unimodular. As follows from b), a group generated by compact
subgroups is always unimodular.

PROOF. a) It is clear that the distribution 6(g)us; is left-invariant and
positive; that is, 8(g)ug = Ag(@ug, where Ag(g) > 0 and
Ag(gy) - Ag(g2) = Ag(g182) (see 1.18). If £ € S(G) and {ug, /) > 0, then
for elements g lying in some neighbourhood of the unit element we have
8(g)f =1, so that A;(g) = 1. Hence A; is a character.

b) Ag(T) is a finite subgroup of (R™)*, that is, Ag(I) = 1.

c) Since 8(gug = Ag@ug and 8(g)A; = Ag (@) * Ag, the distribution
AZ'+ pg is right-invariant. It is clear that fi; is also right-invariant, so that
AZ' - ug and g are proportional. Since their values on the characteristic
function of any open compact subgroup coincide and are positive, they are
equal.

HAAR MEASURE ON A FACTOR SPACE

1.20. Let H be a closed subgroup of an l-group G, and let A = Ag /Ay,
be a character of H. We consider functions f in C™(G) that satisfy the
foliowing conditions:

a) For any h € H and g € G, f(hg) = AWfAQ).

b) f is finite modulo H; that is, there is a compact set Kf C G such
that supp f C H- K.

We denote the space of such functions by S(G, A). It is clear that it is
invariant under the right action 8 of G (see 1.18). If A = 1, then
S(G, A) is naturally isomorphic to S(H \ G).
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1.21. THEOREM. There exists one and up to a factor only one
functional vy on S(G, A) that is invariant under the action § of G. This
functional can be chosen to be positive. We call it a Haar measure on

H\G and write [V vy, )= | fl@)dvy\s @), FESG, A).

H\ G
PROOF. We define an operator p: S(G) - C™(G) by

(p) (8)= { 1 (he) AZ () dum (b).
H

It clearly commutes with the right action of G. Moreover, if h, € H, then
Pt (g) = { 1 (hhog) A (k) dpsg () = { 1 (iag) AZ (1) - Ay () v () =
4 i

= A (ho)- | 1 (hhog) AZ (hho) Ar (Bho) dvi (B) =
H

=A(h)- § £ (W'8) 82 (W) By (W) dvg (B) = A (ko) () (&)
H

(see 1.18 and 1.19). Hence p(S(G)) C S(G, A).

LEMMA. a) The homomorphism p. S(G) = S(G, A) is surjective.

b) If f € S(G) and pf = 0, then {vg, ) =0

PROOF. Let N be an open compact subgroup of G, and let g € G. We
denote by S(G);v (respectively, S(G, A)év) the subspace of functions
f € S(G) (respectively, f € S(G, A)) such that supp f C HgN and
8(n)f = f for any n € N. It is clear that p(S(G)Y) C S(G, A)Y and that
it suffices to verify the assertions of the lemma for these subspaces.

a) Let f € S(G, A)sl,v. We set f'=¢71- XgN * f, where Xgn is the

characteristic function of gN and ¢ = 5 Xgn (h8) A (h)dpy (B). 1t is clear
: §

that f' € S(G)Y and that pf' = f.

b) The space S(G)N can be identified with the space of finite functions
on the discrete set HgN/N on which H acts transitively on the left. There-
fore, any two functionals 7 on S(G)N such that T(y(h)f) = Ag' (h)T(f) for
al h €EH, fE S(G)N are proportxonal It can be verified as above that the
functionals Tf = pf(g) and T'f = Cvg, [Y=C(Ag' ug, f) satisfy these
conditions, that is, are proportional; hence b) follows.

It follows from this lemma and 1.18 that S(G, A) ~ S(G)/Ker p and
that any functional on S(G) that is invariant under the right action of G
is equal to O on Ker p. Therefore, by 1.18, vy, exists and is unique.
Since v is positive, vy, is positive.

DISTRIBUTIONS ON [-GROUPS; CONVOLUTIONS

1.22. Let X, and X, be Il-spaces. It is easy to see that S(X;) X S(X,),
is isomorphic to the tensor product S(X,) ® S(X,), where the isomorphism
is defined by
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(fr @ fa)lzs, z2) = hlz)falza)(f: € S(Xi)i z; € Xy).

This isomorphism makes it possible to define the tensor product of
distributions: if T; € S*(X;) (/ = 1, 2), then we define
T, ® T, € §%X; X X;) by

(fo ® 1) (T @ To) = 1,ary- | f2dT,.
XixXa Xy Xo

It is easy to verify that Fubini’s theorem is valid:

(e 2) AT ® To) (@, 2= [ { [ £(@1, 22) dTs (2 } ATy (20) =

XixXg X1 X3

= §{§ 1@ 2)dr, @) }aTa()i (F€S (Kix Xa), Ti€S* (X)),

Xo Xt

1.23. PROPOSITION. supp(T, ® T,) = supp T, X supp 7,.

PROOF. If Y; is open in X;(i = 1, 2), then it follows immediately from
the definition that iy y y (T} ® T) =iy (T1) ® iy (T3) (see 1.9). Our
assertion follows from this immediately.

COROLLARY. The tensor product of finite distributions is finite.

1.24. DEFINITION. Let G be an /-group. By the convolution of two
distributions T, T, € SXG) we mean the distribution T}, * T, € $*(G)

defined by

frocaary@=§ 1asd@ e @, &) (cSE6)
G GXG

(the expression on the right-hand side makes sense; see 1.11 and 1.23).
IfTe S:(G) and f € S(G), then we define the convolution

T + f € S(G) by (T * Ngo) = | fle™g0) dT(e).

v

PROPOSITION. a) supp (Ty * T,) C supp T, supp T,. In particular,
Ty + T, € SX(G).

V) If Ty, T, € SX(G) and f € S(G), then Ty + (T, + f) = (T, * T;) « f.

PROOF. a) follows from 1.23, and b) follows easily from Fubini’s
theorem.

1.25. COROLLARY. a) The convolution operation x determines on
S: (G) the structure of an associative algebra. The Dirac distribution e,
(see 1.7) is the unit element of this algebra.

b)IfTE S:(G) and g € G, then eg* T = v(@)T and T * &5 = 8(g™")T.
In particular, g4 » g0 = g4

1.26. Let " be a compact subgroup of an J-group G and u, a two-sided
invariant Haar measure on I' (see 1.18 and 1.19), normalized by the
condition (up, 1) = 1. We define er € S:(G) by er= p;(ur) (see 1.9).

PROPOSITION. a) If g €T, then ggsep=¢epsg;=¢p.
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b) If Ty and T'; are compact subgroups of T and T" = ', * T',, then
er==eryser, (and hence er=er,very, since F=T"'=T3'-T7'=T,-T))
In particular, e} =er.

c) If g € G, then egx ep» ey = €grgm.

a) can be verified directly; b) and c¢) follow from the next lemma.

1.27. LEMMA. Let ') and T'; be compact subgroups of an l-group G,
and let g € G. Then there exists a unique distribution T € S: (G) such
that supp T C T"ygI'; and v(g)T = 8(g,)T =T for all g, €Ty, g, €Ty,
and (T, 1) = 1.

PROOF. We define the action v’ of I'; X I'; on I',gl'; by
v'(g,82)x = g1x°g5" (g, €Ty, g, €ET,, x € I',gI",). Since this action is
transitive, it follows from 1.21 and 1.19 that there exists a unique
~'-invariant distribution Ty € S*(I",gT";) such that {T,, 1) = 1. The lemma
now follows from 1.9.

T can be described explicitly: it is equal to er, * eg * ep,.

1.28. DEFINITION. We call a distribution T € S*(G) locally constant on
the left (respectively, right) if there exists an open subgroup N C G such
that y(g)T = T (respectively, 6(g)T = T) for all g € N. Locally constant
functions in C™(G) on the left (or right) are defined similarly.

PROPOSITION. Let u; be a left-invariant Haar measure on an l-group
G. Then any T € S™(G) that is locally constant on the left has the form
T = f+ug, where f is a function on G that is locally constant on the left.
The situation is similar for distributions that are locally constant on the
right.

PROOF. Let N be an open compact subgroup of G such that y(g)T =T
for all g € N. By 1.27, the restriction of T to any set of the form
N - g(g € G) is proportional to the restriction of ug, hence the required
proposition follows. )

1.29. COROLLARY. The mapping f v fug defines an isomorphism of
S(G) with the space of finite distributions that are locally constant on the
left. In particular, these distributions are locally constant on the right. The
space FB(G) of locally constant finite distributions on G is a two-sided
ideal in S}(G)m

1.30. We shall often identify S(G) with &2 (G) by the isomorphism
f v fug, where pg is a fixed left-invariant Haar measure on G. Here a
convolution operation arises on S(G): (fiug) * (akg) = (fi *f2)ug. An
explicit formula can be written down for this operation.

LEMMA. a) If T € SX(G) and f € S(G), then T * (Fug)= (T * Nig -

b) If fi, f2 € SG), then (fy » f2)es) = | @ae™81)dug @)

§ 2. Representations of /-groups

In what follows, instead of the sentence, ‘““Let 7 be a representation of an
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l-group G in a complex vector space £", we write 7 = (m, G, E). We call
E a G-module. All vector spaces that we encounter are treated without any
topology. A G-module E is called irreducible if it is different from O and
has no G-submodules except 0 and E.

ALGEBRAIC AND ADMISSIBLE REPRESENTATIONS

2.1. DEFINITION. a) A representation (w, G, E) is called algebraic if for
any £ € E the stabilizer stab £ = {g € G |n(g) £ =&} is open in G. For
any representation (m, G, E) we set E, = {¢£ € E|stab £ is open in G}. It
is clear that E, is a G-submodule of £ and that m | £, is an algebraic
representation, called the algebraic part of w.

b) A representation (m, G, E) is called admissible if it is algebraic and if
for any open subgroup N C G the subspace E¥ consisting of the N-invariant
vectors in E is finite-dimensional.

We denote by Alg G the category whose objects are the algebraic
representations of G and whose morphisms are the usual morphisms of
representations (intertwining operators).

2.2. EXAMPLE. Suppose that an action v of an l-group G on an Il-space
X is defined. Then the representation (y, G S(X)) is algebraic, but the
representation (y, G, C7(X)) is not necessarily algebraic. For example, if v
is the action of G on itself by left translations (see 1.18), then C™(G),
consists of the functions that are locally constant on the left (see 1.28).

2.3. Let (m, G, E) be an algebraic representation. For each T € S(G)
we define an operator m(7) in E; namely, if ¢ € E, then the function

g+ w(g)¢ lies in C7(G, E), and we set n(T)¢ = 5 n(g)¢ dT(g) (see 1.2).

é
Using 1.24, we can easily verify that

n(TsT)=n(T)en(T") (T, T'€S*(G)),
n (gg) = 7(g), (g €G).

Thus, the mapping T — #(T) defines a representation of S: (G) (see 1.25),
which we denote by the same letter 7.

For example, for (y, G, S(G)) we have Y(T)f = T = F (see 1.24).

2.4. Under the conditions of 2.3, let I" be a compact subgroup of G.
Then = (er) (see 1.26) is the projection operator (n(er)® = n(er » er) = m(er)
by virtue of 1.26).

The image 7 (ep)E coincides with the subspace EF of I'-invariant vectors
in E. It follows, in particular, that for any exact sequence of algebraic
G-modules 0 > E; ~ E, > E; > 0 the sequence 0> E} - EY > EJ > 0is
also exact.

The kernel of 7 (er) is the space E(I") spanned by all vectors of the form
n(g)¢—& g€T, ¢ €E. For it is clear that w(er) | E(T') = 0 and that T acts
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trivially on E/E(T"), so that n(er) is the identity on this space.

25. Let (m, G, E) € Alg G. By 2.3, a representation 7 of S#(G) corres-
ponds to it (see 1.29) and £ = U = (ey)E, where the union is taken over
all open compact subgroups N C G.

Conversely, let 7 be a representation of &H#(G) in E, where
E= ILVJ T(eny)E. If T € S}(G) and ¢ € E, then we set 7(T)¢ =7(T »ex)f,

where N is an open compact subgroup of G such that 7 (ey) ¢ = & This is well-
defined by virtue of 1.26b). We also set n(g) = 7(g,).

PROPOSITION. The representation (n, G, E) is algebraic, and for any
T € SX(G) we have m(T) = 7(T) (see 2.3).

Thus, Alg G is isomorphic to a complete subcategory of the category of
modules over d#(G). This subcategory consists of the modules E such that
E = ILVJ exk.

SOME INFORMATION ON MODULES

2.6. To facilitate the presentation, we recall some standard facts from
general algebra.

LEMMA. Let & be an algebra over C and E a non-zero & -module.

a) If E is finitely generated, then E has an irreducible factor module.

b) In general, E has an irreducible subfactor module; that is, submodules
E' CE" C E can be chosen in E such that E' #+ E" and E"[E' is
irreducible.

a) follows easily from Zorn’s lemma (see [25]); b) follows easily from
a).

2.7. LEMMA-DEFINITION. Let & be an algebra over C and E an
& -module. Then the following conditions are equivalent:

a) E is isomorphic to the direct sum of irreducible & -modules.

b) E is generated by its irreducible &8 -submodules.

¢) Each &% -submodule E' C E has an &8 -invariant complement E" such
that E=E' ® E".

A proof can be found in [5] (Ch. VIII, §3, Proposition 7).

A module E that satisfies these conditions is called completely reducible.
It is clear that any subfactor module of a completely reducible module is
also completely reducible.

2.8. Let &4 be an algebra over C and E an &4 -module. We call a

sequence of submodules 05 E, 5 ... 5 E; =E a chain length k. We say
that E has finite length if the lengths of all its chains of submodules are
bounded. In this case each chain can be included in a maximal chain
0 E; S ...S E/ = E, that is, such that all factor modules E;/E;_, are
irreducible. The length ! of a maximal chain and the collection of factor
modules (up to rearrangement) depend only on E (see [1]).
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The number ! is called the length of E and is denoted by I(E). For any
subfactor module E' of E we have I(E") < I(E).

RESTRICTION TO SUBGROUPS OF FINITE INDEX

2.9. LEMMA. Let G be a group, H a normal subgroup of G of finite
index, and (m, G, E) a representation.

a) If m |y is completely reducible, then w is also completely reducible.

b) If w is irreducible, then 7 | =7, ®. .. ® m, where (m;, H, E;) is an
irreducible representation and k <| G/H |.

PROOF. Let gy, ..., g be coset representatives of G/H.

a) If £, is a G-submodule of E, then by 2.7, E, has a complementary
H-submodule Ei. Let A be the projection of E onto E; along Ei. We set

!
Ao =17 Ta(g)An(g)™". It is easy to see that A, projects E onto E;
i=1

and commutes with the action of G. Therefore, its kernel Ker 4, is a
G-submodule of £ complementary to E.

b) Let £ € E, £ # 0. Then the vectors m(g;)¢ generate E as an H-module.
By 2.6, there exists an H-submodule E' of E such that the H-module E/E’
is irreducible. We set E; = m(g,)E’ and consider the H-equivariant mapping
A: E ~> o EJE/ (At = (¢ mod Ey, ..., £ mod E))). Since Ker 4 is
G-invariant and not equal to F and since 7 is irreducible, Ker A = 0; that
is, A is an embedding. Therefore, E, as an H-module, is isomorphic to a

!
submodule of @ E/E;. The lemma now follows from 2.7 and 2.8
i=1

THE REPRESENTATIONS my

2.10. Let N be an open compact subgroup of an I-group G. We set
Fy=¢tyx* S: (G) * ey . This is an algebra with a unit element, whose
role is played by e,. For each representation (m, G, E) € Alg G we denote
by w, the natural representation of # 5 in EY.

PROPOSITION. a) w is irreducible if and only if m # 0 and for all
subgroups N either my = 0 or my is irreducible.

b) Suppose that (m;, G, E;) € Alg G is irreducible and that N is such
that E,N # 0 (=1, 2). Then =, is equivalent to m, if and only if (w,)y
is equivalent to (m,)y.

¢) For each irreducible representation v of % x there exists an irreducible
representation m € Alg G such that T = wy.

PROOF. Let (w, G, E) € Alg G and let V be an & y-invariant subspace
of E¥N. We consider the G-submodule £' C E generated by V. Then
E'N = m(ey)E' is generated by the vectors m(ey ) m(TW=w(ey+ T xey)v
(T € SX(G), v € V); that is, E'N = V.
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a) Suppose that (m, G, E) € Alg G is irreducible. If EVY contained an
&#  -invariant subspace V other than O and EV, then, as follows from our
arguments, it would generate a G-module E’ other than from 0 and E.
Hence wy is irreducible. Conversely, if there exists a non-trivial G-submodule
E' of E, then 0S E'V S EV for some group N; that is, 7y is reducible.

b) Suppose that (m;)y is equivalent to (m,)y and that j: EY - EY is the
operator that defines this equivalence. Then the space
V= {(x, x)} C E’,V o EJZV is # y -invariant. We consider the G-submodule
E' of E, ® E, generated by V. As shown above, E'N = V, so that E' does
not contain, and is not contained in, £; or E,. Since E, and E, are
irreducible G-modules, the projections of E' onto E; and E, are iso-
morphisms, so that £, = E' =~ E,. The converse in b) is obvious.

c) Let L be the space of 7. Since L is an irreducible & y-module, it is
isomorphic to #y/V, where V is a left ideal in 8y. We regard &4 (G) as
a left &£ (G) -module and denote by E, and E, the submodules of H#(G)
generated by the subspaces #y C H (G)and V C Hy CH (G).Then
EY =88, and EY = V. If we set E; = E,/E,, then EY =&#/V = L, where
E, is generated by EY.

Since L is an irreducible module, for any G-submodule E' C E; either
E'N =0, hence (E5/E"YY = L, or E'N = E¥, hence E' = E,. Therefore,
taking an irreducible factor module £ of E; (which exists by 2.6, because
E, is generated by any & € EY, £ # 0), we obtain EN = L, as required.

SCHUR’S LEMMA

2.11. PROPOSITION. Let G be an l-group that is countable at infinity
and suppose that (w, G, E) € Alg G is irreducible. Then the space
Homg (w, ) consists of scalar operators.

PROOF. It is clear that any non-zero operator 4 € Homg (w, ) is
invertible. We assume that A # X+ 1 (1=1 is the identity operator E - E).
Then the operator R, = (4 — A\)7! is defined for each A € C. We choose
a non-zero vector ¢ € E. Then the vectors R, &, A € C, are linearly
independent (if EC,'R;\iE = 0, then by writing ECinf cl'IRki'l'I(A = 1),
where c, y; € Cand ¢ # 0, we obtain IIR,\I,' A —u)é= 0, which contradicts
the fact that R, and (4 — ) are invertible). On the other hand, it is

clear that E is of at most countable dimension: it is generated by the set
7(G)%, which is countable, because the open subgroup stab § has countable
index in G. So we have a contradiction to the fact that C is uncountable.

REMARK. In case 7 is admissible, the lemma is true even without the
assumption that G is countable at infinity.
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COMPLETENESS OF THE SYSTEM OF IRREDUCIBLE
REPRESENTATIONS

2.12. PROPOSITION. Let G be a l-group, countable at infinity, and let
T e S: (G), T # 0. Then there is an irreducible representation m € Alg G
such that n(T) # Q.

PROOF. For some open compact subgroup N C G we have
h=ex*x T xey ¥ 0, so that we may assume that T = h € 4 5. We
claim that there exists an h* € £, such that 2*h is not nilpotent.

We fix a left-invariant Haar measure u; and use it to identify S(G) and

FH#(G) (see 1.30). Here (f; * f2)&') = S [i@f2(e7 g)dug @) (see 1.30). We

define an involution f > f* in S(G) by f*(g) = fg™!), where the bar
denotes complex conjugation. It is easy to verify that:

DUH* =fand (fy = f2)* = fF « [T ( f1. f» € S(G)).
2) If f € S(G), then (f* * f)(e) = 5 [ f(g) dug (2); that is, if  # 0,

then (f* * f)(e) # 0 (e is the unit element of G).

Now if & = fug, then we set h* = f*u.. We have fo = f* » f # 0 and
f& = fo. Therefore, f& = f& » fo # 0, f§ = (f&)* *» f& # 0, etc.; that is,
h*h € Hx is not nilpotent.

The assertion we need now follows from 2.10c and the following
lemma:

LEMMA. Let J% be a countable-dimensional algebra over C, and suppose
that # € &% is not a nilpotent element. Then there is an irreducible
representation 7 of &8 such that 7(h) # 0.

A proof of this lemma can be found in [21], Ch.I, §10, Theorem 2.

THE CONTRAGRADIENT REPRESENTATION

2.13. DEFINITION. Let (1, G, E) € Alg G.

a) Let E* be the space of all linear functionals on E. We define the
representation 7* = (v*, G, E*) conjugate to 7 by
(m*(g)E*, £) = (&* m(g~1)E), where £* € E* ¢ € E, and (*, £) is the value
of £* at £.

b) The algebraic part of (r*, G, E*) (see 2.1) is called the contragradient
representation to w, and is denoted by (7, G, F).

2.14. LEMMA. a) Let T’ be a compact subgroup of G. Then for any
I-invariant vector £* € E* we have (¢*, &) = (E*, n(er)E) for all ¥ € E. In
particular, (E*)F = (ET)*, and if T is open then ET = (E*)T = (ET)*,

b) Let T e S*(G) and let T be the distribution obtained from T by means
of the homeomorphism g — g™! of G. Then for all § € E and E € E we
have {m(T)E, £)= (¢, 1r(f')£). In particular, (% (er)%, £)= (E, m(er)é ) for any
compact subgroup " C G.
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PROOF. a) follows from 2.4.
b) We have (K(D)E, )= | G@F, £)dTe) = | & ng ) dTe) =
= [ & 7)) afig) = &, n(hp.

2.15. PROPOSITION. Suppose that (n,G, E) € Alg G is admissible. Then:

a) m is also admissible.

b) The natural embedding E —~ Eisan isomorphism, that is, T =

¢) = is irreducible if and only if ™ is irreducible.

_PROOF. a) and b) follow irom the fact that ()Y = (E¥)* and
(EW = (EV)*, that is, dim EVY = dim EV = dim EY < oo,

c) If E; is a non-trivial G-submodule of E, then its orthogonal comple-
ment Ef ={% € E { (E, £) =0 for all £ € E,} is a non-trivial G-submodule
of E; that is, if  is reducible, then 7 is also reducible. If 7 is reducible,
T = n is also reducible.

THE TENSOR PRODUCT OF REPRESENTATIONS
r

2.16. Let G; be an l-group (i = 1, 2, ..., r). We set G = Il G;. This is
i=1

also an l-group. Let (m;, G; E;) € Alg G;. We define their tensor product

(n=®m G E=@E)by nia;, ... 5) (& &) = ifg g%

PROPOSITION. Suppose that all the m; are admissible. Then:

a) w is admissible.

7T =Q 7

c) If all the m; are irreducible, then w is also irreducible.

d) Conversely, any irreducible admissible representation m of G has the
form n = @ m;, where the w; are irreducible and admissible. The w; are
uniquely determined by m.

PROOF. It suffices to examine the case r = 2.

Let N, C G, and N, C G, be open compact subgroups and let
N =N; X N, CG. It is easy to see that Hy = Hn, ® #nN, and that
EYN = EN: ® EY: (see 2.10). Therefore, dim E¥ = dim E{: - dim E{: <eoo,
and the natural mapping EY+ @ EY: = (EN)* @ (EY:)*—» (EN)* = EV s
an isomorphism. This proves a) and b). c¢) and d) follow from 2.10 and
the following lemma on finite-dimensional representations.

LEMMA. Let 7; be an irreducible finite-dimensional representation of an
algebra with unit element #8; (i = 1, 2). Then the representation 7, ® T,
of H#,® Fb, is irreducible. Conversely, each irreducible finite-dimensional
representation T of 8, @ H8, has the form r = 7, ® 75, wWhere 7; is an
irreducible representation of (i = 1, 2); 7, and T, are uniquely deter
mined by 7 (see (5], Ch. VIII, §7, Proposition 8).
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THE CHARACTER OF A REPRESENTATION

2.17. Let (m, G, E) be an admissible representation. Then for any
T € &#(G) the operator m(T) has finite rank; consequently, the trace tr w(T)
is defined. We choose a left-invariant Haar measure p; on G and define
the distribution tr # € S*(G) by

{trm, ) =tr n(fp‘G)’ fe€ S(G)'

This distribution is called the character of .

2.18. PROPOSITION. Let go € G and let A, be the corresponding auto-
morphism of G (A, () = 8088c'). Then A, (tr m) = Ag(go) * trw (see 1.16
and 1.19).

PROOF. If T €4 (G),then Ago(T) = g, #T*ega (see 1.25b), so that
tr w(Ago(T)) = tr [m(go)m(T)n(go!)] = tr m(T). Therefore, (Ago(tr m), )=
=(trm, A;: M=tr ﬂ(AEul(f) *ug) = Aglgo) tr 1r(Ag‘o1 (fug)) (see 1.19) =
= AG (go) tr W(f“G) = Ao(go)<tr M, f).

2.19. PROPOSITION. If m,, ..., m, are pairwise inequivalent, irreducible,
admissible representations of an l-group G, then their characters
tr my, ..., tr m, are linearly independent.

PROOF. We choose an open compact subgroup N C G such that all the
(m;)y are non-zero. By 2.10, they are irreducible and pairwise inequivalent.
It remains to quote a standard fact about finite-dimensional representations.

LEMMA. Let 7y, ..., 7, be irreducible, finite-dimensional, pairwise
inequivalent representations of &8. Then the linear forms tr 7; on &8 are
linearly independent (see [5], Ch. VIII, §13, Proposition 2).

2.20. COROLLARY. Irreducible admissible representations m, and m, of
an l-group G are equivalent if and only if tr m; = tr m,. ®

INDUCED REPRESENTATIONS

2.21. Let H be a closed subgroup of an I-group G, and let
(p, H, E) € Alg H. We denote by L(G, p) (or simply L(p)) the space of
functions f: G — E satisfying the following conditions:

1) flhg) = p(h)f(g) for all h € H, g € G.

2) There exists an open compact subgroup Ny € G such that
f(ggo) = f(g) for all g € G, go € Ny

DEFINITION. The representation (w, G, L(G, p)) acting according to the
formula (w(go))g) = f(gge) is said to be induced by p (notation:

n = Ind (G, H, p)). Condition 2) guarantees that w is algebraic.

2.22. Under the conditions of 2.21, we denote by S(G, p) (or simply
S(p)) the subspace of L(G, p) consisting of the functions f that satisfy the
following additional condition:

3) f is finite modulo H (see 1.20).

DEFINITION. The representation (w, G, S(G, p)) acting according to the
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formula (w(go)f)(g) = f(gg,) is said to be finitely induced by p (notation:
m = ind (G, H, p)).

REMARK. Instead of 1) in 2.21 we often take the condition
flhg) = (Ag(h)/Ay (h)" - p(h)f(g). This simplifies many formulae (see, for
example, 2.25c)). But in the Frobenius duality theorem it is more
convenient to use 1).

2.23. We define an action of G on H\ G by go[Hg] = Hggy'. We also
define for each (p, H, E) € Alg H an S(H\G)-module structure on S(G, p) as
follows: if f € S(H\ G) and ¢ € S(G, p), then (fo)(g) = f(Hg) * ¥(g).

PROPOSITION. a) There is one and up to isomorphism only one l-sheaf
Feon H\G such that S(G, p) is isomorphic to F8 as an S(H\ G)-module.
The action of G on S(G, p), together with the action on H\ G described
above, defines an action of G on F°(see 1.16 and 1.17). The resulting
representation of H in the stalk over e = He € H\ G is equivalent to p.

b) Conversely, suppose that an J-sheaf (H\ G, #) is defined on H\ G
and that the action of G on H\ G is continued to an action vy of G on % .
We assume that the action of G in F. is algebraic. If the resulting repres-
entation of H in the stalk E over ¢ € H\ G is denoted by p, then
(v, G, #.) is isomorphic to ind (G, H, p), and the algebraic part of
(v, G, F) (see 2.1) is isomorphic to Ind (G, H, p).

PROOF. a) follows easily from 1.14. Let us prove b). Since 7y is algebraic,
it follows immediately that p is algebraic. We define mappings
a: Fe - SG, p) and B: S(G, p) > F. by

() @)= (@) ()EE (p€Fo),
BN (v(@e)=7(g) (f(g) EE,,; (fES (G, p).
It is easy to verify that a and 8 are well-defined and specify the equivalence
of (7, G, ) and ind (G, H, p). Similarly it is proved that (y, G, ¥#,) and
ind (G, H, p) are equivalent.

2.24. We now list several properties of induced representations. First we
state a simple auxiliary lemma.

LEMMA. Under the conditions of 2.21, let N C G be an open compact
subgroup and L C G a system of coset representatives of H\G/N. For
each g € § we consider the open compact subgroup Ng =HNgNg™! of H.
Then the restriction of functions from G to S defines an isomorphism of
L(G, p)N with the space of functions f: S = E for which f(g) € EVz for
all g € Q. Here SG, p) is mapped isomorphically onto the subspace of
functions having only a finite number of non-zero values.®

2.25. PROPOSITION. a) The mappings p » Ind(G, H, p) and
p * ind(G, H, p) define functors from Alg H into Alg G. These functors
are exact; that is, for any exact sequence of H-modules
0—>E, > E, > E; =0 the sequence 0~ L(G, p;) > L(G, p;) > L(G, p3)—>0
and the analogous sequence with S(G, p;) are also exact (here
(0, H E) €EAlgH (=1,2,3)).
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b) If F is a closed subgroup of H and 7 € Alg F, then
ind(G, H, ind(H, F, 7)) = ind(G, F, 1) and Ind(G, H, Ind(H, F, 1)) =
= Ind(G, F, 7).
c) If (p, H, E) € Alg H and 0 is a character of H, then we denote by

GP the representation (0p, H, E) defined by (Gp)(h) = @(h) * p(h).

With this notation we have ind(G, H, p) = Ind(G, H, A;/Ayp) for any
(p, H, E) € Alg H.

PROOF. a) It is obvious that ind and Ind are functorial, and it follows
from 2.24 and 2.4 that they are exact.

b) Immediate verification.

o) If f € 8(G, p) and [ € L(G, (Ag/Ay)P), then the function
{f. f}@= (f(g)Lf(g)) on G lies in S(G, A) (see 1.20). Using 1.21, we can
define a pairing {f, f) by
§ n={ @ n@dnce.
H\G
This defines a mapping a: L(G, (Agz/Ay)p) > S(G, p), which, as is easy to
see, is an embedding and commutes with the action of G. It follows from
2.24 and 2.14a) that « is epimorphic.

2.26. LEMMA. Under the conditions of 2.21, suppose that G is compact
modulo H, that is, there exists a compact set K C G such that G = H * K.
Let (p, H, E) be an admissible representation. Then n = Ind(G, H, p) =
= ind(G, H p) is also admissible.

This lemma follows immediately from 2.24.

2.27. Let h = °h be an automorphism of an l-group H, and let
(o, H E) € Alg H. We define (0° H, E) by p%h) = p(°h) (h € H).

LEMMA. Let H be a closed subgroup of an l-group G, and suppose that
g € G normalizes H We define an automorphism of H by h —>8h =ghg™1.
Then Ind(G, H p#) is equivalent to Ind(G, H p) for any p € Alg H, and
similarly ind(G, H, p&) = ind(G, H, p).

PROOF. The equivalence determines an operator A: L(G, p) > L(G, p%)
defined by (ANE") = flgg)f € L(G, p)).

FROBENIUS DUALITY

2.28. THEOREM. Let H be a closed subgroup of an l-group G, and let
(o, H V) € Alg Hand (n, G, E) € Alg G. Then Hom (w, Ind(G, H, p))
= Homy (7|y , p)- This isomorphism depends functorially on 7 and p.

PROOF. Let A € Homg (w, Ind(G, H, p)) and B € Homy (7|, p). We
define homomorphisms a(4) € Homy (7|, p) and B(B) € Homg(w, Ind(G, H, p))
by a(A)E = A(E)(e) and [B(B)E] (g) = B(n(g)t) (where £ € E and e is the unit ele-
ment of G). It can be verified immediately that o and $ define the
required isomorphism.

2.29. PROPOSITION. Under the conditions of 2.28,
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Homg (ind (G, H, p), %) & Homp (Au/Ac) p, (% ]zr))-

This isomorphism depends functorially on m and p.

PROOF. If m;, m, € Alg G, then Homg(m,, 7;) = Homg(m,, 7y),
because both of these spaces can be identified with the space of (m,, m,)-
invariant bilinear forms. Therefore, our required assertion follows from
2.25¢) and 2.28.

Finally, we write down a: Homg((A4/Ag) * p, (1r|H))—> Homg (ind(G, H, p),
) explicitly.

If A € Homy((Ay/Ag) * p, (Tg)) and f € S(G, p), then

@@ f, B= | Al @), 7(e)bdvac(e) GEE)

H\G

(see 1.21).

THE FUNCTOR E = Eg 4

2.30. DEFINITION. Let H be an l-group and @ a character of H, that
is, a one-dimensional algebraic representation of H. For each representation
(m, H, E) we denote by E(H, ) the subspace of E spanned by vectors of
the form w(h)t — 6(h)s (h € H, £ € E). We set E , = E/E(H, 0). If 6 = 1,
then we write E(H) instead of E(H, 1) and Ey instead of Ey ;.

Ef o is embedded in E* and consists of the functionals {* € E* such
that 1r*(h)*<' = 91 (h)t* for all h € H.

EXAMPLE. Theorem 1.18 on the existence and uniqueness of a Haar
measure is equivalent to the assertion that dim S(G); = 1.

2.31. REMARKS. a) We consider the representation (6 'w, H, E) (see
2.25¢)). It is then clear that E,- , (H)=E_ (H, 0)and (Eg-, )y =(E )y 6-
Thus, the proof of the many assertions about E(H, 6) and Ey , can be reduced
to the case § = 1.

b) Let H be a closed subgroup of an I-group G. We set
Normg (H, 0)={g€EG|ghg™ €H and 8(ghg™') = 0(h) for all h € H} It is
clear that for any (m, G, E) the group Normg (H, 6) preserves E(H, 0) and
hence acts on Ey ,.

The correspondence E v+~ Ey , defines a functor from Alg G into
Alg Normg (H, 6).

2.32. LEMMA. Under the conditions of 2.30, let H, and H, be sub-
groups of H, where H H, = H and H, normalizes H,. Then
Ewy,o/m),,0/0, = En o-

PROOF. The lemma is an immediate consequence of the equality
E(H, 0) = E(H,, 8/H,) + E(H,, 6 | Hy), which follows from the formula

W(hyhy)E — O(hihg)E = [n(h)n(ho)E — O(hyw(hy)E]- [m(ho)O(R1)E — B(R)B(Ry)E].
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2.33. We assume that an /-group H is exhausted by its compact sub-
groups; that is, any compact set in H lies in some compact subgroup. Let
0 be a character of H, and let (r, H, E) € Alg H. Then there is a very
convenient way of describing E(H, 0).

LEMMA. (Jacquet and Langlands). A vector £ € H lies in E(H, 0) if and
only if there exists a compact subgroup N C H such that

S 0t (k) 1 () Edpy () = (07 ex) E=0  (see 2.3).
N

PROOF. Using Remark 2.31a), we may assume that § = 1. For this case
the lemma follows from 2.4.

2.34. COROLLARY. Under the conditions of 2.33, if E' is an H-submodule
of E, then E'(H, 6) = E' N E(H, 0).

2.35. PROPOSITION. Let H be an l-group, 6 a character of H, and
0—E'->E—=E" -0 an exact sequence of H-modules.

a) The sequence Ey ,~ Ey ,—> Ep 5 = 0 so arising is exact.

b) If H is exhausted by its compact subgroups, then the following
sequence is exact:

0->Ey o—Ey 06— Eu 0.

PROOF. a) can be verified directly. The assertion that the mapping
Ey o= Ey, in b) is an embedding follows from 2.34.

REPRESENTATIONS IN CROSS-SECTIONS OF I-.SHEAVES

2.36. Suppose that an action 7y of an l-group G on an Isheaf (X, %)
and a character @ of G are given. We are interested in the structure of
(,7 c) G,0-

We assume that there exists a continuous mapping of /-spaces q: X = Y
such that g(y(g)x) = q(x) for all g € G and x € X. Then #. is naturally
equipped with the structure of an S(Y)-module: if f € S(Y) and ¢ € F.,
then fo(x) = f(g(x)) - ¢(x). Here F.(G, 6) is a submodule of F,., so that
(F oo is an S(Y)-module. By virtue of 1.14, an Isheaf on Y, which we
denote by F’, corresponds to (F.)¢.e. By definition, F¢ and (¥ .)¢,o are
isomorphic as S(Y)-modules.

PROPOSITION. The stalk Fy of F'at y € Y is naturally isomorphic to
F@ ' O)g,e (see 1.16).

PROOF. We may assume that 8 = 1 (see 2.31a)). We set Z = ¢~ ().
Then Z is a closed subset of X, and the restriction p;: . — F.(Z)is an
epimorphism (see 1.16). We claim that the kernel of p, is the subspace
L C#F . generated by cross-sections of the form f * ¢, where f € S(Y),
f() =0, and ¢ € F.. For it is clear that L C Ker p;. Conversely, let
¢ € Ker pz. Then q(supp ¢) is a compact set in ¥ not containing y. By
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virtue of 1.3, we can cover g(supp ¢) with an open compact subset
U C Y not containing y. If f is the characteristic function of U, then
FeESY), fy)=0,and ¢ = f+ p, that is, ¢ € L.

Thus, F(Z) = F /L. Hence (Fc(2))¢ = F/L', where L' is the sub-
space of %, generated by L and #.(G). But, as follows from the explicit
description of a stalk of # ' (see 1.14), ¥ also coincides with F /L', as
required.

2.37. COROLLARY. Under the conditions of 2.36, if there are no
G-invariant % -distributions on any stalk q~'(y) of q, then there are no
G-invariant % -distributions on X.u

FINITE REPRESENTATIONS

2.38. We now introduce and study a certain class of representations,
which plays a fundamental role in the study of the representations of
GL(n, F).

2.39. DEFINITION. Let (w, G, E) € Alg G. For each ¢ € FE and
E € F (see 2.13) we define ¢,y € C™(G) by 9y () = (E, m(g™*)§). This
function is called a matrix element of n. It is easy to verify that for any
T € S;(G) we have g,y ¢ = V(Do y (see 2.3).

2.40. LEMMA-DEFINITION. Let (m, G, E) € Alg G. Then the following
conditions are equivalent:

a) ey isa finite function for all ¢ € E and 5 €E.

b) For each ¢ € E and each open compact subgroup N C G the set
K. n =1g € G| w(emm(g™' ) # O} is compact.

We call representations that satisfy these conditions finite. It is clear that
any subfactor representation of a finite representation is finite.

PROOF. b) = a). If £ € EV, then supp ¢,z C K,y for all § € E (see
2.14).

a) = b). For each g € G we set § = 7 (ey)" m(g™"' )¢ and denote by E,
the linear span of the vectors (g E G). Let us prove that dim E, < oo.
For if this is not the case, then there is a sequence g; ({ = I, 2, ...) such
that the E are linearly independent. We complete them to a ba31s of EN

by vectors na and define a functional £ on E by ¢ E £ =« E,w(eN)E ) for all
¢ € E, (%, k) =1, and (§,m,) = 0. Then £ € E¥ and ¢, ¢ (8;) = i, which
contradicts the fact that Y 7 is finite. N

Thus, dim E, < e. We choose functlonals E, ..., & €EEN = EV)"

that separate points in E,. Then K.y C ﬁ SuUpp ¢, v is a compact set.
' i=1 i ]

2.41. COROLLARY OF THE PROOF. Each finitely generated (and, in
particular, each irreducible) finite representation is admissible.m

2.42. We wish to show that finite representations can be split off from
the rest; more precisely, that any irreducible finite subfactor module is a
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direct summand. To do so, we use the following theorem:

THEOREM. Let G be a unimodular l-group that is countable at infinity,
and let (w, G, V) € Alg G be an irreducible finite representation.

a) For each open compact subgroup N C G there exists a distribution
£ € JK(G), such that o(el) = o(ey) and w (e§) = O for any irreducible
representation m € Alg G not isomorphic to w. This distribution is unique.

b) If N' C N is an open compact subgroup, then

EN *EN=EN$EN’ = EN' ¥ Ey =EN.

If g € G, then Sgte‘}\)(*&gq:e?]vg_l.

PROOF. (1) It follows from 2.12 that eN is unique. b) follows easily
from the uniqueness, Therefore, we only have to prove that ey exists.

(2) We define a representation w' of G X G in End V by
w ((gl, g )A = w(g)Aw(gs! ) (A € End V) and consider its algebraic part
(w', G X G L) Let (w® w, G X G V® V) be the tensor product of
w and w (see 2. 16), and let - V ® V - L be the mapping defined by
¢ ® E ) = (S, n. It is clear that 7 G X G is equivariant. Since w is
admissible (see 2.41),

dim (V @ V)™ = (dim V¥)2 = dim L™ < 0,

so that 7 is an isomorphism. In particular, L is an irreducible G X G-module
and, when restricted to G = G X {e}, is the direct sum of modules iso-
morphic to V.

3) We~define p: L~>C (G) by WA)g) = tr (w(g™)A). 1t is clear that
Ar(E @ E)) = Y, ¥ Eev EG V) Since w is finite and 7(V ® V) Ly
maps L into S(G). We identify S(G) and H (G) by means of the Haar
measure p; (see 1.30) and define the “inverse” mapping
w: [S(G) = & (G)] > L by h v w(h) € L. We consider the representation
(v, G X G, S(G)), where [7'((g:, 82))f] (&) =fgi" ggy); it is easy to verify
that ¢ and w are G X G-equivariant mappings. In particular, ¢ is an
embedding.

(4) Let (m, G, E) € Alg G and ¢ € E. Then the mapping
m: [S(G) = &£ (G)] = E defined by h > m(h) is G-equivariant. Since L
splits into a direct sum of modules isomorphic to V, m.(p(L)) also splits
into such a sum (see 2.7). In particular, if 7 is irreducible and not
equivalent to w, then w(e(L)) = 0.

(5) We consider the mapping wy: L = L.

By virtue of Schur’s lemma (see 2.11), wy is a scalar operator. If
A €L and A4 # 0, then o(4) #* 0, and by 2.12, there is an irreducible
representation # € Alg G such that w(p(A4)) # 0. It follows from (4) that
wp(A) # 0, that is, wy = ¢ » Id;, where ¢ # 0.
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(6) It is clear from what we have said that e = ¢™'pw (ey) satisfies the
condition of the theorem.

2.43. Let (m, G, E) € Alg G. As follows from 2.42b), for each § € £
the vectors m(ey)¢ coincide for sufficiently small subgroups N. We denote
this common vector by w(e®)¢ (symbolically, w(e®)é = lim = (ex)£). Using

N-{e}

2.42b), we can easily verify the following properties of m(e%):

a) w(e®)is a projection; that is w(e®)2= w(e®).

b) w(e®)commutes with the action of G.

¢) If #' € Alg G and A € Homg (m, '), then An(e9)= 7'(e9)A. In
addition, as shown in the proof of 2.42, Im = (e®)splits into a direct sum
of G-submodules isomorphic to (w, G, V).

2.44. THEOREM. a) Let (w, G, V) € Alg G be a finite irreducible
representation, and let (n, G, E) € Alg G. Then E can be decomposed into
a direct sum of submodules E = E,, ® E., where E, is a direct sum of
submodules isomorphic to V, and El, contains no subfactor modules
isomorphic to V.

b) The submodule E; of E generated by the modules E, for all finite
irreducible representations w is completely reducible and finite, and E/Ef
has no non-zero finite subfactor modules. In particular, any finite module
is completely reducible.

PROOF. a) We have to take E_, = w(e®)and E} = Ker. m(e®). If E}
contained a subfactor module isomorphic to ¥V, then by 2.43c), we would
have m(e?)|;, # O, which is false.

(o)

b) follows from a), 2.7, and 2.6b).
CHAPTER II

THE GENERAL THEORY OF REPRESENTATIONS OF THE GROUP GL(n, F)
§ 3. Induced and quasi-cuspidal representations
THE STRUCTURE OF THE GROUP Gn

3.1. In what follows, F denotes a locally compact non-discrete field with
a non-Archimedean valuation, R the ring of integers of F and ® a generator
of the maximal ideal in R (for the definitions and main properties of F, R,
and @ see [10], Ch. I). We shall study the representations of the group
G=G, =GL0n F). We set I' =T', = GL(n, R) (this is a maximal com-
pact subgroup of G) and N; =1 + @i M(n, R) (i =1, 2, ...), where
M(n, R) is the ring of m X n matrices with coefficients in R.

The family N; D N, D ... forms a fundamental system of neighbour
hoods of the unit element of G consisting of open compact subgroups;
that is, G is~an l-group. We call the N; congruence subgroups. It is clear
that I" normalizes all the congruence subgroups.
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It is standard knowledge that G is unimodular (see [7]).

We denote by Z = Z, the centre of G; Z ={\-1, A\ € F, X # 0}.

3.2. We shall use three decompositions of G.

1. THE BRUHAT DECOMPOSITION. Let B = B, be the subgroup of
upper triangular matrices in G, U = U, the subgroup of B consisting of
matrices with 1’s along the diagonal, and D = D, the subgroup of diagonal
matrices. With each permutation w of 1, ..., n we associate a matrix
w = (w;), where w;; = §; ,;, and §; is the Kronecker symbol. Let W = W,
be the group of these matrices, which is isomorphic to the symmetric group
S,

The following decomposition holds: G = BWB = UDWU. If
g = by,wb, = u;dwu,, then d and w are uniquely determined by g (see
[6], Ch. 4, §2).

2. THE IWASAWA DECOMPOSITION. G = BT (see [10], Ch. 11, §2,
Theorem 1).

3. THE CARTAN DECOMPOSITION. We consider the subgroup

A = A, of G consisting of the diagonal matrices d = (d;;) for which
d; = @™, where m; < ... < m, are integers (notation:
d = diag (™, ..., ™). Then G =T« A+ T, where § in the expression
g2 = 7 07(71, 72 €T, 8§ € A) is uniquely determined by g (see [10],
Ch. II, §2, Theorem 2).

In particular, G is countable at infinity.

PARTITIONS AND THE GROUPS CONNECTED WITH THEM

3.3. We find it convenient to study the representations not only of G,
but also of the groups G, X G, X ... X G"r’ which makes inductive

transition possible.

DEFINITION. We denote by U, the index set {1, 2, ..., n}. A segment
in An is a subset of A, consisting of several consecutive numbers. By a
partition «a (of n) we mean a partition of %, into disjoint segments. Thus,
if ny;, ..., n, are the lengths of the segments of a partition a (that is, the
corresponding segments are equal to I, = {1, ..., n,}, L ={n, +1,...,
nytng}, oo, L={n +...+n_;+1,... n,+...+n,=n}), then we
write @ = (ny, ..., n,). We write § < « if each segment of & is a union
of segments of S.

3.4. DEFINITION. Let & = (ny, ..., n,) be a partition of n. We set

r
G = .Hl G"i‘ For < a we always assume that G, is embedded in G, in
l=

the natural way. In particular, G, is embedded in G,y = G,,.

The decompositions 1, 2, and 3 in 3.2 are obviously valid for
G=06, =16, with T =T, = 1nr,, B =8, = 1B, W=W, = 1w, ,
D=D,= l'ID,,i, and A = A, = HA"’_. The centre Z = Z, of G, is equal
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to IIZ,,i. We call subgroups of the form Ny«a) = N; N G,, where N; is a
congruence subgroup of G,, congruence subgroups of G,,.

3.5. DEFINITION. Let § be a partition of n. We denote by U, the sub-
group of U, (see 3.2) consisting of the matrices u = (u,-j) for which
Uy = 0 if i #j and i, j lie in the same segment of B (note that
Un = U(l,l,. ., l)) WesetPﬂ =G’3 . UB CGn.

For g <a we set Ug(a) = U; N G, and Pg(a) = Py N G, . It is clear that Ug(a)
is a normal subgroup. of Pg(a) and that Py(a) = G4 + Uy(@) (semidirect
product).

We call the U,() horospherical subgroups of G, and the Pg(a) parabolic
subgroups. _

We denote by Us(a) the transpose of Uj(a).

3.6. LEMMA. Let G = G, and let U be an horospherical and P a para-
bolic subgroup of G.

a) U is exhausted by its compact subgroups (see 2.33).

b) G = P+ I'. In particular, G is compact modulo P (see 2.26).

PROOF. Clearly it suffices to carry out the proof for G=G,, U=U,,
and P=8B,. _

a) We set U®) = {y = (u;) € U, luy; € @ . R} 1t is easy to verify
that U € UP C ... is a chain of open compact subgroups of U and
that U = L}i U®), hence a) follows.

b) follows from the Iwasawa decomposition.

AN INFORMAL DESCRIPTION OF THE METHOD

3.7. In this subsection we briefly describe the method used to study the
representations of G,. It is based on the study of the asymptotic behaviour
of the matrix elements g, > (g) = (, w(g~')E) as g “tends to infinity” (here
(m, G,, E) € Alg G, ¢ €E, and ¢ € E). Since each g € G, can be repre-
sented in the form g = v,872(7y, v2 €T, § € A) and the sets w(I')¢ and
7 ()¢ are finite, it suffices to study the behaviour of ¢ ¢ (g) for
g=08 €A

If N is a sufficiently small congruence subgroup of G,, then ¢ € EV
and £ € EV, and we have

En@d =@ ENE n(d)EH=(E 0 (6™ n(egys-1) &)

In this connection it is important for us to clarify how 8N8~! behaves, as
8 “‘tends to infinity”.

It turns out that § € A can ‘“go to infinity” along various paths and that
the directions of its departure correspond to the partitions of n. Namely,
let B be a partition of n. We say that the sequence 8,, 6,, ..., where

6h = diag(go”‘i(”),. LY K"m"(h)) € Anv
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tends to infinity in the complement of B if for any i and j in distinct
segments of f
lim(m, (k) — m,(k)) = oo.

We claim that if §,, §,, ... tends to infinity in the complement of 8,
then \,g 8, N6, ' D Uj. It follows that if ¢, #(8;) # O for all £, then

£ ¢ E(UB) (see 2.30 and 2.33). In this case we can extract information
about (m, G,, E) by investigating the representation of the “smaller”
group G, in E/E(U‘,). (The appropriate apparatus will be developed in
3.12-3.19.)

Otherwise, we can show that the matrix elements of 7 are finite modulo
the centre Z of G,, and we can apply the theory of finite representations
developed in §2. (This will be done in 3.20—3.30.)

SEVERAL GEOMETRIC LEMMAS

3.8. We make a number of geometric assertions on the structure of the
subgroups of G = G,. The motivation for these assertions is clear from 3.7.
DEFINITION. Let a and B, 8 < a, be partitions of n, and let

6 = diag(pm™, ..., e™)E A,. We set
tg(ﬁ) = min [ m; — m; |,

where the minimum is taken over all index pairs i, j in distinct segments
of B, but in one segment of a. For f = a we set tg(ﬁ) = oo. We usually
drop « and simply write tB(B).

If 8,, 8,, ... is a sequence of elements in A,, then the condition for
it to tend to infinity in the complement of 8 (see 3.7) is equivalent to
}ci_r?w t5(8;) = oo

3.9. LEMMA. Let o and B, § < «, be partitions of n. Then for any
compact set K C Ug(a) and any neighbourhood V of the unit element in
Ug(a) there exists a number t = t(K, V) such that 81K8 C V for all
& € A, for which tg(8) > t. Similarly, if K is a compact set and V is a
nei'ghbourh_ood of the unit element in Up(a), then for large ta(ﬁ) we have
SKs ' C V.

PROOF. If § = diag (@ ', ...,%" ™), and g = (g;)), then
(6“g6)ij = {@m"—mi-gi,. All the assertions of the lemma follow from this.

3.10. LEMMA. Let 2 C A = A,. Then the following conditions are
equivalent:

1. & is compact modulo the centre Z of G.

2. There is a number t such that for all subpartitions vy : o and all
8 € 2 we have t (8) < ¢

PROOF. Since A is a discrete set, it follows from condition 1. that £
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is finite modulo Z. Therefore, 2. follows from 1. Now suppose that Q is
non-compact modulo Z. Then there are indices i and j in one segment of
o such that | m; —m;| is not bounded for § = diag(p™, ..., g™)E Q.
Without loss of generahty we may assume that j =i + 1. If o is subparti-
tioned between i and i + 1, then for the resulting partition v $ « the
number ¢_(8) is unbounded for § € Q. Therefore, 1. follows from 2.

3.11. Let « and B, B < e, be partitions of n. For each congruence sub-
group N C G, we set N” = N N Ug(a), N° = N N G, and
N'=NON Ug (a)

LEMMA, a) N = N°NO°N" = N*NON~. These are called the decompositions
of N associated with $.

b) EN=En-%Bno*Eye =Ens % Eno % Epm.

PROOF. It suffices to treat the case ¢« = (n). Let N=1 + ©* . M(n, R)
(see 3.1). We perform the following “elementary” transformations on the
matrices in N: if { < j, then the j-th row (column) muitiplied by any
a € € - R can be added to the i-th row (column). It is clear that the
inverse transformations are also elementary. Since elementary transformations
involve multiplications on the left by elements of N* or N® or multipli-
cations on the right by elements of N~ or N°, the set N'NON~ is invariant
under these transformations. But it is clear that any matrix in NV can be
reduced to the unit matrix by means of these transformations, so that
N = N*NON~. Passing to the inverse elements, we find that N = N"N°N",

b) Let Np = N 0 Py(a). It is then clear that N = N°N" and that, by
a), N = N"Np. Now b) follows from 1.26b).

THE FUNCTORS i, ; AND 1y,

3.12. We shall study the representations of G, by connecting them with
the representations of Gy for B < a. To detect this connection, we introduce
functors i, ;: Alg G; > Alg G, and rg ,: Alg G, > Alg G4. We set
P=P (a) and U = U 5(@).

DEF|N|T|ON a) Let (o, G, V) € Alg G;. We denote by the same
letter p the representation of P in V defined by p(gu) = p(g) (€ € G4 u € V).
We set i, ;(p) = ind(G,, P, p) € Alg G,,.

b) Let (m, G,, E) € Alg G,. We deﬁne rgo(m) as the natural represent-
ation of G4 in EU (see 2. 30) We have rﬁa('rr) € Alg Gg.

3.13. PROPOSITION a) The mappings i,z and rg , defne functors
i,p: Alg Gy > Alg G, and 1y ,: Alg G, > Alg G,. These functors are
exact.

b) If m € Alg G, and p € Alg G, then there exists a natural isomorphism
Homg (7,4(m), p) = Homg  (m, i, p(P)) This isomorphism depends

functorzally on m and p.
) If v <B <o then iygoiz., =1, ., and r,gorg , =7, ,.
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d) If p € Alg G is admissible, then i, ;(p) is also admissible.

e) If (n, G,. E) € Alg G, is finitely generated, then ry  (m) is also
finitely generated.

f) I, g(0) = iy (A * D), where A = Ag |Ap.

PROOF. a) It is obvious that i, ; and 75, are functorial. It follows from
2.25a) that i, 4 is exact, and from 2.35b) and 3.6 that 8.0 is exact.

b) By 3.6, i, s(p) = Ind(G,, P, p). Therefore, it follows from the Frobenius
duality (see 2.28) that HomGa(m za,ﬁ(p)) = Homp(m, p). Since pjy = 1, we
see that HomGa(rB’a (w), p) stands on the right.

¢) follows from 2.25b) and 2.32, and d) from 3.6 and 2.26.

e) Let us prove that E is a finitely generated P-module (hence it follows,
of course, that its factor module E; is finitely generated). Let £ be a fin-
ite set of generators of E. Then E is equal to the linear span of
(G, )8 = n(P)n(I)S2 (see 3.6). Since w is algebraic, #(I")S2 is finite, as
required.

Finally, f) follows from 2.25c¢) and 3.6.

3.14. THEOREM (Jacquet). If (n, G, E) € Alg G, is admissible, then
rg,o (W) is also admissible.

The proof will be given in 3.16-3.17.

3.15. REMARK. It can be proved that i, , carries finitely generated
representations into finitely generated representations.

PROOF OF JACQUET'S THEOREM

3.16. Let G = G,, B <o, P = Pg(a), and U = Up(a). Let
(m, G, E) € Alg G. We set (p, Gg, V) = rs(m) and denote by A the
natural projection A: £ = V = E,;. We fix a congruence subgroup N in G
and consider its decomposition N = N*N°N~ associated with 8 (see 3.11).

LEMMA. a) A(EY) C V™. b) Let n € V¥'. Then there exists a
t = t(n) such that p(6'yn € A(EY) for all 8 € A, N Z, for which
13(8) > t.

PROOF. a) A € Homp(m, p). b) Let n = A§, E EE If8€Z;,NA,,
then p(6 m = p(67")p (eno) 1 = A(m (en)) W(871)E). If 15(8) is large, then
8N~871 C stab £ (see 3.9), and hence m(§ 1)§ = 7r(sN_)1r(6 . In addition,
A = p(en+)A = A * w(en+). Therefore, if & €Z; N A,, then for large t3(8)
we have

P (87) n=A (st (en+) 7t (eno) v (en-) T (871 B) =
=A(n(en) W (ENEEA(EY) (see 3.11).
3.17. Under the conditioons of 3.16, suppose that 7 is admissible. Let us
prove that in this case VV" = A(EV), hence Jacquet’s theorem follows.

We set k = dim A(EY) < . By 3.16a), it suffices to show that
dim V¥ < k. Let N1, ..., Ny be linearly independent vectors in vy,
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Using 3.16b), we can find a § €Z; N A, such that p(6~ M, € A(EYN) for
all i. Since p(87') is invertible, the vectors p(87')n; are linearly independent.
Therefore, I < k, as required.

QUASI-CUSPIDAL AND CUSPIDAL REPRESENTATIONS

3.18. We now describe those representations that cannot be reduced to
“smaller” groups by means of the functors Tg.a

DEFINITION. A representatlon m € Alg G, is called quasi-cuspidal if

8,o(m) = 0 for all B «. An admissible quasi-cuspidal representation is
called cuspidal.

m is quasi-cuspidal if and only if HomGa(w, iy5(p)) = 0 for all B s o
and p € Alg GB (see 3.13b)).

It follows from 3.13a) that any subfactor module of a quasi-cuspidal
module is also quasi-cuspidal.

3.19. PROPOSITION. Let m € Alg G, be irreducible. Then there exist a
partition B < o and an irreducible quasi-cuspidal representation p € Alg G,
such that w is embedded in i, 5(p)

PROOF. We cons1der a partition § < « such that ry ,(7) # 0 and
Ty (m) = 0 for all vy * B. Then rz ,(7) is quasi- cuspldal (see 3.13¢)). It
follows from 3.13e) that r, , () 1s f1n1tely generated. Therefore, r; ,(m)
has an irreducible (quasi-cuspidal) factor representation p (see 2.6). Since
HomGa(n, i, 5(P)) = HomGa(rﬂ,a(w), p) F 0 (see 3.13b)), there exists a non-

zero G,homomorphism 4: 7 = i, ,(p). Since = is irreducible, A is an
embedding.

HARISH-CHANDRA'S THEOREM

3.20. We wish to connect quasi-cuspidal representations with the finite
representations studied in §2. Since the centre Z of the group ¢ = G, is
non-compact, its irreducible representations cannot be finite. To remove
this “defect”, we restrict the representations of G to the subgroup G°
defined as follows: if & = (ny, ..., n,), then G° = G2 =11 Gg’_, where

Ggi ={g € Gn,-l det g € R*} (here R* is the group of invertible elements

in R; see 3.1).

It is easy to verify the following properties of this group:

a) G° N Z is compact and T' C G°.

b) G° is an open normal subgroup of G, G/G° is Abelian, and
G/G°-Z is finite.

3.21. THEOREM (Harish-Chandra). Let (n, G, E) € Alg G. Then the
following conditions are equivalent:

(1) 7 is quasi-cuspidal.

(2) For any & € E and any congruence subgroup N C G the set
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K.y ={g€G | m(ey) w(g™t)t # 0} is compact modulo Z.

(3) The matrix elements of w are finite modulo the centre (see 2.39).

(4) The restriction of T to GO is finite.

PROOF. (2) = (3). If £ € EN and £ € E, then supp 07 C Kpw-

(3) = (4). Since G° is open in G, the contragradient module £ does not
depend on what group, G or G°, we use to define it. Therefore, the matrix
elements of m|ge are matrix elements of w restricted to G® and hence have
compact support.

(4) = (2). It follows from 2.40 that K¢ = K, y N G° is compact. Let
g1, - - -, 8 be coset representatives of G/G°®+Z. Then it is clear that

k
. . KO0 :
K.yCZ (iL=Jlg,- K et ) is compact modulo Z.

To prove that (1) <= (2) we use the following lemma:

3.22. LEMMA. Let 8 < aand U = Ug(a). Let (m, G, E) € Alg G and
¢ € E. Then the following conditions are equivalent:

(1) £ € E(U).

(2) For any congruence subgroup N in G there is a number t = t(§ N)
such that w(en) (671t = 0 for all § € A, with t5(8) > t.

PROOF. (1) = (2). If £ € E(U), then by 2.33 and 3.6 there is a com-
pact subgroup K C U such that 7 (ex) £ = 0. If § € A, and #4(8) is large,
then §"'K8 C N, so that w(ex)w(67 1) = 7T(8N*85—1K0)7T(8 DE =
= T (ex*es1) M(ex)E = O (we have used 1.26).

(2) = (1). Let N be a congruence subgroup of G such that § € EV. We
consider the decomposition N = N'N°N~ associated with 8 (see 3.11). If
8 €Z, N A,, then N°87' = N® C stab £. If £5(3) is large, then
N6~ { C stab £ (see 3.9) and w(ey)m(6 1) = O, by hypothesis. Therefore,
0 = w(8)n(en)n(871)E = m(8)m (eny+ xenoven-) M(8 1) = w(esn+s-1)E, that is,
£ € E(U) (see 2.33).

3.23. We can now prove that (1) and (2) in Harish-Chandra’s theorem are
equivalent. If g = v,67,(7,,72 €T, 6 € A), then
m(ex)m(g ™ )E = m(y2")m(en)m(8 7 )m(v1')E, and hence the condition “K, y is
compact modulo Z” is equ1va1ent to the fact that K, yN A is compact
modulo Z for all vectors ¢’ in the finite set w(I"). Therefore it follows
from 3.22 and 3.10 that (1) < (2).

3.24. COROLLARY. If (m, G, E) is a cuspidal representation, then the
contragradient representation T is also cuspidal.

The proof follows from 3.21, because in this case E = (see 2.13) and

foranyEEEEEE Ewehavego&(g) ‘pfe(g ) g €G.

ADMISSIBILITY OF IRREDUCIBLE REPRESENTATIONS

3.25. THEOREM. Let G = G, and let (m, G, E) € Alg G be an
irreducible representation. Then w is admissible.
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PROOF. Using 3.19 and 3.13d), we may assume that 7 is quasi-cuspidal.

It follows from Harish-Chandra’s theorem that the restriction of 7 to G°
is finite. Therefore, by 2.41 and the following lemma, 7 is admissible.

3.26. LEMMA. Let (m, G, E) € Alg G be an irreducible representation.
Then m|go splits into the direct sum of finitely many irreducible
representations.

PROOF. By 2.9 and 3.20b), E = E; ® ... @ E;, where the E; are
irreducible G°-Z-modules. It follows from Schur’s lemma that the operators
n(z) for z € Z are scalar. Therefore, the E; are irreducible G°-modules, as
required.

3.27. COROLLARY. Let (n, G,, E) € Alg G, be an irreducible
representation. Then there exists a partition p = (n;, ..., n,) of n and
irreducible cuspidal representations (m;, G,,i, E) r(i =1, ..., r)such that 7

is embedded in the representation Ind(G,, Pg, ® m). (Here ® m; is the
i=1

representation of Gy = HGn,- constructed in 2.16, which we regard as a

representation of Pa by extending it trivially to Uﬁ.)
This corollary follows easily from 2.16, 3.19, and 3.25.

COROLLARIES OF HARISH-CHANDRA'S THEOREM

3.28. If = is a quasi-cuspidal representation of G, then m|g. is finite.
Therefore, we can use the results of 2.40-2.44 to show that cuspidal
representations can sometimes be “‘split off” from the rest.

PROPOSITION. Let G = G, let (w, G, V) be an irreducible cuspidal
representation, and let (m, G, E) € Alg G. Then E can be split into the
direct sum of submodules E = E| ® E, such that E, is quasi-cuspidal and
all its irreducible subfactor modules have the form Yw (see 2.25c)), where
Y is a character of G that is trivial on G°, and no irreducible subfactor
module of E, has this form.

PROOF. Let (w; G°% V;) (i = 1, ..., k) be the irreducible representations
occurring in the restriction of w to G° (see 3.26). Then they are finite
and, using 2.44a) several times, we obtain E = F; @ E,, where E, and E,
are G%submodules, E, splits into the direct sum of modules isomorphic to

Vi =1,..., k), and no subfactor submodule of E, is isomorphic to any
module V;. Under the action of any g € G, each w; is carried to the
representation ¥ (see 2.27), which is isomorphic to one of w;, ..., wg.

Therefore, E; and E, are G-submodules of E. It follows immediately from
the next lemma that they yield the desired decomposition.

3.29. LEMMA. Let (w, G, V) and (w', G, V') be irreducible algebraic
representations whose restrictions to G® have isomorphic irreducible sub-
modules. Then w' is isomorphic to Yw, where Y is a character of G that
is trivial on G°.

PROOF. The condition of the lemma means that the space
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W = Homge (V', V) is non-zero. By 3.26 and 2.11, W is finite-dimensional.
We define (r, G/G° W) by 1(g)4 = w(g)Aw'(g)™! (it is easy to verify that
this is well-defined). Since G/G° is commutative and W is finite-dimensional,
there exists an 4 in W that is an eigenvector for all 7(g). This means that
the operator A: V' - V satisfies the condition Aw'(g) = Y(@w(EIAE € G),
where Y is a character of G that is trivial on G°, that is, 4 € Homg(w', Yw).
Since A # 0 and since w' and Yw are irreducible, 4 defines an isomorphism
of w' and Yw.

3.30. PROPOSITION. Let (w, G, V) be an irreducible cuspidal and
(m, G, E) an admissible representation. We assume that V is a subfactor
module of E. Then there exists a submodule (and, similarly, a factor module)
of E isomorphic to V.

PROOF. (1) Using the decomposition £ = E, @ £, in 3.28, we may
assume that £ = E, is cuspidal and that its restriction to G° is completely
reducible.

(2) We first take the case when w(z) is a scalar operator for all z € Z.
Then E is a completely reducible G°+ Z-module, and since G°+Z has finite
index in G, E is completely reducible as a G-module (see 2.9). The required
assertion follows immediately from this.

(3) We now examine the general case. Let w(z) = 0(z)* 1}, where 6 is
a character of Z (see 2.11) and N is a congruence subgroup of G such that
VN # 0. We carry out the proof by induction on dim EV.

Using (2), we may assume that there is a z € Z such that
n(z) # 0(z) * 1g. Then the operator 4 = m(z) — 0(z) * 15 is non-zero and
commutes with the action of G. By hypothesis, ¥V is a Z-subfactor module
of EV, so that the restriction of A to E¥ is non-invertible. Let E' = Ker A
and E" = Im A = E/E’. Then one of E' or E" has a subfactor module
isomorphic to V. Since dim E'Y < dim E¥ and dim E"Y < dim EN, Vv
can be embedded in one of E' or E” and hence in E. Similar reasoning
shows that one of E” = E/E' or E” = E/E", and hence E, has a factor
module isomorphic to V.

REMARK. It follows from this proposition that a cuspidal submodule is
a direct summand of E. This is false for G, = F*.

§4. Some finiteness theorems

In this section we use the results of §3 to derive some finiteness
theorems. The line of reasoning is basically as follows. We split off from a
G-module E its cuspidal part and investigate it, restricting it to G°, where
it becomes finite. Next, with the help of the functors rg.o» Where § < q,
we reduce the study of the remaining part to the study of Gﬁ-modules.

HOWE'S THEOREM

4.1. THEOREM. Let G = G, and (m, G, E) € Alg G. Then the following
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conditions are equivalent:

(1) The G-module E has finite length (see 2.8).

(2) 7 is admissible and finitely generated.

It follows from 3.25 that (1) = (2). Howe (see [35]) proved that (2) =
(1). We present another proof, based on the methods of §3. To do so, we
need the following theorem.

4.2. THEOREM. Let (w, G, E) € Alg G and let N be a congruence sub-
group of G. We assume that the G-module E is generated by EN. Then
any G-submodule E' C E is generated by E'N = E' N EV .

4.3. From 4.2 we deduce that (2) = (1) in Theorem 4.1. Let N be a
congruence subgroup of G such that E is generated by E¥. By hypothesis,
dim E¥Y <o If0=E, S E, $...S E; = E is a chain of G-modules
in E, then by 4.2, 0=E¥ S EN S ... S EY = EN. Therefore,

k < dim EV, so that ! (E) < dim EV (see 2.8).

44. PROOF OF THEOREM 4.2. The conclusion of the theorem is
equivalent to the fact that ¥V 0 for any non-zero subfactor module
(w, G, V) of E. By 2.6, we may assume that V is irreducible. We examine
two cases.

CASE 1. V is cuspidal. We represent E in the form £ = E; @ E,, as
in 3.28. Here E; # 0, since V is a subfactor module of E. Let p: E~> E,
be the projection. Then EY = p(EV) generates E, as a G-module. Suppose
that 0 # ¢ € EV, that E' is the G-submodule of E, generated by &, and
that V' is an irreducible factor module of E'. It is clear that V'Y = 0. But
it follows from the properties of E; Igsee 3.28) that V' and V are iso-
morphic as G%modules. Therefore, ¥~ # 0.

CASE 2. V is not cuspidal. We choose 8 3 « so that 7z ,(w) #* 0, and
we set P = Py(a), U = Ug(a), and N =NN G;. It follows from 3.13a)
that (ra’a(w), Gﬁ, Vy) is a subfactor module of (’3,a(77)» GB' Ep).

By hypothesis, £ is the linear span of the set
#(G)EN = n(P)r(D)EY = n(P)EY (G = PT by 3.6; n(T)EN = EV, since T
normalizes N). Therefore, Ey; is generated by (EU)NO.

Using induction, we may assume that the conclusion of the theorem has
been proved for B. Therefore, (VU)No # 0. Since (VU)Nn is generated as a
ZB-module by the image of VN under the projection ¥V = Vi (see 3.16),
we see that VN # 0.

4.5. REMARK. Theorem 4.2 is no longer true if N is replaced by a
maximal compact subgroup TI'.

EXAMPLE. n = 2, = ind(Gz, P(l,l)’ 1) = ind(Gz, P(l,l)’ AG,/AP(I,I)
(see 3.5).

ESTIMATE OF THE DIMENSION OF EV

4.6. Let G = G,, N a congruence subgroup of G and
HBy = ey« FB(G)+ ey (see 2.10). Using 2.10, we can restate Theorem
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3.25 on the admissibility of irreducible representations as follows:

Corollary of 3.25. Every irreducible representation of Jd#8y is finite-
dimensional.

It turns out that this assertion can be strengthened.

4.7. THEOREM. Let G = G, and let N be a congruence subgroup of G.
Then there exists a number s(G, N) such that the dimension of any
irreducible representation of & y does not exceed s(G, N).

This follows from Howe’s results (see [36]). We present here the simpler
proof, which is in [2]. In the remaining part of this section we deduce
from this theorem several interesting corollaries on the structure of the
representations of G.

4.8. COROLLARY. If (n, G, E) € Alg G is an irreducible representation,
then dim EV < (G, N).

4.9. PROOF OF THEOREM 4.7. We first describe the structure of d#x.
If g € G, then weset g =eyxggxey € Hy.

LEMMA. a) Let v; (i = 1, 2, cs p) be coset representatives of
I'/N (= N\T). Then the elements v * 5 * 'y], where i, j = 1, ..., p and
8 € A (see 3.4), generate Hx as a linear space.

b) If 8,, 6, € A, then §,8, = 8, * §,.

The following description of &y is a consequence of this lemma. We
denote by £ the subspace of ¥y generated by the elements §(8 € A).
We choose generators 8;, ..., §; in A (it is easy to see that there are
finitely many of them), and we set q; = <$—i(i =1,...,0D. Then o+ is the
commutative subalgebra of #y generated by the ;i = 1, , 1) and the

unit element, and 4y = E Y x A % 7] In particular, & 5 is finitely
ij=1

generated.

PROOF OF THE LEMMA. a) It is easy to verify that
supp (v; * 5 * ) = N(v;8v;,)N. By 1.27, the restriction of any
distribution & € H x to this set is proportional to 7v; * & * ')7] Since the
sets N(7,87])N exhaust all the cosets of N\ G/N (this follows from the
gartan decomposmon see 3.2), ¥ 5 is generated by the distributions

v, * 8 = v

b) By 1. 27 it suffices to prove that supp (6, = 8,) C N(8,6,)N, that is,
N& N6,N C N§ 8, N (see 1.24). We consider the decomposition
N = N"N°N" associated with the smallest partition 8 = (1, 1, ..., 1) (see
3.11). It is easy to verify that §, N°67! C N7! and §;'N°N*6, C N°N*,
hence N6,N§,N = N(§, N )YN°N*8,)N C N§,8,N.

4.10. We used a lemma from linear algebra.

LEMMA. Let V be an m-dimensional space over C and 92 C End V a
commutative subalgebra generated by I elements a,, ..., a; (and the unit
element). Then dim ®# < f,(m), where fi(m) = m221!

4.11. We now deduce Theorem 4.7 from this lemma. Let p:#y — End V
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be an irreducible representation of &y in V. By 4.6, dim V < o, Let
dim ¥V = m. As follows from Burnside’s theorem (see [5], Ch. VIII, §4),
p(FBy) coincides with End V, that is, dim p (#y)= m?. It follows from
4.9 and 4.10 that dim p(#)< f;(m), and from

p
HBy= 2 1’7,. * A * :)7, that dim p(Fn)< p?dim p(A). Thus,
L J=
m? < p?m?*? ', that is; m is bounded by s(G, N) = pzl.

4.12. PROOF OF LEMMA 4.10. (1) Reduction to the case when all the
operators @; are nilpotent. We claim that V can be split into the direct sum
of % -invariant subspaces such that g; in each of them is the sum of a
scalar and a nilpotent operator. To see so, we reduce a, to Jordan form
and combine the blocks corresponding to the same eigenvalues. So we obtain
a decomposition of V into the direct sum of % -invariant subspaces. De-
composing each of these by means of a,, then a3, etc., we obtain the
required decomposition into a direct sum.

Since f; is convex, that is, f(m, + ...+ my) 2 fi(m)+...+ fi(my),
it suffices to prove the lemma for each subspace. Subtracting the scalar part
from a;, we may assume that each g; is nilpotent.

(2) Let ¢;(m) be the largest possible dimension of % subject to the condition
that a,, ..., g; are nilpotent. We claim that

(x) g (m) < ¢, (Im — g (m)/m}) + ¢._; (m).
Since fi(m) 2 f; (Im — fi(m)/m]) + f;_{(m), the lemma follows from (x)
by induction on ! and m.

Let J be the ideal in # generated by a;, ..., 4. J is a power of
#,and V¥ =J*V. Then V= V2 D V1 D ... DV" =0.

Let L be a complementary subspace to ¥! in V, and let s = dim L. It
is clear that J*L generates ¥* modulo V**1, so that ZL= V. Hence each
a € # is defined by its value on L (because a(Z b;t; = Z b(af;),

b; € £ & € L). Therefore, dim &£ < s *m, and if we assume that dim %
is maximal (that is, dim % = ¢;(m)), then s = g;(m)/m. We denote by R’
the subalgebra of & generated by a,, a3, ..., ¢; and by &'’ the ideal

a, # C ®. Itis clear that £ = R + &'’ and that dim &' < ¢,_(m).
Since @, (V) C V!, dim &'’ does not exceed the dimension of the
restriction of & to V!, that is, dim &' < g(dim V!) = g(m — 5) <

< g(Im — ¢ (m)/m]). Therefore, 9,(m) = dim £ < dim &' + dim £ <
< g([m — ¢ (m)/m]) + ¢,_(m), as required.

4.13. REMARK. Estimates analogous to those in 4.7 and 4.8 are also
valid for G® and & n(G°). For suppose that (w, C° V) € Alg G is
irreducible. We set 7 = ind(G, G°, w). Since G° is an open normal sub-
group of G, it follows from the explicit construction of n (see 2.22) that
Tlge = @ ¥, where g ranges over a set of coset representatives of G/G¢,
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and «? is defined in 2.27. Therefore, taking any irreducible subfactor
representation (w', G, V') in m, we find that w occurs in w'jge, so that
dim VN < dim V¥ < s(G, N).

FINITENESS OF THE NUMBER OF CUSPIDAL REPRESENTATIONS

4.14. THEOREM. Let G = G, and let N be a congruence subgroup of
G. Then G° has only finitely many non-isomorphic finite irreducible
representations w such that w(ey) ¥+ 0.

4.15. COROLLARY. Let N be a congruence subgroup of G and 0 a
character of Z. Then G has only finitely many non-isomorphic irreducible
cuspidal representations (w, G) such that w(ey) # 0 and w(z)=0(z) - 1,
for all z € Z.

This corollary is deduced from 4.14 with the help of 3.20b), 3.21, and
3.29.

4.16. PROOF OF THEOREM 4.14. We call an irreducible representation
w of F x = F8 x(G°) finite if it corresponds to a finite representation of
G in the sense of 2.10. We have to show that &% y has finitely many such
representations, up to isomorphism. By virtue of 4.13, the dimensions of
the irreducible representations of & y are bounded. Therefore, we may treat
representations of a fixed dimension s.

Let M = M(s, C) be the algebra of matrices of order s over C. We denote
by W the set of algebra homomorphisms w: &y > M. Let by, ..., b,
be generators of & y (it can be proved, exactly as in 4.9, that &#  is
finitely generated). Then the mapping w ~ (w(b,), ..., w(b;)) defines an
embedding of W into the linear space M* = M X ... X M.

Let w be a finite irreducible s-dimensional representation of &4, ,

en € I y the distribution constructed in 2.42, and P¥ Gy, ooy X)) a
non-commutative polynomial such that P (b;, ..., b;) =ex. We denote
by Q% the polynomial function on M* defined by Q¥ (x,, ..., Xg) =
=tr PY(xy, ..., Xg), X; € M. It is clear from the definition of sy that

for w € W the condition Q“ (w) # 0 is equivalent to the fact that the
representation w: & y > M is isomorphic to w.

In the ring of polynomial functions on M* we consider the ideal J generated
by the functions g% for all finite s-dimensional representations w. By
Hilbert’s basis theorem (see [25], Ch. VI, §2), this ideal is generated by
finitely many functions Q%“:, ..., Q%! Let w € W be a finite irreducible
representation. Then Q% (w) # 0 and Q¥ € J. Therefore, Q%i(w) # 0
for one of i = 1, ..., . But this means that w is isomorphic to w;. Thus,
each s-dimensional finite irreducible representation of & , is isomorphic to
one of wy, ..., wy, as required.

THE SPLITTING OFF OF THE QUASI-CUSPIDAL REPRESENTATIONS
4.17. THEOREM. Let G = G, and (m, G, E) € Alg G. Then E can be
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split into the direct sum E = E, ® E so that E, is quasi-cuspidal and E:
has no non-zero quasi-cuspidal subfactor modules. Obviously, this decom-
position is unique.

PROOF. We consider the restriction of m to G° and define
w(e?): E > E by

n(sc)§=§n(e<°)§ E€E),

where the sum is taken over all non-isomorphic finite irreducible
representations of G° (see 2.43). Since each ¢ € E is invariant under some
congruence subgroup N, by Theorem 4.14 only finitely many terms in this
sum are non-zero. Using 2.43 and 3.21, we can easily verify that = (e°) is
a projection and that the spaces E, = Im w(¢°) and E. = Ker = (e°) satisfy
the required conditions.

4.18. EXAMPLE. We identify S(G) and J#(G) by means of the Haar
measure u; (see 1.30), and we consider the regular representation
(7. G, S(G)). In this case S(G), coincides with the space of parabolic forms
on G. (A function f € S(G) is called a parabolic form if for any non-trivial

horospherical subgroup U and any g,, g, € G, tg fg ugy) duyu) = 0;

see [33].) It is clear that S(G), is a two-sided ideal in S(G) = FH(G) and
Theorem 4.17 states that there exists a complementary ideal S(G)t such

that S(G) = S(G), © S(G):. It is easy to show that

S(G)é ={h € S(G) =H(G)| w) = 0 for all cuspidal representations w}.

FINITELY GENERATED G-MODULES ARE NOETHERIAN

4.19. THEOREM. Let G = G,. Then any finitely generated module
(n, G, E) € Alg G is Noetherian.

Let us recall that a module E is called Noetherian if any submodule of
E is finitely generated, or, equivalently, if any ascending chain of submodules
E, C...CE, ...ofE stabilizes (see [25], Ch. VI, §1).

PROOF. We consider the decomposition E = E, ® E} in 4.17. It is clear
that E, and Eé are finitely generated. Therefore, it suffices to examine
two cases: E = E, and E = E}.

CASE 1. E = E_, that is, E is quasi-cuspidal. Since G°+Z is a subgroup
of finite index in G, E is finitely generated over G°+Z. Let & C E be a
finite set of generators of £ as a G°+Z-module.

Let N C G be a congruence subgroup such that @ C EVN. If E' is a
G-submodule of E, then by 4.2 it is generated by E'N = E' N EV,
Therefore, it suffices to show that this space is finitely generated. We claim
that it is finitely generated even over Z’' = Z N A (see 3.2).

It is clear that Z' is a finitely generated discrete Abelian group; that is,



Representations of the group GL(n, F), where F is a non-Archimedean local field 43

HB(Z') is finitely generated and commutative and hence Noetherian (see
{251, Ch. VI, §2). Therefore, finitely generated Z'-modules are Noetherian,
and it suffices to verify that the Z'-module EV is finitely generated.

We denote by V the G%submodule of E generated by Q. Since m|go is
finite (see 3.21), ¥ is an admissible G%module (see 2.41), so that
dim V¥ < eo. It is easy to see that G®+Z = G°-Z’', so that EV is generated
by the vectors (e y)T(z)T()E = ()W NNt (z EZ', g € G°, £ € Q);
that is, the Z'-module £V is generated by the finite-dimensional space V¥,
as required.

CASE 2. E = Ef, that is, £ has no non-zero quasi-cuspidal subfactor
modules. We assume that there exists a strictly ascending infinite chain of
G-submodules £y S E, S ... S5 E, S ... in E. For each i the module
E;.,/E; is not quasi-cuspidal, so that there is a partition § = f; £ @ such
that (£, {/E)y ) # 0. Suppose that B = B; for infinitely many indices i
and that U = Us(a). By 3.13a), (E\)y C (Ey)y C ... C(E)y ... is an
ascending chain of submodules in £y, where (£, | )y/(E)y = (Eji/EDy 0
for infinitely many indices i; that is, the G;-module Ey; is not Noetherian.
Since it is finitely generated (see 3.13e)), induction on partitions completes
the proof.

4.20. COROLLARY. For any congruence subgroup N C G the algebra
&8 i is finitely generated and Noetherian.

It was proved in 4.9 that &% 5 is finitely generated, and by arguments
analogous to those in 2.10 it can easily be deduced from 4.19 that it is
Noetherian.

UNITARY AND ALGEBRAIC REPRESENTATIONS OF THE GROUPS G,

4.21. Let G = G, N any congruence subgroup of G, and s = s(G, N).
Then, as follows from 4.7 and 2.12, for any non-zero 2 € &# y there is a
representation (p, V) of #x such that p(h) # 0 and dim ¥V < 5. The
following theorem can be deduced from this fact and results of Godement
[17}:

THEOREM. a) Let © be a continuous unitary representation of G = G,
in a Hilbert space E. We assume that w is topologically irreducible, that is,
E has no closed G-invariant subspaces. Let (m,, G, E,) be the algebraic
part of w (see 2.1). Then m, is admissible and irreducible.

b) If (n, G, E) and (n', G, E’) are representations of the type described,
then m, and (ﬂ')a are isomorphic if and only if m and ©' are unitarily
equivalent.

c) Let (m, G, E) € Alg G be an irreducible representation, and suppose
that a G-invariant, positive-definite, Hermitian scalar product {,} is defined
on E. We denote by i the representation of G in E obtained from E by
completion with respect to the norm || ¢ || = {E,E}%. Then # is topologically
irreducible, and E, = E.
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Since unitary representations are beyond the scope of our exposition, we
do not prove this theorem.

CHAPTER III
THE GEL’FAND-KAZHDAN THEORY
§5. Non-degenerate representations

THE GROUPS P,, M,, AND U,

ne

5.1. In this chapter we present another approach to the study of
representations of GL(n, F), which is due to Gel’fand and Kazhdan (see
[13], [14]). We need the following subgroups of G = G, = GL(n, F):

P=Pn={(pij)EG|pnj=0forj<napnn=1}9
M =M, = {(m;;) €EG | my = §;; for j<n, my, =1} P,
U=Un={(uij)EG|ui,-=0 fori>j,ui,-=1}CP.

The method of Gel'fand and Kazhdan consists in studying the
restrictions of irreducible representations of G to P. It turns out that the
restriction of “almost all” irreducible representations is isomorphic or
“almost isomorphic” to a standard irreducible representation of P.

5.2. We denote by G’ the group G,_;. We assume that G’ is embedded
in 2 C G in the standard way as the group of matrices of the form (g;;),
where g,; = g;, = 0 for i # n and g,, = 1. We shall study the subgroups
P=P _,and U =U,_; of G".

It is clear that M is a normal subgroup of P and that P = G'*M and
U = U'*M (both products are semidirect). M is isomorphic to
Fr"l=FX FX...XF.

5.3. We recall how the characters of F¥ are constructed. We fix a non-

trivial additive character Y, of F. If a = (a,, .. ak) € F*, then we
define a character y, of F¥ by Y,(x) = t]/o(alxl Lo F akxk) where
x=(xy, ..., X)) € FF. k. We denote by F* the group of characters of F¥.

Then the mapping a = Y, defines an isomorphism of F¥ and Fk (see [10],
Ch. II, §5). This isomorphism defines an I-space structure on F*. ok

By the Fourier transform of T € S;(F¥) (see 1.10), we mean the
function T € C=(F*) defined by T(0) = (T, 0)(0 €F*) (see 1.11). It is

clear that (T, * T,) = T L T2 (pointwise multiplication).

LEMMA. a) The mapping h - h defines an isomorphism of &8(F*) and
S(FF).

b) If N is an open compact subgroup of F¥, then the Fourier transform
ey Is equal to the characteristic function of some open compact subgroup
N C F*,

¢) U N = Fk_ In particular, F¥ and F* .exhaust the compact subgroups

N
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(see 2.33) (see [10], Ch. VII, §2).

5.4. Using 5.3, we can easily describe M. We define © € M by
&(my)) = Yolmy_y p)-

LEMMA. Any non-zero 0 € M is conjugate to © under the action of
G CP (see 2.27). The normalizer of © in P is equal to Normp
(M, ©) = P'*M (we recall that Normp(M, ©) ={p € P|O(m) = 6(m) for
allm EM}) In particular, M\ {1,,} = P'"*M\P=~P\G'.

5.5. We now describe the characters of U = U,.

LEMMA. Each character 0 of U has the form 9((“1';)) =

n-1

= \po(i=21 aju;;v1 ), where a; € F (notation: 6 = 6(a,, ..., a,_1)).

PROOF. It can be verified directly that the mapping U - F"~1,

(u”) - (ul 25 - e Up_q, ») determines an isomorphism of the commutator
factor group of U with Fr-1, Therefore, the lemma follows from 5.3.

5.6. DEFINITION. A character 6 = 0@@,, ..., a,_;)of Uis called non-
degenerate if all the a; are non-zero, and degenerate otherwise.

We set ® = 6(1, ..., 1). It is clear that any non-degenerate character 0
is conjugate to © under the action of D N P, where D is the subgroup of
diagonal matrices in G. In addition, ®/M is the same as the character ®
defined in 5.4.

5.7. DEFINITION. a) The representation (r, G, L(G, ®)) = Ind(G, U, ©)
(see 2.21) is called the standard representation of G = G,. We denote the
restriction of 7 to S(G, ®) C L(G, ®) by 7°(¢° = ind(G, U, ©); see 2.22).

b) An algebraic representation (7, G, E) is called non-degenerate if one
of the following two equivalent conditions hoids:

(1) Homg (m, 7) # O;

(2) Ey ¢ # 0 (see 2.30).

The definitions of the standard representation 7p = Ind(f, U, ©),

1'?, = ind(P, U, ©), and non-degenerate representations of P are completely
analogous.

Representations of G (or P) that are not non-degenerate are called
degenerate.

5.8. PROPOSITION. All subfactor representations of a degenerate
representation are degenerate.

This follows immediately from 2.35 and 3.6.

REPRESENTATIONS OF M = M,

5.9. As follows from 2.5, Alg M consists of the modules (7, ﬁ) over
&8 (M) such that m(FE(M))-E = E. We identify H(M) with S(M) by the
Fourier transform (see 5.3). Then E is an S(M)-module, where S(M)E E.
But, as follows from 1.14, to this module there corresponds a unique
Isheaf & on the l-space M such that E and &. are isomorphic as S()-
modules. Thus, the category Alg M is the same as that of I-sheaves on M.
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5.10. LEMMA. Let 6 € M. Then under the isomorphism A: E > &; in
5.9 the subspace E(M, ) is mapped isomorphically onto the space &(8) of
cross-sections in &. that are equal to 0 at 6. In particular, Ep , =~ &e
(the stalk of & ar 0).

PROOF. It suffices to consider the case 8 = 1 (see 2.31a)). It follows
from 5.3 and 2.33 that A(E(M)) = {¢ €8 | %5*¢ = O for some open
compact subgroup N C M}. Since &(1) = {y € &1 f(1) # 0 and
f+¢=0 for some f € S(M)} (see 1.14), our assertion follows from the
fact that k,J N=M (see 5.3¢)).

REPRESENTATIONS OF P

5.11. We now make a detailed study of the representations of P = P,.
It turns out that each such representation 7 can be decomposed into a
subrepresentation 7’ connected with P’ and the factor representation w/7’
connected with G'. This decomposition makes it possible to study the
representations of P inductively. It is accomplished with the help of the
functors -, ®*, ¥~ and ¥*.

DEFINITION. a) Let (w, P, E) € Alg P. We denote by ®7(7) the
representation of P’ in Ey o = E/E(M, ©) (see 2.31b) and 5.4).

b) Let (r, P', V) € Alg P’. We set ®*(7) = ind(P, P' M, 7') € Alg P,
where (7', P'- M, V) € Alg (P'* M) is defined by 7'(pm)¢t = O(m)7(p)¢
meM peP, sV

c) Let (m, P, E) € Alg P. We denote by ¥~!(x) the representation of
G'in Epy = E[E(M, 1).

d) Let (o, G', V) € Alg G'. We define (¥*(p), P, V) € Alg P by
¥(p)em) = p(g), g € G, m € M.

5.12. Let us describe the properties of ®~, ®*, ¥~, and ¥".

PROPOSITION. a) The mappings ©# = ®~(n), 7 = ®*(r), 7 > ¥ (m),
and p = V*'(p) define functors ®: Alg P - Alg P’

&' Alg P' > Alg P, ¥™: Alg P~ Alg G, and ¥*: Alg G’ > Alg P. These
functors are exact.

b) & is left-conjugate to ®~; that is, for any n € Alg P and v € Alg P'
there is an isomorphism

(*) Homp (O* (1), «) = Homp: (1, O~ (n)),
which depends functorially on w and 1. Similarly, ¥~ is conjugate to V",
that is, for m € Alg P and p € Alg G’ there is an isomorphism

(++) Homp, (, ¥* (p)) = Homg- (¥~ (), p),
which depends functorially on ™ and p.

c) ¥ = 0 and ¥ & = 0.

d) By b), the morphisms
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ir ®*O (n)—>mn, it T OO (1),
j: n > (n), ' Y (p)—>p

are defined (i corresponds to the identity P-morphism & (m) > ®7(x) in
(*), and i’ corresponds to the identity P-morphism ®'(r) > ®'(7);
similarly, j and j' correspond to the identity morphisms ¥~ (w) - ¥7(w)
and ¥*(p) = ¥'(p) in (x*).

Then i' and j' are isomorphisms, and i and j form an exact sequence

0 - O*D-(n) —x — ¥ *+¥=(x) —0.

e) For m € Alg P the condition ®(n) = 0 is equivalent to the fact
that m|y is the identity.

f) If T € Alg P', then ®" and &~ establish a bijection between T and
®*(7). In particular, T and ®*(r) are irreducible simultaneously. The same
is true for p and ¥*(p), p € Alg G'.

g) ®'(19.) = 15 and (D) =

PROOF. It is obvious that ®~, &', ¥~, and ¥" are functorial. It follows
from 2.25, 2.35, and 5.3c) that they are exact.

b) (1) Let (m, P, E) € Alg P. By 5.9, E can be realized as the space of
finite cross-sections of some J-sheaf & = & (w) on M, where

*) n(m)e(0) = 6(m)e®), mE M, 06 M, 9€& ~ E

It is easy to verify that =, together with the natural action v of P on M
(see 2.27), defines an action of P on &€ (see 1.17). It follows from 5.9
that this realization of # is unique.

(2) By 5.4, v has two orbits: the closed orbit Z consisting of the identity
character and the open orbit Y = M\ Z. It follows from 5.10 that the
representation 7% = 7| $.(¥) Is isomorphic to the restriction of 7 to E(M, 1).
Moreover, the stability subgroup of ® € Y in P is P'M, and the representation
of this subgroup in the stalk €e over this point is isomorphic to ®(r)’

(see Definition 5.11b)). Therefore, by 2.23, we have the natural isomorphism
&'®~(n) = ind(P, P'M, ®(x)") =~ #°. In particular, to each morphism
T > ®&7(m) there corresponds a morphism ®*(7) > ®*®~(n) » 7.

(3) We now ascertain what sheaf & corresponds to the representation
®*(r) = ind(P, P'M, 7'). This representation is realized in S(2, 7') (see
2.22), which, by 2.23, can be identified with the finite cross-sections of
some [-sheaf &' on P’PM\P ~ Y. Here, if f € S(P, ') and m € M, then
(m(m)N(p) = flpm) = fPm-p) = O m)f(p) = O (m)-f(p). Therefore, if we
look at the sheaf & on M obtained from F’ by attaching the zero stalk
over 1 € M then P acts on this sheaf, and an action of M is defined by
(*) in (1). Hence % corresponds to ®*(r). Looking at the stalk of this
sheaf at ®, we obtain a natural isomorphism 7 - ®~®*(7). In particular, to
each morphism ®*(7) = = there corresponds a morphism
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T > & ®(r) > & (m).

(4) It is easy to verify that the morphisms constructed in (2) and (3)
are inverses of one another. They also specify that & and ®~ are conjugate.
It can be established directly that ¥~ and ¥ are conjugate.

c) Since ¥'(p)|y, is the identity, ®"¥*(p) = 0. As shown in the proof
of b), the stalk of the sheaf & corresponding to ®*(7) is equal to O at
1 € M. But, by 5.10, this means that ¥~ ®*(r) = 0.

d) That i’ is an isomorphism has been verified in the proof of b) in (3).
It is obvious that j' is an isomorphism. As shown in the proof of b), the
morphism i: ®"®*(7) - n coincides with the embedding 7° — 7, where
7 = T g1y - It is clear that n/a® ~ ¥*¥(r), where the isomorphism is
defined by j.

e) The condition that |y, is the identity is equivalent to the fact that
j: m = ¥ () is an isomorphism. Since ®*(r) # 0 for 7 # 0, it follows
from d) that this is equivalent to the condition ® (7)) = 0.

f) If # = ®'(7), then for any subrepresentation #’ C = we have
¥ (n') = 0, so that ®'®~(x') = #'. Similarly for representations of the form
¥*(p). Therefore, f) follows from d).

g) It is easy to see that (T°) = ind(®'M, U, ©). Therefore, &* (TP) =
= ind(P, P'M, (T ') = ind(®, U ®) = -rg because mducement is transitive
(see 2.25b)). It now follows from d) that &~ (‘r,,) = r,,,

5.13. COROLLARY. a) Let 1 < k < n and suppose that p € Alg G, is
irreducible. Then the representation (®*Y'~*~1W*(p) € Alg P, is irreducible.!
In particular, 1p = (DY ~1W*(1) is an irreducible representation.

b) Any irreducible representation m € Alg P, is isomorphic to one of the
representations constructed in a), and k and the isomorphism class of p
are defined by m.

PROOF. a) follows from 5.12f) and 5.12g). The existence of k¥ and p
for 7 in b) is proved by induction on »n because, by 5.12d) and f), either
7 = ®*(1), where 7 € Alg P’ is irreducible, or 7 = ¥*(p), where p € Alg G’
is irreducible. The uniqueness of k¥ and p follows from the fact that
W (@Y Y(a)=0fori# kand = p fori = k.

5.14, COROLLARY. Let (w, P, E) € Alg P, E # Q. Then there is a
character 0 of U such that Ey; o # 0.

PROOF. By 5.12d), either o (m) # 0 or ¥~ (n) # 0. If E' # 0 is the
space of the corresponding representation, then, using induction, we can
find a character 8’ of U’ such that Ey-, # 0. We continue 6' to a
character 6 on U, by setting 8|y = © in the first case and 6|y = 1 in
the second. Then Ey , = Ey-, # 0, by 2.32.

5.15. Let (n, P, E) € Alg P. We set m; (<I>")’(<I> )(m). Using 5.13, we
can easily construct embeddings 7,_; C 7,_, C...C m; C my = 7. Thus,

ot o o'
1 By (@)™ we mean the functor composition Alg 7= Alg Py = ... = AlgPpy,.
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with each 7 there is connected a filtration by P-submodules, depending
functorially on .

We are mainly interested in the submodule m,_; C m, which is the
“completely non-degenerate” part of m. We denote it by 7,

It is easy to deduce from 2.32 that the representation ($~ Y-y of
P, = {e} is realized in Ey - In particular, the condition for 7 to be
non-degenerate is equivalent to the fact that (®7)*~1(m) # 0 or that
7@ # 0. Here 7™ is isomorphic to the direct sum of dim Ey o copies of
the irreducible representation 'r°(- (®*y"~1(1)). Furthermore, it is clear
that (&)~ (w/n") = (@Y~ 1(1r)/(cr> Y~ 1(a™) = 0; that is, n/7™ is a
degenerate representation.

Thus, the irreducible representation T?, of P is “‘semi finite”: a finite
irreducible representation always splits off as a direct summand (see 2.44;
it can be shown that this property is equivalent to finiteness); but, in
general 79 is only a submodule.

PROPOSITION. Let (n, P, E) € Alg P.

a) The following conditions are equivalent:

(1) n ="

(2) For any non-trivial horospherical subgroup U, (see 3.5), EUB = 0.

(3) For any degenerate character 6 of U, Ey; , = 0.

b) Any P-homomorphism TP > Tp s proportzonal to the standard
embedding.

Q) If m Crpand m # 0, then wd = 73, In particular, 7§ C 7 and /1)
is degenerate.

PROOF. a) (1) = (2). We may assume that 7 = 73. In addition, we may
assume that § has the form (k, n — k). If kK = n — 1, then U = M and
EU 0, since ¥ !'(7r) = 0. Let k <n—1 and let g’ = (kn—-k—l)be
a partmon of n — 1. Let P° be the subgroup of P consisting of the matrices

= (p;;) for which p;; = §; if i <k orj <k P% can be naturally
identified with P,_,. We consider the representation 7 of P® in E, . We
then have (EU Moo (EM )U = 0 by the inductive hypothesis, because
¢~ (m) = Furthermore, (EU e = (Ey )U = 0, because Ey = 0. Hence
d(r) = O and ¥~ (1) =

By 5.12d), 7 = 0, that is, Euﬁ = 0.

(2) = (3). It is clear that for any degenerate character 6 of U there is
a partition § such that U, # {e} and B'”ﬁ = 1. Therefore, from EUﬁ =0
we obtain £y, = 0.

(3) = (1). Let (', P, E') = m/x™. Then Fy; g = 0, and hence, by 5.6,
EU o = 0 for all non-degenerate characters 8. On the other hand, by
hypothesis, E;; , = O for all degenerate characters 6 (we use the fact that

the functor E = E , is exact). Therefore, it follows from 5.14 that
E'=0.
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b) Let E be the representation space of rf,. By Frobenius duality and the
definition of 7p, Hom (1'?,, Tp) = (EU,@)*. But dim EU.e = dim (@’)”‘l(rg) =1
by 5.12g). It follows that Hom (73, 7p) = C.

¢) By definition, 7 is non-degenerate, that is, 7@ # 0. Now 7™ is iso-
mgrphico to the direct sum of the -r}’,. It follows directly from b) that
e = Tp-

WHITTAKER’'S MODEL

5.16. THEOREM. Let G = G, and let (n, G, E) be a non-degenerate,
irreducible, admissible representation. Then dim Ey , = 1 for any non-
degenerate character 6 of U.

This theorem will be proved in §7.

5.17. COROLLARY. Under the conditions of 5.16, there exists a unique
T-invariant subspace W, C L(G, ©) such that t|y is equivalent to © (see
2.28 and 2.30). We call this realization of « Whittaker’s model (see [23],
Theorem 2.14).

KIRILLOV'S MODEL

5.18. Let (m, G, E) be a quasi-cuspidal representation. Then 7 is non-
degenerate and |, is isomorphic to the direct sum of the 'rg. If nis
cuspidal and irreducible, then |p = 7.

The proof follows from Proposition 5.15a) and Theorem 5.16.

5.19. COROLLARY. Let (n, G, E) be an irreducible cuspidal
representation. Then there exists a unique realization © in S(P, ©) under
which P acts by right translations. It is called Kirillov’s model of © (see
[23], Theorem 2.13).

5.20. The concept of Kirillov’s model can be generalized for non-
degenerate, admissible, irreducible representations of G; that is, they can
be realized in function spaces “smaller” than L(G, ©). Let us make the
question more precise.

Suppose that (7, G, E) satisfies the conditions of Theorem 5.16. It
follows from 2.28 and 5.16 that there exists one and, up to a factor, only
one non-zero operator 4,: E - L(P, ©) that commutes with the action of
P.

Let us define A, more explicitly: if W, C L(G, ©) is Whittaker’s model
of m (see 5.17), then A, associates with each function in W, its
restriction to P.

THEOREM. A, is an embedding.

This theorem can be stated differently. Let ¢ C 7|p be the represent-
ation constructed in 5.15. It follows from 5.15 and 5.16 that 7 ~ ‘r?,
and that A_|.nd is a non-zero multiple of the standard embedding. Hence it
is clear that Ker A, can be characterized as maximal degenerate subrepres-
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entation of 7|p, and the theorem can be restated as follows: all non-zero
subrepresentations of the restriction of 7 to P are non-degenerate.

The theorem was stated by Gel’fand and Kazhdan as a conjecture in
[13] and [14]; A proof by the authors of the present article will be
published soon.

We leave to the reader as a useful exercise the verification of the
theorem for n = 2.

G, AND P, ARE MODULES OF FINITE LENGTH

5.21. THEOREM (Kazhdan). Let G = G,, (7, G, E) € Alg G an
irreducible representation, and 0 an arbitrary character of U. Then
dim Ey , < n!.

This theorem will be proved in §7, but we present some of its
corollaries here.

5.22. COROLLARY. Let (v, G, E) € Alg G. Then the following
conditions are equivalent:

(1) 7 has finite length.

(2) m|p has finite length.

(3) dim Ey 4 < oo for all characters 6 of U.

PROOF. It follows from 5.21 and 2.35 that (1) = (3), and it is trivial
that (2) = (1).

Let us prove that (3) = (2). It is easy to see that each character of U

is conjugate to 8(a,, ..., a,_,) under the action of P, where all the g;
are equal to 0 or 1 (see 5.5). We denote the set of these 2"~ characters
by 2.

We set

d(ﬂ) = 2 dim EU,B < o0,
e

if
0=E0§E1§"'5Eh=E

is a chain of P-submodules and w; is a representation of P in E/E; ;, then
k

by 2.35 d(w) = 'Eld(rr,-) and by 5.14 d(m;) =2 1. Hence k < d(m), which
i=

proves (2).

5.23. COROLLARY. Let (m, P, E) € Alg P. Then the following
conditions are equivalent:

(1) 7 has finite length.

(2) dim Ey 4 < oo for all characters 6 of U.

PROOF. The fact that (2) = (1) is established by the arguments in 5.22.
Let us prove that (1) = (2).

We may assume that = is irreducible and that § € . Then
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Eyo = (Eyolye- Since O = 1 or O, it suffices to verify the assertion for
the irreducible representations ® () € Alg P’ and ¥~ (r) € Alg G'. For
W¥~(r) it is proved in 5.22, and for ®7(w) it is proved by induction.

REPRESENTATIONS OF G, = GL(2, F)

5.24. In conclusion, we apply the results of this section to the case
n=72

PROPOSITION. a) P, has a unique irreducible non-degenerate representation
‘rg (see 5.7). All degenerate irreducible algebraic representations of this group
are one-dimensional.

b) If (m, G,, E) is an irreducible non-degenerate representation and
A E > L(P,, ©) is the operator constructed in 5.20, then
A, (E) O S(P;, ©) and dim A, (E)/S(P,, ©) < 2.

PROOF. a) follows from 5.13.

b) It follows from 5.15 that A (E) D S(P;, ©) and from 5.16 and 5.21
that the number d(w) constructed in 5.22 does not exceed 3. It is clear
from the arguments in 5.22 that the length of the composition series of the
restriction of n to P, does not exceed 3. But all the composition factors
except 79 are one-dimensional, by a). Hence dim A4,(E)/S(P,, ®) < 2, as
required.

§6. Theorems on invariant distributions

To prove Theorems 5.16 and 5.21 we need some assertions on invariant
distributions. We state them in general form for arbitrary /-groups and
I-sheaves.

GROUP ACTIONS ON TOPOLOGICAL SPACES

6.1. We study certain types of actions of /-groups on /-spaces.

Let G be an l-group, X an l-space, and 4: G X X = X an action of G
on X (see 1.5). We define the graph of vy as the subset
R} ={(x 7lew)x €EX, g € G} C X X X. The subset 7(G)x C X is
called the orbit of x € X. We denote by X/G the set of all G-orbits in X
and by p: X - X/G the natural projection. We always assume that X/G
is equipped with the quotient topology (U C X/G is open if and only if
p 1 (U) is open in X). Clearly p is continuous in this topology. Note that
X/G is not necessarily Hausdorff.

6.2. LEMMA. a) p is an open mapping; that is, if U is open in X, then
p(U) is open in X/G.

b) If M is a G-invariant closed subset of X, then p(M) is closed in X/G.

c) If M is a G-invariant locally closed subset of X, then p(M) is locally
closed in X/G.
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PROOF. a) p~1p(U) = UG'y(g)U is open in X.
ge

b) Obvious.

c) Let M = U N F, where U is open and F is closed. Then
M = U N M. Since M is G-invariant, p(M) = p(U) N p(M) is locally closed
by virtue of a) and b).

6.3. DEFINITION. An action v: G X X = X of an l-group G in an
I-space X is called regular if the graph R} is closed in X X X (see [31],
Part II, Ch. III, §12).

6.4. LEMMA. The following conditions are equivalent:

1) v is regular.

2) The diagonal A = {(x, x)} C X/G X X/G is closed.

3) X/G is Hausdorff.

Under these conditions X/G is an I-space.

PROOF. It is clear that 2) is equivalent to 3). To prove that 1) and 2)
are equivalent, we consider the action > of G X G on X X X, which is
defined by Y2((g;, 22))(x;, x2) = (¥(gy)xy, ¥(g2)x,). It is easy to see that
X X X)/(G X G) is homeomorphic to X/G X X/G, and under the pro-
jection p?: X X X = X/G X X/G we have (p?)™'(A) = R}. It now follows
from 6.2b) that 1) and 2) are equivalent.

Since p is open and carries compact sets into compact sets, if X/G is
Hausdorff, it is an l-space.

6.5. COROLLARY. If G is an Il-group and H is a closed subgroup of G,
then H\ G, equipped with the quotient topology, is an l-space, and the
projection p: G > H\ G is open.

PROOF. The action y: H X G = G defined by ~(h)g = hg is regular,
because the graph RY = {(g,, g2) € G X G |g,g7" € H} is closed in
G X G.

6.6. DEFINITION. a) A subset M of a topological space Y (here Y is
not necessarily Hausdorff) is called constructive if it is the union of finitely
many locally closed subsets.

b) An action v: G X X — X is called constructive if its graph RY is
constructive in X X X.

6.7. Let M be a subset of an arbitrary topological space Y. We set
UM) ={y € M|M is closed in a neighbourhood of y } and M* =M\ UM).
It is clear that U(M) is locally closed and that M! is closed in M. We now set
M? = (M’)’, M3 = (M2)l, e, MEHL = (Mk)l.

LEMMA. Suppose that M is constructive. Then:

a) M* = @ starting with some k. In particular,

M=UM U UMHYU ...V UMD,
b) UWM) is dense in M.
PROOF. a) Clearly M¥ is closed in M and M N V)¥ = M*¥ N V for

1
any open set V. Let M = US;, where S; is locally closed. We shall prove

i=1
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by induction on [ that M = Q.
We set Vy = Y\S,. Then M NV, = U (S; N V), and by the

inductive hypothesis, (M N V;)!"! = M~ T ﬁ Vi = @, that is, M-1 C §.
Furthermore, Sy is open in S, so that S, N M!~! is open in M"-1;

M'=1 s closed in M, so that S, N M'~! is closed in S, = S, N M.
Therefore, UM'~1) C §, N M'~1, that is, S, N M’ = @. Since this is true
for all k and M! C M = US,, M’ Q.

b) follows from a), since it is easy to see that U(M) D U(M‘) D.

6.8. PROPOSITION. Suppose that an action v: G X X > X is defned

a) The condition that vy is constructive is equivalent to the fact that the
diagonal A C X/G X X/G is constructive.

b) If vy is constructive and X is not empty, then there is a G-invariant
non-empty open subset U C X on which vy is regular.

¢) If v is constructive, then all its orbits are locally closed.

PROOF. a) If M is a G-invariant constructive subset of X, then all sub-
sets UM?) in the decomposition M = UM) U UM LU ... U Um* ) are
locally closed and G-invariant. Therefore, by 6.2c), p(M) is constructive in
X/G. The subsequent reasoning is the same as in 6.4.

b) Let (x, x) be a point of A C X/G X X/G in a neighbourhood of which
A is closed. Its existence follows from a) and 6.7b). If U is an open neigh-
bourhood of x in X/G such that A is closed in U X U, then, as follows
from 6.4, the action of G on p~!'(U) is regular.

c) If S is an orbit, then it is constructive, that is, U(S) # ¢. By virtue
of G-invariance, S = U(S) is locally closed.

THEOREMS ON INVARIANT DISTRIBUTIONS

6.9. THEOREM. Suppose that an action v of an l-group G on an
l-sheaf (X, &) is defined. We assume that:

a) the action of G on X is constructive.

b) there are no non-zero G-invariant ¥ -distributions on any G-orbit in
X (this makes sense, since by 6.8c) all orbits are locally closed).

Then there are no non-zero G-invariant % -distributions on X.

PROOF. (1) If the action of G on X is regular, then our assertion
follows from 2.37 and 6.4. We reduce the case of a constructive action to
the regular case.

(2) Let T be a non-zero G-invariant % -distribution on X. Replacing X
by supp 7, we may assume that X = supp T. By 6.8b), there exists a non-
empty open G-invariant subset ¥ C X on which vy is regular. By virtue of
(1), i";,(T) = 0 (see 1.9 and 1.15). But this contradicts the fact that
X = supp T. The theorem is now proved.

6.10. THEOREM (Gel’fand and Kazhdan). Let y be an action of an
l-group G on an l-sheaf (X, #) and o: (X, ) = (X, ) an isomorphism.
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We assume that:

a) the action of G on X is constructive.

b) for each g € G a g° € G can be found such that v(g)o =0 v(g°)
In particular, o rearranges G-orbits in X.

c) there exist a natural number n and a g, € G such that " = v(g,).

d) if there exists a non-zero G-invariant & -distribution T on a G-orbit S,
then ¢S = Sand oT =T.

Then each G-invariant % -distribution on X is g-invariant.

PROOF. We prove the theorem by contradiction. Let T be a G-invariant
F -distribution on X such that ¢7 # T. For each n-th root { of 1 we

n-1
set T, = X 7+ 0'(T). Then o7, = { * T, since o"(T) = vgy)T =T It is

i=0
easy to see that X T, = nT and that £ {7, = n - oT. It follows that
Y $

Z( — DT, = n(cT — T) # 0; that is, there exists a root ¢ # 1 such that
L4

T, #0. By b), T} is G-invariant.

We consider the isomorphism o, of (X, F) that acts on X exactly as o
and on the cross-sections of % by the formula 0,.(v) = § * o(yp). It is clear
that Tg is invariant under 0.

Let G' be the group of isomorphisms of (X, &) generated by ¥(G) and
o, (we assume that it is discrete), and let v’ be the natural action of G’

, n—-1
on (X, ¥). Clearly R} = U o] where 0;; X X X - X X X is the
=0

¥
homeomorphism defined by o,(x;, x2) = (0x, x,). Therefore, the action
v': G' X X - X is constructive.

Let S’ be a G'-orbit in X. We claim that there are no non-zero G-
invariant % -distributions on S'. For if there are no non-zero G-invariant
F -distributions on any G-orbit S C S', then by 6.9 there are also none
on S’. But if such a distribution exists on some G-orbit S, then by virtue
of condition d) of the theorem, ¢S = S, so that S = S'. But it then follows
from d) that there are no G'-invariant % -distributions on S

Since Tg is a non-zero G'-invariant % -distribution on X, we obtain a
contradiction to 6.9, and the theorem is proved.

VERIFICATION OF THE CONDITIONS OF THEOREM 6.10

6.11. In the remainder of §6 we are concerned with the problem of
verifying that the conditions of Theorem 6.10 hold.

In verifying d), it is useful to use Frobenius duality. Let G be an l-group
that is couptable at infinity, and let v be an action of G on the Il-sheaf
(X, #) such that (v, G, F.) is algebraic. Let S be a G-orbit in X,

s € S, H the stationary subgroup of s, and (p, H, &) the representation
of H in the stalk of % over s. By 1.6, S = H\ G, and it follows from
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2.23 and 2.29 that the space of G-invariant % -distributions on S is iso-
morphic to Homy (Ay/Ag *p, 15).

6.12. EXAMPLE. Suppose that #, is one-dimensional. Then under
condition d) we have to verify that if oS # S, then p # A;/Ay. This is
true, for example, if p(h) is not positive for some # € H. If 65 = S and
p = Ag/Ay, that is, if non-zero G-invariant % -distributions exist on S,
then all of them are proportional to Ty, which is defined by

(To, p) = S (v(g)p)(s) dvy\ ; (g) (see 1.21 and 2.29), and it suffices to verify
H\G

that o7, = Ty. It follows from 6.10b) that 0T, is G-invariant, that is,

6Ty = ¢+ Ty, and it suffices to verify that ¢ = 1. This equality holds, for

example, when os = s and ¢ acts in &, as multiplication by a positive

number. In fact, since Ty is positive, the coefficient ¢ in this case is

positive, and from 6.10c) we obtain ¢* = 1 and hence ¢ = 1.

Taking the /-sheaf C(X) (see 1.14) for # we obtain the following
theorem:

6.13. THEOREM. Suppose that an action v of an l-group G, countable
at infinity, on an l-space X and a homeomorphism o: X - X are defined.
We assume that:

a) vy is constructive.

b) for each g € G there is a g° € G such that y(g)o = oy(g°).

c) for some natural number n and go € G, 0" = vy(g,).

d) o carries each G-orbit into itself.

Then each G-invariant distribution on X is invariant under o.

6.14. Let us now show how to verify that an action y: GX X > X of
an l-group G on an I-space X is constructive. We state a convenient
reduction lemma.

LEMMA. Let X and Y be l-spaces, v: G X X > Xand v': GX Y > Y
actions, and q: Y = X a continuous open surjection, where
q(v'@Ww) = v(®)q(W) for all y € Y and g € G. We assume that for any
x € X the set q~'(x) lies on a G-orbit in Y. Then if ' is constructive, so
is 7.

PROOF. It is clear that ¢ induces a homeomorphism ¢’: Y/G - X/G.
Therefore, the lemma follows from 6.8a).

6.15. Next we quote a general criterion for constructiveness, which
together with Lemma 6.14 comprises all the cases of interest to us.

Let F be a local field (see 3.1), X an algebraic variety defined over F,
and X(F) the sets of its F-points. The locally compact topology of F
induces a topology on X(F) in which X(F) is an Ispace. If G is a linear
algebraic F-group, then G(F) is an l-group. If a: G X X = X is an F-
rational action, then the corresponding mapping oy : G(F) X X(F) - X(F)
defines a continuous action of G(F) on X(F). In the Appendix we shall
prove the following theorem:
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THEOREM A. The action op of the l-group G(F) on the l-space X(F)
is constructive.

6.16. EXAMPLE. Let G be the subgroup of GL(n, F) distinguished by
polynomial equations with coefficients in F. Let o be a linear representation
of G in F¥ whose matrix elements are rational functions on G with
coefficients in F (the denominators of these functions do not vanish on G).
Then the action & of G on F¥ (and hence on any of its G-invariant
locally closed subsets) is constructive.

§7. Proof of Theorems 5.16 and 5.21
REALIZATION OF THE CONTRAGRADIENT REPRESENTATION

7.1. In this section we denote by g’ the transpose of a matrix
g € G = G,. We define a matrix s, € G and an automorphism
g g of Gby (s5,); = (~1Y. 8 ,,,_; and *g = 5,87 's,".

LEMMA. 3a) U = U and ©° = © (see 2.27 and 5.6).

b) s, =s;' = a+s, where a= 1)t € Z (see 3.1).

7.2. LEMMA. If (w, G, E) is an irreducible admissible representation,
then ©° (see 2.27) is aiso irreducible and admissible, where T = (n ). The
space E(U, @) does not depend on which of m or «° we treat (see 2.30).

7.3. THEOREM (Gel’fand and Kazhdan). Under the conditions of 7.2,
7 and T are equivalent.

PROOF. By virtue of 2.15, 2.20, and 7.2 it suffices to prove that
tr 7 = tr .

For each f € S(G) we define f~, ¥ € S(G) by f5() = f(g) and

F@® = fe™). Then trw()=tr | #@)fiedug @) = tr | (e, @ )dc ;)
G G
(we have substituted g, = ®g), that is, tr #°(f) = tr n(f*).

On the other hand, it follows from 2.14b), 1.19¢), and the fact that G
is unimodular that T(fug) = (7(fug))*|z. Since A = n(f"pg) has finite
rank and Im A* C E (see 2.14a) and 2.17), we see that
tr TN =tr T(fug)=tr A% =tr 4 =tr 4 = tra(f").

Thus, we have to prove that tr #(f7) = tr 7(f*). Since f*(g) =f‘(sng's;‘),
our assertion follows immediately from 2.18, the fact that G is unimodular,
and the following fact: a distribution on G invariant under conjugation
(that is, the action of G on itself by inner automorphisms) is invariant
under transposition.

To prove this, we apply Theorem 6.13 in the following situation:
G=G, X=G, v(g)x = gxg™!, and o(x) = x". Let us verify that the
conditions of 6.13 hold.

a) That v is constructive follows from 6.15 and 6.16.

b) We set g° = g'~!. It is clear that y(g)o = ov(g°).
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c) 02 = id.

d) Transposed matrices are conjugate in G.

The theorem is now proved.

7.4. REMARK. It can be verified directly that the action of G on itself
by inner automorphisms is constructive. We leave this to the reader.

7.5. COROLLARY. Under the conditions of 1.2, if m is non-degenerate,
then so is w.m

PROOF OF THEOREM 5.16

7.6. Let (m, G, E) be a non-degenerate irreducible admissible represent-
ation. By 5.6, it suffices to prove that dim Ey g = 1. Now

(Ey o+)* = Homg (n, Ind(G, U, ©71)) = Hom (7, ind(G, U, ©)) =
= Homg (ind(G, U, ©), 7) (see 2.30, 2.28, and 2.25c)). N

Therefore, we need to prove that the space of operators S(G, ®)—~ E
that commute with the action of G is one-dimensional.

Let A be such an operator, A ¥ 0. By Schur’s lemma (see 2.11), 4 is
defined uniquely up to a factor by its kernel Ker 4 C S(G, @). We choose
a non-zero operator A' € Homg (ind(G, U, ©), w) (this can be done by
virtue of 7.5).

Theorem 5.16 follows immediately from the equality

(*) Ker A = {f € S(G, ©)|f € Ker 4'},

which shows that the kernel of A, in fact, does not depend on A (here
(@) = f(g); see 7.1).

7.7. To prove (*) we define a G-invariant bilinear form B on
S(G, ©) by B(f, ') = (Af, A'f". Clearly Ker A coincides with the left
kernel of B, that is, with the set of functions f € S(G, ©) such that
B(f, f') = 0 for all f' € S(G, ©). Similarly, Ker A’ coincides with the right
kernel of B. Therefore, (x) is an immediate consequence of the following
lemma:

7.8. LEMMA. Let B be an arbitrary G-invariant bilinear form on
S(G, ©). Then B(f,, ) = B(f3%, f§) for any f,, f» € S(G, @), where
fi@) = f1(g) and f3°(g) = fa(a * *g) (see 7.1).

PROOF. We restate the assertion of the lemma in order to apply
Theorem 6.10.

It is easy to see that S(G, ®) ® S(G, ®) = S(G X G, §,), where 0, is
the character of U X U defined by 0o((u,, u3)) = ©(u,* u,). By 2.23,
S(G X G, 0y) is the space of finite cross-sections of the I-sheaf
(U X U\G X G, £%), and the bilinear form on S(G, ©) defines a
distribution on this sheaf. Thus, it remains to apply Theorem 6.10 in the
following situation: G = G,, X = U X U\G X G, & = &%, and the
action of G and the homeomorphism o on X are induced by the action of
G and ¢ on G X G defined by ¥(g) (g,, g2) = (€,27%, g287') and
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o(g,, g2) = (&°gy, °gy). The action of G and o on # is defined by

(v (@) ) (g1 82) =1 (v71(8) (81, 82)) =1 (818, £28):
(0f) (81, 82) =1 (071 (g1, 82)) =T (°8ay @.%81),
(€S (G XG, B)=F.)

Let us verify that the conditions of Theorem 6.10 hold.

a) We set ¥ = G X G and define an action y' of G' = U X U X G on
Y by v'(uy, usz, g)g1, 82) = (u12:87%, u282¢7 ). This action is constructive,
by 6.15. The action of G on X is constructive by the reduction lemma
6.14 applied to the natural projection of Y onto X.

b) We set g° = g. Then y(g)o = ov{(g®).

c) o* =id.

7.9. We now verify 6.10d).

(1) It follows from the Bruhat decomposition (see 3.2) that the G-orbits
in X can be indexed by the elements of D X W; namely on each G-orbit
in X there is exactly one point of the form x., ,, = p((dw, ¢)), where
p: G X G = X is the natural projection, d € D, w € W, and e is the unit
element of G.

(2) Let us see for what d and w on the appropriate orbit there exists a
non-zero G-invariant distribution.

It is easy to see that the stability subgroup of x4, is
H=UnN w™ Uw, that the stalk of # . over this point is one-dimensional,
and that (o, H, F=) in 6.11 is defined by p(k) = [@9¥-©] (k). Since
Ag/Ay =1 (see 1.19 and 3.6), the arguments in 6.12 show that there
exists a non-zero G-invariant distribution on an orbit if and only if

p(h) = 1.

Let w; = §; ) and d;; = d;*§;; where w is a permutation. It is easy to

sce that H= U N w Uw = {hGGlh 1, hy; = 0 for i > j or

-1
w(l) > w(])} and that p(h) = d/o( 2 hl i+1 + 2 d dl+1h -l(l) w-l(l"'l))

For p(h)=1 to hold, the followlng condltlon is necessary: if

w(i) < w(i+ 1), that is, there exist elements # € H such that hi 117 0,
then the term A; ;,; in the last sum must be cancelled by one of the
terms of the form d; - d] +‘1 By, wi+1ys thatis, the following equalities
must hold:

(*+) o+ =0@)+1; dogsy= —dyiy-

Thus, if p(h) = 1, then w satisfies the following condition: if
w(@) < w(@+1), then w(@+1)=c(@)+1. It is easy to describe all such
permutations: they are defined by collections of integers
0=ty <t <...<t, =n, where the permutation w corresponding to
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(t0, - - ., t;) acts on each segment I, = [¢; + 1, £, ] simply by a trans-
lation, reversing the order of succession of these segments. The second
equality in (**) shows that if i; and i, lie in the same segment [, then
CD@d, 0 = (1204,

(3) Let us now show that all the orbits constructed in (2) are o-
invariant. We have OX(d,w) = a(p(dw, e)) = p(a, d’w’) = y((d*w*)™!)
p(a(dsw)7!, e). It is easy to see that o« (d*w®)~! belongstoD X W.
Therefore, for the orbit of x; ., to be o-invariant, it is necessary and
sufficient that a(d*w?®)™! = dw. A direct verification shows that this holds
for the elements d and w described in (2).

(4) It remains to show that all G-invariant distributions on the orbits in
(2) are invariant under o. But it follows from (3) that x4 ., is invariant
under the automorphism y(dw’)o, and it is easy to see that this auto-
morphism acts trivially in the stalk of # over this point. By 6.12, G-
invariant distributions on the orbit of x; ,,, are invariant under yd*w')o
and are consequently o-invariant. This completes the verification of
6.10d).

Theorem 5.16 is now proved in full.

7.10. REMARK. Using the Bruhat decomposition, we can verify directly
that the action vy from 7.8 is constructive, without resorting to the
“non-elementary” Theorem 6.15. We leave this to the reader.

PROOF OF THEOREM 5.21

7.11. Let (m, G, F) € Alg G be an irreducible representation. By 3.27
there exist a partition § = (n,, ..., n,) of n and an irreducible cuspidal
representation (p, G5, V) such that 7 is a subrepresentation of
(r, G, L) = i(,)z(p). 1t follows from 2.35 that dim Ey , < dim Ly, for
all characters 6 of U = U,. Therefore, Theorem 5.21 follows from the
following more precise theorem:

7.12. THEOREM. Let 8 = (ny, ..., n,) be a partition of n, (p, Gg, V)
an irreducible cuspidal representation, and (w, G, E) = i(,,)’ﬂ(p) € Alg G
(see 3.12). Then dim Ey 4, < n! for all characters 8 of U. But if 6 is non-
degenerate (see 5.6), then dim Ey , = 1.

PROOF. (1) By 2.23, 7 is realized in the space & . of finite cross-
sections of the I-sheaf # = #eon X = Pﬁ\G. It follows from the Bruhat
decomposition (see 3.2) that the number of U-orbits in X does not exceed
n!. Applying 1.5 several times, we can index the U-orbits in X so that each

orbit X; is open in U Xj.
j>i

Applying 2.35, 1.9, and 1.16 several times, we obtain dim Ey, = 2

1
dim &% .(X;)v,e. Therefore, it suffices to prove that dim F.(X)y, <1;
if 6 is non-degenerate, then dim F.(X)y , = 1 for exactly one X;. We
need an explicit description of the orbits X;.
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(2) We denote by W; the set of elements w € W such that the corres-
ponding permutation w leaves all segments I, of B fixed, and by W® the
set of elements w € W such that w™ preserves the order of succession of
the numbers in each [, . It is clear that W, = W N P, and that W® is a
family of coset representatives of WB\ W. 1t is clear from the Bruhat
decomposition that there is a point of the form Pyw, w € W® | on each
U-orbit in Pg\G. For it can readily be shown that such a point is unique;
that is, the U-Ol‘bltS in P \G are indexed by the elements of W®. But we
do not even need this.

(3) We denote by X,, the U-orbit of Py* w, w € W®, and by m,, the
representation of U in # (Xw). The stability subgroup of Pyw € X,
isH,=UNw ‘P w, and the stalk over this point is 1dent1ﬁed w1th V,
where oy, Hy. V) acts according to the formula p, (k) = p(whw™). By
2.23, we have w, = ind(U, H,, p,), hence (Fe (Xw)v, 6)* = Homy(m,,, 0)
= Home(pw, 0) = Homew(p, 0% -1y (see 2.30, 2.29, and 2.27).

(4) Let us prove that “H,, D U N G, (see 3.5) for all w € W® _ 1t suffices to
verify that U N G C WU, but this follows immediately from the definition
of W®,

(5) By (4), Homy,, (p, 6¥~') C Homy g (0, 0¥ = (Vyngyew-1)".

w
Now U N G; = U, and 9“"’1|Unaﬂ = 119;, where 0; is a character of
U"i' Recalling that p is irreducible and cuspidal, we see, exactly as in 5.18,
that if at least one of the 6; is degenerate, then Vj U, e, = 0. But if all
1

the 6; are non-degenerate, then dim V; Uy T10; =1.

It follows from (3) that dim #. (Xw)U,19 < 1; hence by (1) we obtain
the first conclusion of the theorem.

(6) Now suppose that € is non-degenerate. Since the restriction of p to
Uy is trivial, the following assertion is valid: if there exists a
u E Hy, N *71U; such that 6(u) # 1, then Homy (o, 0) = 0. It is easy

to see that we can choose such a u if there exists an i such that
w(@) < w(@ + 1) and w(i) and w( + 1) lie in different segments of .
Therefore, if Home(pw, 0) #+ 0, then the following condition must hold:
if w() < w(i + 1), then w(i) and w( + 1) lie in the same segment of f.
On the other hand, it can be readily verified that all the characters 6;
in (5) are non-degenerate if and only if > satisfies the following condition:
whenever i and i + 1 lie in one segment of 8, then w™(i+1)=w (@) + 1.
This means that w™! acts on each segment [, of 8 simply by a translation.
Combining this condition with the preceding one, we find that there
exists exactly one permutation w, satisfying both of them; namely, wg!
acts by translation on each I, reversing the order of their succession.
We have seen that Fe (X,)y, = 0 for w # wy. On the other hand,
it is easy to verify that “H,, = U N Gg; that is, for w = wq the
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inclusion Hom,,, (o, 8¥71) C (Vnu, ,ne)" in (5) becomes an equality.
w i’

Therefore, dim Fe¢ (X, )y, = 1.

The remaining part of the theorem now follows from (1).

7.13. COROLLARY. Under the conditions of 71.12, a P,-module E has
finite length not exceeding 2" ~'+n!. If 0 S E,S ... S E, = E is a maximal
chain of P,-submodules, then exactly one of the modules E,-/E,-,,l is non-
degenerate (see 2.8).

The proof is in 5.22.

APPENDIX
AN ALGEBRAIC THEOREM

In this Appendix we prove Theorem A of 6.15. We assume that the
reader is familiar with the basic concepts of algebraic geometry to the
extent of Borel’s [3] chapter on algebraic geometry. In what follows,
references to this chapter will be denoted by (AG, . . .).

A.1. Let F be a local field with a non-Archimedean valuation, and let
K = F be its algebraic closure.

If X is an F-variety, then, following (AG), we identify X as a set with
the set X(X) of its K-points. We denote by X(F) the set of F-points of
X. If et X > Y is an F-morphism of F-varieties, then we denote the
induced morphism X(F) = Y(F) by op.

We introduce a locally compact topology on X(F) so that:

1) if U is an F-open subset of X, then U(F) is open in X(F);

2) if U is an affine F-variety, then the induced topology on U(F) is
the weakest in which the functions fr: U(F) = F are continuous for all
f € F[U] (on F we take the usual locally compact topology).

If X is a closed F-subvariety in an affine space A", then X(F) is closed
in A"(F) = F", and the topology in X(F) is induced by the usual topology
of F".

It is clear that if a: X = Y is an F-morphism, then ag: X(F) = Y(F) is
a continuous mapping; moreover, (X X Y)(F) is naturally homeomorphic to
X(F) X Y(F).

A.2. Theorem A from 6.15 is an immediate consequence of the following
theorem:

THEOREM. Let a: X = Y be an F-morphism of F-varieties. Then
o(X(F)) is a constructive subset of Y(F).

A.3. The main tool for studying the topological structure of algebraic
mappings is the following lemma:

LEMMA. Let a: X = Y be an F-morphism of smooth affine F-varieties.
We assume that o is a coregular morphism (that is, the tangent mapping
(do), is surjective at all x € X). Then op: X(F) - Y(F) is an open
mapping.
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PROOF. We embed X in an affine space A", Let x € X(F). Since x is a
simple point of X, there exist polynomials f, ..., fy € F[A"] whose
zeros define X in a neighbourhood of x, and the differentials (df;), are
linearly independent. Similarly for Y. It follows that X(F) and Y(F) are
analytic varieties over F and that oy is a coregular morphism (for
definitions and proofs see {31], Partll, Ch.III, § §10and 11). By (311}, Part II,
Ch. III, §10, Theorem 2, oy is an open mapping.

A.4. We need a criterion to determine when an open subset of an
F-variety X is F-open. Let F;, C K be the separable closure of F, and let
T be the Galois group of F, over F. The action of I on F; can be uniquely
extended to an action of I' on K = Ff'"(p = char F). Now, exactly as in
(AG, 14.3), we can define an action of I' on K — the points of X.

LEMMA. a) An open subset U C X is F-open if and only if it is
T-invariant (similarly for closed sets). B

b) If M C X(F), then the closed subvariety M (the closure of M in the
K-topology) is defined over F.

The lemma follows from (AG, 12.1, 14.3, 14.4).

A.5. LEMMA. Let a: X = Y be an F-morphism of F-varieties. Then there
is a non-empty F-open subvariety U in X such that oy (U(F)) is constructive
in Y(F).

Let us show how Theorem A.2 follows from this lemma. We set
X, = X(F)\ U(F). This is an F-variety, by Lemma A.4b). Using Noetherian
induction, we may assume that «g(X,(F)) is constructive in Y(F). But then
o (X(F)) is also constructive, as required.

A.6. In the proof of Lemma A.5 we may assume that ¥ = a(X), and we
can replace X and Y by arbitrary open F-subsets of them. Using this, we
can reduce the proof to the case (*): X and Y are affine irreducible smooth
F-varieties, Y = a(X), and all stalks of o have the same dimension. This
follows from (AG, 10.1, 17.2) and Lemma A.4a).

A.7. If under the conditions (*) o is separable, then by (AG, 17.3), X
can be replaced by an F-open subset such that o becomes a coregular
morphism. In this case Lemma A.5 follows from A.3.

If char F = 0, this completes the proof.

A.8. To study non-separable morphisms, we give a convenient local
criterion for separability.

DEFINITION. Let a: X = Y be a morphism of varieties, and let x € X
and y = afx). We set Ox,a =0, /ao(my) * 0,, where O, and Oy are the
local rings of x and y, m,, is the maximal ideal of Oy, and o« is the co-
morphism corresponding to «a (see (AG, 5.1)). 0x,a is called the local ring
of a at x. We say that « is separable at x if O, , is a regular ring (see
(AG, 3.9)).

It is clear that O, , is the local ring of a™!(y) at x (we regard this
stalk as a scheme). In particular, if we denote by dim X/Y the maximum

of the dimensions of the stalks of «, then dim X/Y = max dim O, o (On
xeX ’
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the right there stands the Krull dimension (see (AG, 3.4)).

A.9. LEMMA. Let a: X = Y be a morphism of smooth varieties, and let
x € X,y =ax) €Y. Then the following conditions are equivalent:

a) The tangent mapping (do), is surjective.

b) a is separable at x, and dim O, , = dim O,~ dim O,,.

PROOF. Let m, , be the maximal ideal of O, ,. Using the fact that O,
and Oy are regular, we can easily show that both a) and b) are equivalent
to the equality dim m, ,/m%, = dim O,— dim O,.

A.10. COROLLARY. Under the conditions (x) in A.6 the following
conditions are equivalent: a) « is separable; b) o is separable at some
x € X, c) there exists a non-empty open subset U C X such that o is
separable at all points of it.

The corollary follows from A.9 and (AG, 17.3 and 10.1).

A.11. We prove Theorem A.2 and Lemma A.5 by induction on dim X/Y.
For the remainder of the Appendix we fix dim X/Y = k and assume that
Theorem A.2 is valid for all morphisms a': X' = Y' with dim X'/Y' < k.

We say that a morphism « is k-separable if o is separable at all x € X
such that dim O, , = k.

PROPOSITION. Theorem A.2 is valid for k-separable morphisms.

PROOF. Let ot X = Y be a k-separable morphism. It is easy to see that
if X' is an F-subvariety of X, then the restriction of a to X' is also
k-separable. Therefore, it suffices to show that the conclusion of Lemma A.5
is valid for a. Here we may assume that condition (*) in A.6 holds. If
dim X/Y < k, then the lemma follows from the inductive hypothesis, and
if dim X/Y = k, then « is separable by A.10, and the lemma was proved in
A7,

A.12. Since we are interested not in varieties themselves, but only in the
sets of their F-points, the plan for proving A.5 is as follows: we replace X
and Y by other varieties so that o becomes a k-separable morphism, but
the set of F-points do not reflect this.

We recall some facts about sheaf products.

DEFINITION. Let a: X; = Y and a,: X; = Y be morphisms of affine
K-schemes. Then by the sheaf product of X; and X, over Y (denoted by
X; X yX;) we mean the affine scheme X corresponding to the K-algebra
K[X] = K[X,] ® gr¥; K[X,], together with the mappings
p1: X > X, and p;: X > X, corresponding to the natural embeddings
K[X,] » K[X] and K[X,] > K[X] (see (AG, 5.2)).

A scheme X can be naturally identified with a closed subscheme in
X, X X, (see (AG, 6.1)). Here X = {(x;, x3) € X; X X3loy(x;) = op(x5)}
We note that even if X,, X,, and Y are varieties, X is not necessarily a
variety: the ring K[X] can have nilpotent elements.

It is easy to see that: a) if X,. X,, Y, a;, and a, are defined over F,
then X; X yX,, p;, and p, are also defined over F; b) if
X1 € Xy, X2 € X,, ay(xy) = ap(x3), and x = (x, x,3) € X; X yX,, then
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the local rings O, , and O, , are naturally isomorphic.

A.13. LEMMA. Let X be an irreducible affine F-variety, A" an affine
space, and o: X — A" an F-morphism, where dim X/A™ = k. Then there
exist a non-empty F-open subset X' C X, an affine F-variety V, and an
F-morphism B: V - A" such that:

a) Bg: V(F) > A"(F) = F" is a homeomorphism; b) the morphism p,:
Red (X' = ,,V) = V is separable at all points (here Red X' X an V) is
the reduced subscheme corresponding to the embedding of X' X 4nVin
X' X V (see (AG, 6.3)); this variety is no longer necessarily defined over
F).
Let us deduce Lemma A.5 from this lemma. Let «: X = Y be an
F-morphism of F-varieties. We may assume that condition (%) in A.6 holds.
We embed Y in A" and apply Lemma A.13 to the morphism a: X = A”.
We wish to prove that op(X '(F)) is a constructive subset of A"(F).

It is easy to see that the set M = (X' X 4n V) is equal to
{(x, v) € X'(F) X V(Floag(x) = Br(v)}. Therefore, by a), M is homeomor-
phic to X'(F), and it suffices to prove that p,(M) is constructive in V(F).
Let Z = M be the closure of M in X' X V; this is an F-variety by Lemma
A.4b) and is contained in Red (X' X 4n V). It follows from b) that the
restriction of p, to Z is k-separable (see A.11), and by A.11,
p2i(Z(F)) = pyp (M) is constructive in V(F), as required.

A.14. PROOF OF LEMMA A.13. 1. We first construct a morphism
B': V' -> A" and a subset X' C X so that b) holds.

LEMMA. Let L be a field of characteristic p and M a finitely generated
extension of L. Then there is a q = pN such that the factor ring C of
C=M @,LY2 by the nilpotent elements is a separable extension of L4
(LV4 is a field by (AG, 2.1)).

The lemma will be proved in A.15.

We apply this lemma to the case when M = K(X) and L is the quotient
field of oy(K[A"}) C K[X], and we look for an appropriate q. We set
V' = A" and define an F-morphism 8': V' - A" by
B'(ty, ..., t,) =9, ..., 1) It is clear that §' is a homeomorphism in
the F-topology, and hence p;: X X V' = X is also a homeomorphism.
We set S = Red (X X ,, V') and T = p5(S). It then follows from the lemma

that the morphism p3: S = T is separable. Reasoning exactly as in A.6
and using A.10, we can find an open subset S' C S such that p; is
separable at each point of S'. We set X' = pi(S'). Since S is defined over
FP™" and since we may assume that S' is defined over FP ", X' is
FP ~open in X and hence F-open in X (see (AG, 12.1)). Then the morphism
p2: Red (X' X ,, V') > V' is separable at all points; that is, b) holds.

2. Our morphism B’ does not satisfy a). We rectify this as follows. Let
€y, ..., e, be a basis of F over F?. We consider the affine space V of
dimension ng with coordinates (@ i=1...,nj=1,...,q) and define



66 I N. Bernshtein and A. V. Zelevinskii

an F-morphism B: V> A" by B((a;)) = (ty, ..., t,), where

t; = Z a"le It is easy to see that fp: V(F) = A"(F) is a homeomorphism.
j=1
To verify condition b) in A.13, we note that § = g8’ o 'y, where v: V = V'

is the morphism defined by v((a;)) = (¢, ..., t,),and t; = 2 a,]e]l/" (this

morphism is not defined over F). If (x, v) € X' X an V, then it is easy to
verify that the local ring at (x, v) of p2|Red(X’xA,,V)iS isomorphic to the

local ring at (x, y(v)) of p) |Red(x’ X V') that is, b) holds. Lemma A.13 is now
proved.

A.15. PROOF OF LEMMA A.14. Let £ be an algebraically closed
extens1on of L containing M. Then C can be identified with the compositum
L“?(M) of M and LY in . Let S be a transcendence basis of M over L;
that is, the extension L(S): L is purely transcendental, and M: L(S) is finite
(see [25]1, Ch. X, §1). It is easy to see that the extension Ll/q (SVay: Ve
is purely transcendental so that it suffices to verify that LY (M) is
separable over LY4(SY4); that is, everything reduces to the case when
M: L is finite. In this case the conclusion of the lemma is obvious, because
each element of § algebraic over L is separable over LP~V for large N.
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