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This paper presents the theoretical discrete geometry frame-
work for the voxelization of surfaces. A voxelized object is a
3D discrete representation of a continuous object on a regular
grid of voxels. Many important topological properties of a dis-
crete surface cannot be stated solely in terms of connectivity,
and thus the concepts of separating, coverage, and tunnel-
freeness are introduced. These concepts form the basis for
proper voxelization of surfaces. © 195 academic Press, Inc.

1. INTRODUCTION

The use of volume rendering technology and voxel-
based graphics has recently proliferated, not only for visu-
alizing and analyzing sampled and computed datasets, but
also for modeling synthetic scenes (4,7, 11, 18, 201. Madel-
ing a geometric scene in voxel space calls for algorithms
that generate from a geometric representation of the scene
the equivalent discrete voxel-based representation. These
algorithms, called voxelization (or 3D scan conversion)
algorithms, have received some attention in the literature
[2,8-10, 15]. In this paper, we establish the conditions and
the requirements for the proper voxelization of surfaces.

The representation of a continuous object by a discrete
set must ensure topological and geometrical consistency.
These issues have been successfully dealt with for the ap-
proximation of continuous curves in 2D discrete space,
mainly because of the linear order a discrete curve inher-
ently possesses {3, 23], Like a 2D discrete curve, a 3D
discrete curve is expressed as a linear sequence of discrete
points where the adjacency relation between consecutive
points determines the curve connectivity. The connectivity
of a curve in 2D space has been proved to be topologically
consistent and to satisfy the Jordan theorem [23]. However,
there is no straightforward extension to 3D space [17]
because connectivity alone fails to describe a 3D discrete
surface and there is no natural lincar order among the
discrete surface points. The topology of 3D discrete spaces
has been developed primarily for 3D image processing,
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where the 3D discrete image is given as a set of voxels [14,
24,25]. A different approach has been used in the cuberille
environment [1, 5], where a surface is composed of a set
of voxel faces, representing the boundary between the
foreground and the background. In this paper, we adopt
the former approach, in which the surface is composed of
a set of voxels, We provide conditions on a discrete surface
that ensure that its topology is analogous to that of the
continuous surface and approximates the continuous sur-
tace well, where the main application of these conditions
is in the synthesis of voxelized surfaces.

In Sections 2 and 3 we briefly review basic concepts in
3D discrete topology, which aims to mimic the behavior
and properties of the corresponding continuous space to-
pology. In Section 4 we propose new criteria for the dis-
crete representation of surfaces, and we examine the rela-
tionship among them in Section 5. We develop sufficient
conditions for surface separation properties in Section 6.
Finally, in Section 7 we discuss other criteria for proper
voxelization of surfaces.

2. BASIC DEFINITIONS

Let Z? be the subset of the 3D Euclidean space R® that
consists of all the points whose coordinates are integers.
This subset is called the integer lattice or the grid for short.
The Vereonoi neighborhood of a grid point p is the set of
all points in R® that are at lcast as close to p as to any
other grid point. The Voronoi neighborhood of a 3D grid
point is a closed axis-aligned unit cube known as a voxel.
The union of all the voxels tessellates R?, and the interiors
of any two voxels are disjoint. Given a function from Z*
to {0, 1}, we call the voxels on which the function takes
the value 1 “black™ voxels, representing objects, and the
others are called “white” voxels, representing the transpar-
ent background.

Two voxels are 26-adjacent if they share just a vertex,
just an edge, or just a face. Every voxel has 26 such adjacent
voxels defining the 26-neighborhood of the voxel: 8 share
a vertex (corner) with the center voxel, 12 share an cdge,
and 6 share a face. Accordingly, face-sharing voxels are
defined as 6-adjecent, and edge-sharing and face-sharing
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voxels are defined as 18-adjacent. The prefix N is used to
define the adjacency relation, where N € {6, 18, 26}. An
N-path in a set of voxels X is a sequence of voxels all in
X such that consecutive pairs are N-adjacent. A set of
voxels A is N-connected if there is an N-path in A between
every pair of points in A. An N-connected component is a
maximal N-connected set.

A common scenario in 2D discrete space is an 8-con-
nected closed curve with an 8-connected ‘‘background”
penetrating from one side of the curve to the other. To
avoid such a scenario, it has been the convention 1o define
opposite types of connectivity for the white and black sets
[14]. Opposite types in 2D space are 4 and 8, while in 3D
space 6 is “‘opposite” to 26 or 18. However, for surfaces
in 3D, the situation is much more complex because a sur-
face has important topological properties which cannot be
stated solely in terms of N-conrnectedness. In this paper,
the term “‘discrete surface™ is used for any set of voxels
that is intended to be a voxelization of a continuous surface.
We focus on and formally define (in Section 4) a well-
voxelized discrete surface, which is a successful discrete
approximation of a continuous surface in terms of its topol-
ogy and geometry.

3. HOLES, CAVITIES, SIMPLE POINTS, AND
PENETRATION

Let 3 be a set of all voxels whose centers form the set
(D EZP Ixp=x=x,¥=y=y,0=z=0} (1)

The border of £ is all voxels {x, y, z) such that at least
one of the following is true: x € {x, X1}, ¥ € {¥o, 1}, 2 €
{z0, z1}. A set of voxels (pixels) B N-surrounds a set of
voxels (pixels) A if any N-path vy, vi. ..., U, from o, €
A to the border of 2, must meet B (i.e., there is an { such
that v; € B). Let A be a component of ¥ — B that is N-
adjacent to B. When B N-surrounds A in 2D space, we
say that A is a hole in B. If B N-surrounds A in 3D space,
then A is a cavity in B.

The 2D analog of a 3D cavity is a hole, but a 3D hole
is different from a 3D cavity. A solid torus in 3D has one
hole and no cavities, while a hollow torus has an additional
hole introduced by the cavity. It is actually difficult to
define a hole in 3D; intuitive definitions are given by Kong
and Roscoe [12]. If a component has no holes, it is a simply
connected component. The Euler number of a 3D set is
defined as the number of components in the set minus the
number of holes plus the number of cavities.

A simple point is a point whose removal does not change
the topology of the set; in particular, it does not change the
Euler number of the set. In 2D space, a formal definition is
simpler than in 3D since, for example, in 3D the deletion
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a b
Simple ,
P Simple
FIG. 1. (a) The black set 8-separates the white set; (b} the black set

4-separates the white set. The two sets contain a simple pixel (voxel).
(Whenever the extension to 3D is straightforward, the figures and exam-
ples in this paper are shown in 2D rather than in 3D.)

of a voxel might break one hole but might introduce an-
other. For more details, see [16, 26].

The above definitions attempt to define discrete versions
of the topological concepts used in continuous space. The
following definitions deal with the penetration of a curve
through a surface. Loosely speaking, we use the term con-
tinuous surface to denote a set in 3-space that consists of
one or more ‘“‘sheet-like” structures.

A continuous curve that penetrates a continuous surface
must meet the surface at some point p. However, a curve
that meets a surface does not necessarily penetrate through
it; the curve may only meet the surface at a tangent point
without passing through it. To distinguish between the two
cases, we define B(p, €) to be an open ball of radius ¢
centered at p. A curve a peretrates through the surface S
at a point p, if for all sufficiently small e, @ meets two
different components of B(p, e} — §. That is, o passes
through § at p. However, if « meets neither component,
o coincides with § at p. In the following sections the term
penetration is used for either penetration or coincidence.
We have also developed the notion of a discrete penetra-
tion, and it will be discussed in Section 4.

Recall that we have defined a voxel as a continuous
space unit. Let A be a set of voxels; the union of 4, UA,
is a continuous piece of space defined by the discrete set
A. The superscript d is added to § to mark some discrete
set representing a continuous surface §. It is not an opera-
tor nor does $¢ have any particular properties. Our goal,
however, is to suggest conditions which guarantee $7 to
be a discrete analog of the continuous surface S.

4. SEPARATION, COVER, AND TUNNEL-FREENESS

Let 59 be a subset of a set of voxels X. If X — §7is not
N-connected, then $9 is said to be N-separating in X (see
Fig. 1). We say that a set is N-separating if it is N-separating
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FIG. 2. Two 6-connected sets of voxels. The arrows show where (a) a 6-path and (b) an 18-path of the “background™ voxels can pass through

the sets,

in2. fX=TUYUZand T, Y, and Z are mutually
disjoint, and every path connecting a voxel in ¥ to a voxel
in Z meets T, then we say that T N-separates Y and Z in
X. The property of N-separating in X is useful when the
set of voxels S7 is a voxelization of a continuous surface
S such that UX — § is not connected (for example, X is
equal to X and § is an infinite plane passing through UX).
If X is the entire set of voxels X, then N-separating is
relevant only to closed surfaces or to “infinite” surfaces
that partition the space. N-separating does not hold for
open objects such as an open cylinder or a disk, or when
dealing with surfaces which have boundaries that do not
meet the border of 3.

If §¢is N-separating in %, we would then expect §¢ to
be N-separating in any X such that §¢ C X. But some
difficulties might arise, especially when X is small and
might not meet one of the components of 2 — $7. Note
that N-separating is a topological property and does not
reflect upon how close 59 is to S.

In 21D, an 8-connected simple ciosed curve is 4-separating
and a 4-connected simple closed curve is 8-separating (8-
separating is also 4-separating), except in the case of very
small curves that are contained in a unit lattice square.
This follows from the digital Jordan curve theorem (see
Rosenfeld’s book [23]). Although 6 is an opposite connec-
tivity type to 26 or 18, there are no analogous results in
3D space [13, 17, 21, 22], where there is no pair (M, N)
for which M-connected implies N-separating and there is
no natural linear order among the discrete points. A single
voxel is a simple example of a 6-connected set that is not
6-separating. Figure 2 presents two applied examples of 6-
connected sets, where a background path goes through
what intuitively appears as a surface and connects what
seems to be the two sides of a 6-connected set. Figure 2a
shows a 6-connected set which is not 6-separating (and
thus neither 18- nor 26-separating), while Fig. 2b shows a
6-connected set which is not 18-separating (and thus not
26-separating).

Let A be an N-separating set such that % — A has exactly

two N-components. An N-simple voxel in A is a voxel v
such that 4 — v is N-separating (see Fig. 1). An N-separat-
ing surface is called N-minimal if it does not contain any
N-simple voxels. A cover of a continuous surface is a set
of voxels such that every point of the continuous surface
lies in some voxel of the cover (see Fig. 3a). S covers §
if and only if § C US? A cover is said to be a minimal
cover if none of its proper subsets is also a cover. As a
consequence, every voxel in a minimal cover meets the
continuous surface.

Given a continuous surface §, there is a unique set S
called the supercover of 8, which is the set of all voxels
that meet § (see Fig. 3b). Recall that we have defined the
extent of a voxel to include its boundary, and the su-
percover may include voxels that touch the surface at only
one point. Thus, the supercover is not necessarily minimal,
because the boundary of one voxel meets other vozels.

Let § be a continuous surface such that R® — § has
exactly two connected components, 7 and Q. Let f¢ and
04 be the nonempty set of all voxels wholly contained in
fand O, respectively.

TheoreM 1. S is N-separating in 2.,
. .. 3 §:¥:_ : :
lia i
o 7
i §§*
7] ¥ R E
7 e i
a b
FIG. 3. {(a) A cover set of a continuous surface; all its voxels meet

the surface, while (b) the supercover of a eontinuous surface consists of
all the voxels that meet the surface.
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Proof. The definitions of §¢, I and 07 yield §* =
3 — (I* € 0. It is enough to show that there is no N-
path between I and O, for N € {6, 18, 26}. Assume, to
the contrary, that there is an N-path IT in & — §* from
v € M tow & O° Then, there is a continuous curve a
wholly contained in UII from a point in / to a point in O.
Since [ and O are two disjoint components of R? — §, &
must meet § at some point P & UIL From the definition
of §¢, p € US", contradicting the fact that p € UIL. =
(Note that the theorem is also true in 2D space.)

Unlike the supercover, a cover, and in particular a mini-
mal cover of S, does not necessarily separate I¢ and O“.
There may be some points on S which meet more than
one voxel (e.g., Fig. 3b} and thus can be covered by one
voxel, but at the same time can be included in other voxels.
These singular points are defined as follows: a point p is
said to be a singular point in US? if UV(p, §9) — {p} is
not simply connected, where V(p, §9) is the subset of §¢
of all voxels that include p.

Let 89 be the set of voxels generated by some voxeliza-
tion algorithm of 8. The voxelization of § strives to include
only voxels close to §, that is, §* C §*. Thus, we define a
partial cover as a connected subset of a minimal cover. If
§% is a partial cover of §,thenv € S* = v N § # &
Consequently, we require $¥ to be a partial cover of § to
prevent the voxelization from being too coarse. Note that
a partial cover is not unique. While we do not want to
impose many restrictions of §9, we would clearly like $¢
to N-separate I? and O“.

In our discussion, the meaning of f and O is the inside
and outside of a surface. As mentioned before, N-separat-
ing fails to deal with borders, in which case the surface
does not have two sides. The following definition imposes
a separation property without being restricted to surfaces
that have two sides. In essence, it prevents a discrete pene-
tration of the background voxels where there is no analo-
gous continuous penetration.

First, let C{Hl} be the union of straight line segments
that join the centers of consecutive voxels in an N-path L
Thus C(IT) is a polygonal are (a polyline) of £ — 1 elements,
where & is the number of voxels in the N-path I1. A set
of voxels §7 is N-tunnel-free with respect to § if for every
N-path 11 in 2 — §9, C(TT) does not penetrate S. By an N-
tunnel through S, we mean an N-path Ilin 3 — $¢ such
that C{IT) penetrates S.

If in the above definition of N-tunnel-free we replace
“C(11) does not penetrate §* with “there is no (continuous)
curve in UII that penetrates S,” then a set of voxels that
is N-tunnel-free with respect to S would necessarily be a
cover of S. An advantage of the above definition of N-
tunnel-free is that it allows us to apply the concept to
voxelizations which are not covers. A coverage require-
ment is especially restrictive for thin surfaces such as 6-
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(c) B (d)

FIG. 4. A path (in light gray) from w to v. An unrestricted curve in
the tupnel may peneirate the continuous surface but pot necessarily the
discrete surface (a), but the polygonal arc avoids small nonsignificant
penetrations (b). In the case of a true penetration (c), the polygonal arc
also penetrates the continuous surface (d).

tunnel-free surfaces (see 2D examples in Fig. 4). The con-
tinuous curve C(I1) enables penetration through some
limited parts of 5. However, there are some situations
where C(I1) penetrates very small parts of § which are
close to the surface edge (see example in Fig. 5).

Note that the voxelization of an N-tunnel-free $¢ is not
only with respect to its topology (separating) but also with
respect to geometry, as it guarantees the discrete surface
to be close to (almost covering) the continuous surface,
which is a geometric property. Actually, only smail protru-

FIG. 5. The continuous curve C(IT) might penetrate small parts of
the continuous surface which are close to the surface edge.
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FIG. 6. Two possible discrete representations of the same surface.
{(a) seerns to better approximate the surface than (b).

sions within a voxel (Fig. 5) are allowed by the tunnel-free
definition. A discrete surface §9, which is an N-tunnel-
free partial cover of a connected surface S, is said to be
well voxelized.

A well-voxelized surface is not unique; for example, the
two voxelizations of the curve in Fig. 6 are tunnel-free
(they are 4-tunnel-free in 2D space). Intuitively, that in Fig.
6a seems to better approximate the curve, while, formally, a
metric needs to be defined. One possible metric is Q =
Zoes!D(v, §), where D(v, ) is the {minimal) Euclidean
distance between the center of v and the surface S. Then,
the best voxelization of § minimizes Q over all possible
well-voxelizations of S.

Unlike the definition of separating, the definition of tun-
nel-free is valid for any continuous surface and does not
assume that the continuous surface has two sides. Clearly,
the existence of 6-tunnels implies the exisience of 18-tun-
nels, and the existence of 18-tunnels implies the existence
of 26-tunnels. Similarly, the absence of 26-tunnels implies
the absence of 18-tunneis, which implies the absence of 6-
tunnels. Whenever a surface is 26-tunnel-free, we simply
write tunnel-free with no prefix since all types of tunnels
are absent. Now we can state theorems stronger than Theo-
rem 1:

Tueorem 2. $% is tunnel-free.

Proof. Assume, to the contrary, that there is an N-path
IT in the complement of §“ which contains a continuous
path which meets § at a point p. However, from the defini-
tion of 5% we get p € US", contradicting the fact that
peVUIL =

CoROLLARY. Let w be a set of voxels such thar S N
U(Z - w) = &, wis tunnel-free.

Proof. 8" C w, and the property of being tunnel-free
is preserved under the superset operation. ®

THEOREM 3. Let 8 be a continuous surface such that
UZE — S has two components, 1 and O. We assume that
there are two voxels, w and v, that do nor meet the surface
and w C Land v C O. Let 89 be N-tunnel-free with respect
to 8. 8¢ is N-separating. -

Proof. 'We have to show that 5 — §¢ has two compo-
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nents. It is enough to show that w and v are not connected
by any N-pathin % — $9 Assume to the contrary that there
is an N-path IT connecting w and v in 3 — $% Then the
continuous curve C(IT) connects w and v and must pene-
trate §, contradicting the definition of N-tunnel-free. =

We have mentioned before that there are many im-
portant topological properties that cannot be stated only
in terms of N-connectedness. In 2D, we have the two fol-
lowing results which describe the relation between connec-
tivity and tunnel-freeness:

Let Il be a set of pixels such that every pair of pixels in
[T that are 8-adjacent but not 4-adjacent has a corumon 4-
neighbor in [1. Then IT is 8-tunnel-free with respect to any
set o C UIL

Let 1 be a set of pixels and let o be a plane set such
that each point in @ is less than 1 unit away from the center
of a pixel in I1. Then I is 4-tunnel-free with respect to o.

There are no analogous results for 31D surfaces, but we
can get a weaker result. Let §¢ be a 6-connected set of
voxels, and let § C US? be some continuous surface con-
tained in USY. Regard S¢ as some voxelization of S; then
S¢ is 6-tunnel-free. This holds because 6-adjacency does
not have singular points, as 8-, 18-, and 26-adjacency have.

5. THE RELATIONSHIP BETWEEN DIFFERENT SETS
OF VOXELIZED SURFACES

We have introduced above the separating and coverage
propertics and defined tunnei-free surfaces. We have also
defined the supercover and proved that it is separating and
tunnel-free. Figure 7 depicts the relationships among these
discrete surface sets (for the voxelizations of typical closed
surfaces). Separation implies neither coverage nor tunnel-
freeness. Separation relates only to the topology preserva-
tion of the discrete surface with respect to the continuous
one. On the other hand, as mentioned above, a cover does
not guarantee separation. Figure 8 shows the relationships
among the tunnel-free sets. Note that coverage implies 6-
tunnel-freeness.

For a particular continuous surface S, such that R? — §
has exactly two connected components, { and O, there are

supercover

FIG. 7. The relationship among different voxelizations of closed sur-
faces.
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6-free
18-free

6-free

ng _cover

cover

simple

non simple

FIG. 8. The relationship among different sets of tunnel-free surfaces.

many sets that satisfy the coverage property and many that
satisfy the separating property. Let $¢ be an N-separating
minimal cover of S. In most cases, 57 is also N-tunnel-free,
but since the property of separating is not local and tunnel-
freeness may not preserve the original topology of §, 5¢
is not necessarily N-tunnel-free.

A tunnel-free surface is not necessarily a cover because
a small (uncovered) protrusion of the continuous surface
into a voxel is not considered by the tunnel-free definition
(as in Fig. 9). However, except for small protrusions, 26-
and 18-tunnel-free surfaces cover the continuous surface.
But a 6-tunnel-free surface, similar to an 8-connected path,
skips over small segments of the continuous object and
does not provide a cover.

A tunnel-free surface is not necessarily separating be-
cause the original continous surface may not be closed.
A tunnel-free voxelized surface provides local separation
{topology preserving) and is geometrically close enough
to the continuous surface. 1f coverage is desired too, a
more restrictive voxelization is needed and, consequently,
more computation is involved. Assume a surface S such
that = — S has exactly two components. In practice an
efficient voxelization of §, in terms of time and space,
should produce an N-minimal surface. An N-minimal N-
tunnel-free surface, with or without the coverage property,
is a successful voxelization, but this is more restricted than
a well-voxelized surface, which is just a tunnel-free partial
cover of S.

Uncovered voxel
in a tunnel-free surface

FIG. 9. A small part of a tunnel-free surface may not be covered.
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6. SLICEWISE SEPARATING PROPERTIES

Ideally, the voxelization §¢ of a continuous surface S is an
N-tunnel-free partial cover. However, such a voxelization
algorithm can be computationally expensive. Separating,
on the other hand, is easier to achieve. The exact location
of the continuous surface is not required for separation.
Separation is defined in order to separate two sets, where
the actual goal is to separate the two sides of the continuous
surface. However, it is not easy to know what the two sides
of a surface are just by a local operation. Moreover, some
surfaces, such as a Mobius strip, have only one side. In
this section, new sufficient conditions for N-separating are
developed based on 2D properties, which are easier to
provide. A slice is defined as a set of all voxels with one
constant coordinate component. The slice is, thus, parallel
to one of the primary axis planes. We denote by C* an x-
slice parallel to the yz primary plane. Similarly, a slice C¥
and a slice C* are parallel to the xz and xy planes, respec-
tively.

THEOREM 4. Let TY be a set of voxels and let 14 and Q¢
be a partition of 2 — T9. If for every \-slice C' such that
e x,y,z}, TN C 4-separates 19 N C-and O N C, then
TY 6-separates 1° and O°

Proof. Assume to the contrary that there is a 6-path
connecting /¢ and O¢. Then there must be two 6-adjacent
voxels v and w in the 6-path, such that v € /¢ and w €
0. v and w differ by only one coordinate value, and thus,
there is a slice C" such that v U w € C%, contradicting the
fact that 7¢ N ' 4-separates [ N C'and 09 N C, for any
slice C". m

The requirements in Theorem 4 can be relaxed by con-
sidering only two types of slices, because if v and w are 6-
adjacent, then v U w € Chand v U w € C, where I} #
L. That is, the 6-path can be detected along either I; or L.
By testing only two (out of three) types of slices, it is
guaranteed that any 6-path can be detected. Without loss
of generality, the Z-slices can be avoided.

TuEoREM 5. Let T9 be a set of voxels and let I8 and O°
be a partition of % — T If for every l-slice C\, such that
1€ {x vy}, TY N C d-separates 1 N C and O? O C, then
T9 6-separates 1¢ and O

Theorem 4 can be extended to characterize 18-sepa-
rating:

THEOREM 6. Let T be a set of voxels and let 1° and O°
be a partition of % — T If for every l-slice C! such that
1 {x, v, 2}, T N C' 8-separates I° N C and O N C', then
T4 18-separates 14 and O°

Unfortunately, 26-separating is inkerently a 3D property
and a 26-path cannot be characterized by inspecting slices.
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a b

FIG. 10. (a) A 6-connected set with a 26-tunnel, (b) consists of two
“slices” of 4-connected paths.

The 2 X 2 X 2 configuration of voxels shown in Fig. 10 is
an example of a 6-connected object whose intersection
with any slice is a 4-connected path; yet there is a 26-
connected path of background voxels through the discrete
surface. This special configuration is dencted by H?®, This
H? is the only 2 X 2 X 2 configuration (up to rotations
and mirror transformations) which does not contain an 18-
path but does contain a 26-path:

Tueorem 7. Let T be an 18-separating set of voxels.
If none of its 2 X 2 X 2 subsets form an H* in any orienta-
tion, then T is 26-separating,

Proof. Immediately from the definition of H*. =

We can also define diagonal slices by which 26-separating
can be characterized. Let a (minor) diagonal slice vy be the
set of voxels (x, y, z) such that the difference between two
of its coordinates is constant {(e.g., x — y = ). The set of
voxels of a # slice can be mapped onto a 2D slice CF by
a one-to-one function F. For example, a diagonal slice
X — z = vy can be “flattened” onto a 2D slice F(x, y, 7) =
{(x, v). Three-dimensional corner adjacent voxels in -y are
2D-corner adjacent in C*. Thus, a 26-tunnel is mapped
onto an 8-tunnel in C*:

Taeorem 8. Let T be a set of voxels and let 1¢ and
O be a partition of 3 — T9. Let T% 18-separate 14 and O
If for every diagonal slice y, F(TY N ) 8-separates F(1¢ N
v) and F(O! N ), then T9 26-separates 19 and O°.

7. TOWARD WELL VOXELIZATION

In this section we develop sufficient criteria for the vox-
elization of an N-tunnel-free surface, aiming at generating
a minimal tunnel-free coverage, which can be referred to
as a well voxelization of the continuous surface S. The
voxelized set §¢ can be exactly the supercover and thus is
guaranteed to be tunnel-free. However, for some surfaces
S, such voxelization is too coarse because some points on
the continuous surface are met by up to eight voxels, and
the voxelization of S might be too thick with an excess of
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simple voxels. That is, there is a subset of the supercover
which is still tunnel-free. For the purpose of deriving such
a subset, the voxelization algorithm assumes a refined
definition of a reduced-voxel marked R-voxel. The new
refined definition reduces the number of voxels that can
meet the same point. Recall that the voxel has been defined
as a closed unit cube that includes its boundary. The aggre-
gate of all voxels tessellates the space where every face of
a voxel meets and is shared by the face of a neighboring
voxel. Similarly, the edge of one voxel is common to three
other voxels, and a corner of one voxel meets seven other
voxels. The idea is to reduce the amount of overlapping
among adjacent voxels in a way that preserves the funnel-
free property of the supercover, while on the other hand,
ensuring that each voxel in the new supercover is not an
N-simple voxel

Let an R-pixel be the unit square area centered at a
lattice point which includes only a part of its boundary (as
shown in Fig. 11): two of the edges, one horizontal and
one vertical, and only two of its corners, one from each
diagonal. An R-pixel at integer coordinates (7, j) is denoted
by P(i, j), which is the set

{x,9)|[i—05<x=i+05j~05<y=j+05} )
—{(i +05,j-0.5)}

Now each edge meets only one R-pixel and each corner
point meets exactly two R-pixels. Consequently, with the
R-pixel boundary definition, the new supercover, denoted
by S, includes fewer pixels, but Theorem 2 still holds
because S C S%, and §% is tunnel-free as the following
theorem states.

THEOREM 9. Given a continuous set § € R2, let §° be
the pixelization of S such that §° = {P(i, j) | P(i, j) N
S # Y. 8% is wunnel-free.

Proof. Assume to the contrary that there is an N-tunnel
1T in the complement of §% such that C(I1) meets § at a
point p. From Theorem 2 we know that 5 is tunnel-free.

c ]
f—I
P!
o ]

FIG. 11. ({a) The boundary of a single pixel, and (b} the relationship
among adjacent pixels.
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P7

FIG. 12. A possible definition for the R-voxel boundary: all faces
incident with P6, the thick edges (P6, P2), (P§, P7)., (P6, P3), (PS5, P8),
(P5, P1)}, and (P8, P7), and all black vertices (P8, P7, P5, P2).

Thus, p must be in $¢ ~ $°, which is on the exterior of a
pixel. Therefore, p is on some segment connecting two
consecutive pixels v and w in C(IT). v and w are either
edge adjacent or corner adjacent, If v and w are edge
adjacent, then p is on the edge between them. Since by
definition an R-pixel contains one vertical edge and one
horizontal edge, one of the reduced pixels v or w must
meet S at p and must be included in S%, contradicting the
assumption. If v and w are corner adjacent, then p is on
the pixel corner connecting between them. Since by defini-
tion an R-pixel contains one corner on each main diagonal,
one of the reduced pixels must meet § at p and must be
included in $%, contradicting the assumption. ®

Note that two R-pixels still overlap at an upper corner
point. Taking only one corner prevents tunnels if the same
connectivity is used for the background pixels and the
foreground pixels [19], but we do not want to limit the
behavior of the background. The new definition of the R-
pixel boundary is aimed only at redefining the set §“ to
the set 5% In order to make §% a canonical rasterization
[3] (loosely speaking, the canonical rasterization of a 2D
curve is the minimal set of 4-connected pixels pierced by
the continuous curve), a “‘patch” has to be added to the
8% definition. A similar approach has been used by Hobby
[6], who has added pixels in the special case of ambiguity.
Rather than adding pixels when necessary, we can omit
pixels when unnecessary. The overlapping can be regarded
as caused by the upper left corner. This closed corner has
been added to prevent tunnels when the continuous line
passes between diagonally adjacent R-pixels.

We define the R-voxel boundary in 3D in a similar way,
The unit cube boundary contains three pairs of faces, six
pairs of edges, and four pairs of corner points. One of each
pair is selected to be included in the new R-voxel definition.
A possible definition is given in Fig. 12. With this definition,
the overlapping between adjacent R-voxels is reduced and
the superset is thus much thinner but still 26-tunnel-free.

COHEN-OR AND KAUFMAN

Thus, we mark R with the subscript 26 to indicate that
with the Rs¢-voxel the superset is 26-tunnel-free. However,
in rare cases, it may contain simple voxels.

Some modification to the R-voxel definition can yield
even thinner surfaces, which guarantees only 18-tunnel-
free or just 6-tunnel-free. We can define an R;s-voxel simi-
tarly to an Rs-voxel, except that all the corner points are
excluded from the R,s-voxel boundary. Then every point
in R? meets one R g-voxel either inside or on a face, meets
two Rig-voxels on an edge, or is located at the corner of
eight adjacent Rig-voxels, where it is actually in none of
them. Assume a continuous surface § that includes more
than one 3D point. If $% is not tunnel-free, some 18-path
{1 must contain a continuous path C(IT) which meets S,
say at p. Since p € U (2 — $%) and p € §, from the
definition of the R z-voxel boundary and the definition of
5S4 p must be on a corner of eight voxels. However, this
results in a contradiction since I is an 18-path, and the
point p must be on a face, on an edge, or in the inner
volume of a voxel.

Excluding all edges from the R;s3-voxel boundary, we
get the Rg-voxel which, in a similar way, makes §° a 6-
tunnel-free surface. This is, however, sometimes too re-
strictive: if only 6-connectivity is used for the background,
then $9 can be a thinner set and not necessarily § C U 59,

In summary, we have found sufficient conditions for a
set of voxels to be N-tunnel-free by creating a cover while
reducing the number of N-simple voxels. For 18- and 26-
tunnel-free surfaces, the N-simple voxels car be avoided
with some local handling, as mentioned above. However,
other definitions should be developed to generate a mini-
mal or even a close-to-minimal 6-tunnei-free surface.

8. CONCLUSIONS

We have seen that a discrete voxelized surface cannaot
be properly described by its connectivity alone because
this does not imply a proper voxelization of a surface.
Separation, however, is just a topological property. We
have thus introduced the coverage property, which indi-
cates that the voxelized surface is “‘close™ to the continuous
surface. Since coverage does not guarantee separation and
also might be too restrictive, we have defined tunnel-free
surfaces which have stronger properties. In fact, tunnel-
freeness is in some sense a local analog of the global prop-
erty of “separating.” Tunnel-freeness alse guarantees that
the discrete surface is close to the continuous surface with-
out necessarily being a coverage. We have also shown
that slicewise properties provide necessary conditions for
scparation, and we have devised conditions for a simple
cover, which guarantee tunnel-free surfaces. The concepts

.developed in this paper form a discrete geometry frame-

work for devising algorithms for properly voxelizing sur-
faces.
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