
Θ-Hilbertianity and strong Θ-Hilbertianity*

S. Fried�

D. Haran

Abstract

Θ-Hilbertianity and its strengthening, strong Θ-Hilbertianity, are two generalizations
of Hilbertianity inspired by Jarden’s definition of p-Hilbertianity and strong p-Hilbertianity.
Jarden has asked whether the two notions defined by him are actually the same. We ad-
dress this question in its more general version of Θ-Hilbertianity and show that for PRC,
and, in particular, for PAC fields, p-Hilbertianity and strong p-Hilbertianity coincide.

1 Introduction

A field K is called Hilbertian if the following condition holds: For every irreducible poly-
nomial in two variables f(t,X) ∈ K[t,X], separable in X, there exist infinitely many
a ∈ K such that f(a,X) is irreducible in K[X]. Fields with this property are called
Hilbertian because of Hilbert’s Irreducibility Theorem ([?, Satz IV]): Number fields are
Hilbertian.

The paramount importance of Hilbertian fields lies in applications to Galois theory.
Namely, t 7→ a defines a K-place of the field of rational functions K(t) with residue
field K. If f(t,X) generates a Galois extension F of K(t) with Galois group G, then
this place extends to a K-place of F ; let Fa denote its residue field. Now, if f(a,X) is
irreducible over K, then [F : K(t)] = [Fa : K]. In particular, the Galois group of Fa/K
is then isomorphic to G. (If f(a,X) is reducible, then, excluding finitely many a ∈ K,
the Galois group of Fa/K is isomorphic to a subgroup of G, uniquely determined by a
up to conjugation.) In fact (see Section ??), K is Hilbertian if and only if for every finite
Galois extension F/K(t) there are infinitely many a ∈ K for which there exists a K-place
ϕ : F → Fa ∪ {∞} with ϕ(t) = a and [Fa : K] = [F : K(t)].

Naturally, such an important notion calls for generalizations. These are many and the
literature abounds:

� Brauer-Hilbertian fields of Fein, Saltman, and Schacher ([?]),

� the 0-Hilbertian fields of Corvaja and Zannier ([?, Section 13.5]), generalized to

� g-Hilbertian fields by Fried and Jarden ([?, Section 13.5]), based on the alternative
definition of Hilbertian fields by thin sets of Sansuc and Colliot-Thélène (see [?,
Section 13.5]),

� variants such as RG-Hilbertian fields introduced by Fried and Völklein in [?] and
investigated by Dèbes and the second author in [?],

� real Hilbertian fields of [?],
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� fully Hilbertian fields of Bary-Soroker and Paran ([?]),

� Σ-Hilbertian fields of Fried and Jarden ([?]), and

� p-Hilbertian fields of Jarden ([?]), generalized to

� Θ-Hilbertian fields in [?].

The last three examples consider the above mentioned specialization property of Galois
groups and require that it hold only for certain groups. This is very natural. For example,
let K be a Hilbertian field and p a prime number. Consider Kp, the fixed field of a p-
Sylow subgroup of Gal(K). Clearly, Kp cannot be Hilbertian since it does not admit
Galois extensions with Galois groups that are not p-groups. Nevertheless, Jarden [?]
proves that Kp has the specialization property for p-groups and calls fields with this
property p-Hilbertian. The proof actually shows that Kp possesses a seemingly stronger
property, which Jarden calls strong p-Hilbertianity: A finite Galois extension with an
arbitrary group can be specialized to one of its p-Sylow subgroups.

Similarly, if K is a Hilbertian field, then Ksolv, the maximal pro-solvable extension of
K, has no proper solvable extensions and therefore cannot be Hilbertian. But it has the
specialization property for groups that have no nontrivial solvable quotient ([?, Theorem
2.6]). Moreover, any finite group G can be specialized to its subgroup Gsolv, the kernel of
the quotient map from G onto its maximal solvable quotient.

The main insight leading to the definition of Θ-Hilbertianity and of its seemingly
stronger version strong Θ-Hilbertianity [?, Definition 2.1] is that both the p-Sylow case
as well as the solvable case may be treated simultaneously by using Sylowian maps –
maps that assign to every profinite group G the conjugacy class of some closed subgroup
of G such that certain conditions are satisfied. Every Sylowian map Θ gives rise to a
class C(Θ) of finite groups and, in essence, Θ-Hilbertianity means that the specialization
property holds for all Galois groups G such that G ∈ C(Θ), while strong Θ-Hilbertianity
means that every finite Galois group G can be specialized to one of its subgroups that
belong to Θ(G). This is indeed a strengthening, since C(Θ) consists of all finite groups G
such that Θ(G) = {G}.

Jarden ([?]) asks whether every p-Hilbertian field with pro-p absolute Galois group is
strongly p-Hilbertian. In this work we address this question in its more general version
of Θ-Hilbertianity. We show that for PAC fields whose absolute Galois group is pro-C(Θ)
and, under certain additional conditions, also for PRC fields, Θ-Hilbertianity and strong
Θ-Hilbertianity coincide. From this we deduce a positive answer to Jarden’s question
for PAC and PRC fields with pro-p absolute Galois groups. Whether this is true in the
general case remains an open question.

This paper is structured as follows: In Section ?? we recall the necessary definitions
and make the technical preparations. Section ?? contains our main results.

Notation and conventions. For a field K we denote by Ks its separable closure. If
L/K is a Galois extension of fields, we denote by Gal(L/K) its Galois group; we denote
by Gal(K) the absolute Galois group Gal(Ks/K) of K.

Groups in this work are tacitly assumed to be profinite groups, their subgroups are
assumed to be closed and all the homomorphisms between profinite groups are continuous.

If ϕ is a place of a field F and E is a subfield of F , we denote by E the residue field of
E at the restriction of ϕ to E (omitting the reference to ϕ, which will be clear from the
context). For a field K we denote by K(t) the field of rational functions in one variable
over K.

Acknowledgement We wish to express our gratitude to Lior Bary-Soroker for inspir-
ing conversations and to the anonymous referees for their valuable remarks and suggestions
that helped us to improve this work.
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2 Preliminaries

Unless otherwise stated, the content of this section is taken from [?] and [?].

2.1 Sylowian maps and Θ-Hilbertianity

Sylowian maps are used to define Θ-Hilbertianity, a generalization of Hilbertianity.

Definition 2.1. Let Θ be a map that assigns to every profinite group G the conjugacy
class Θ(G) of a closed subgroup of G. We call the map Θ Sylowian if the following two
conditions are satisfied:

(a) Let ϕ : G→ H be an epimorphism of profinite groups. Then ϕ(Θ(G)) = Θ(H).

(b) Assume U ∈ Θ(G). Then Θ(U) = {U}.
If F/E is a Galois extension, denote by Θ(F/E) the set of intermediate fields E ⊆ E′ ⊆ F
such that Gal(F/E′) ∈ Θ(Gal(F/E)). If F = Es, write Θ(E) instead of Θ(F/E).

Example 2.2. (a) The trivial (resp. identity) map Θ(G) = {1} (resp. Θ(G) = {G})
for all profinite groups G is a Sylowian map.

(b) Let p be a prime number. For a profinite group G let Θ(G) be the conjugacy class of
all p-Sylow subgroups of G (cf. [?, Definition 22.9.1]). It follows from [?, Proposition
22.9.2] that Θ is a Sylowian map.

(c) Let C be a Melnikov formation, i.e. a class of finite groups closed under quotients,
normal subgroups and extensions. For a profinite group G let Θ(G) = {GC}, where

GC =
⋂

N/G, G/N∈C

N.

Thus, GC is the normal subgroup of G such that G/GC is the maximal pro-C quotient
of G ([?, Definition 17.3.2]). By [?, Lemma 3.4.1](b) and (d), Θ is a Sylowian map.

Definition 2.3. Let Θ be a Sylowian map. Define

C(Θ) = {U | U ∈ Θ(G), where G is a finite group}.

Clearly, by Definition ??(b), C(Θ) = {G |G is a finite group such that Θ(G) = {G}}.

Example 2.4. Let us describe C(Θ) explicitly for each of the Sylowian maps in Example
??:

(a) C(Θ) consists of the trivial group (resp. of all finite groups).

(b) C(Θ) consists of all p-groups.

(c) C(Θ) consists of the class of finite groups that have no nontrivial quotient in C.

By [?, Proposition 1.14], C(Θ) is a quasi-formation (cf. [?, Definition 3.1]). In partic-
ular, it is closed under taking quotients. In the sequel we will only use the latter property
which is necessary for the consideration of pro-C(Θ) groups (cf. [?, p. 19]).

The following lemma is taken from the first author’s dissertation ([?]):

Lemma 2.5. Let F/E be a finite Galois extension and let ψ be a place of F , unramified
over E, with valuation ring O. Write x̄ for ψ(x) for every x ∈ O. Then:

(a) For every σ̄ ∈ Gal(E) there is a unique σ = ψ∗(σ̄) ∈ Gal(F/E) such that for all
x ∈ O:

σ(x) = σ̄(x̄). (1)

Moreover, ψ∗ : Gal(E)→ Gal(F/E) is a group homomorphism.
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(b) We have [F : E] = [F : E] if and only if ψ∗ is surjective.

(c) Let E′ be an intermediate field of F/E. Then

ψ∗(Gal(E′)) = Gal(F/E′) ∩ ψ∗(Gal(E)).

Proof. (a) Let Dψ (resp. Iψ) be the decomposition (resp. inertia) group of ψ in F/E.
The assumption that ψ is unramified over E means, by definition, that the extension F/E
is separable and Iψ is trivial ([?, p. 25]). By [?, Lemma 6.1.1(a)], F/E is normal and
therefore Galois and there exists a short exact sequence

1→ Iψ → Dψ → Gal(F/E)→ 1.

Moreover, the isomorphism Dψ → Gal(F/E) is given by τ 7→ τ̄ , where τ̄(x̄) = τ(x)
for all x ∈ O. Let Ψ: Gal(F/E) → Dψ be its inverse. Then for all σ̄ ∈ Gal(F/E) and

x ∈ O: σ̄(x̄) = Ψ(σ̄)(x). Finally, let ψ∗ = Ψ ◦ res : Gal(E) → Dψ, where res : Gal(E) →
Gal(F/E) is the restriction map. Then for all σ̄ ∈ Gal(E) and x ∈ O we have

ψ∗(σ̄)(x) = Ψ(res(σ̄))(x) = res(σ̄)(x̄) = σ̄(x̄).

To show the uniqueness of ψ∗(σ̄) for σ̄ ∈ Gal(E), notice that if τ ∈ Gal(F/E) satisfies
(??), i.e. τ(x) = σ̄(x̄) for all x ∈ O, then τ ∈ Dψ. As Dψ

∼= Gal(F/E), ψ∗(σ̄) is unique.
(b) We have seen in (a) that the image of ψ∗ is the decomposition group Dψ which

has order [F : E]. Thus, the image of ψ∗ is Gal(F/E) if and only if [F : E] = [F : E].
(c) Apply (a) to E′ instead of E. By the uniqueness, the resulting homomorphism

Gal(E′)→ Gal(F/E′) is the restriction of ψ∗ to Gal(E′). Thus, ψ∗(Gal(E′)) ⊆ Gal(F/E′).
Conversely, let σ̄ ∈ Gal(E) with σ = ψ∗(σ̄) ∈ Gal(F/E′). Then σ̄(x̄) = σ(x) = x̄ for every
x ∈ O ∩ E′. Thus, σ̄ ∈ Gal(E′).

In contrast to the standard definition of Hilbertianity (cf. [?, p. 219]), our definition
of Θ-Hilbertianity uses the terminology of places and Galois groups. It is justified by
the following consideration: By [?, Lemma 12.1.6] (with the slight adjustment that the
extension K(T, y)/K(T) in their proof should be required to be Galois), a field K is
Hilbertian if and only if for every finite Galois extension F/K(t) there are infinitely
many a ∈ K for which there exists a K-place ϕ : F → F ∪ {∞} with ϕ(t) = a and
[F : K] = [F : K(t)].

Definition 2.6. Let K be a field and let Θ be a Sylowian map. Let F/K(t) be a finite
Galois extension and let FΘ ∈ Θ(F/K(t)). We denote byHK,Θ(F ) the set of all a ∈ K such
that there exists a K-place ϕ : F → F∪{∞} with ϕ(t) = a and [F : FΘ] = [F : FΘ]. Notice
that HK,Θ(F ) does not depend on the choice of FΘ, which is unique up to conjugation in
Gal(F/K(t)).

We say that K is Θ-Hilbertian if HK,Θ(F ) is infinite for every finite Galois extension
F/K(t) satisfying Gal(F/K(t)) ∈ C(Θ), i.e. Θ(F/K(t)) = {K(t)}. We say that K is
strongly Θ-Hilbertian if HK,Θ(F ) is infinite for every finite Galois extension F/K(t).

In particular, if p is a prime number, we say that K is p-Hilbertian (resp., strongly
p-Hilbertian) if K is Θ-Hilbertian (resp., strongly Θ-Hilbertian), where Θ(G) is the
conjugacy class of p-Sylow subgroups of G, for every profinite group G (Example ??(b)).

Thus, a field K is Hilbertian if and only if it is Θ-Hilbertian, where Θ is the identity
Sylowian map (Example ??(a)).

2.2 Embedding problems and the field crossing argument

Definition 2.7. Let A,B and G be profinite groups. An embedding problem for G
is a pair

(ϕ : G→ A,α : B → A) (2)
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in which ϕ and α are epimorphisms. We call (??) finite if B is finite and split if there
exists a homomorphism α′ : A → B with α ◦ α′ = idA. A weak solution to (??) is a
homomorphism γ : G→ B such that α ◦ γ = ϕ. A weak solution γ to (??) is a solution
if γ is surjective.

Definition 2.8. Let L/K be a finite Galois extension of fields and identify Gal(L(t)/K(t))
with A = Gal(L/K) via restriction. Two special cases are of interest:

(a) Let G = Gal(K(t)) and ϕ = resK(t)s/L. We refer to (??) as a constant embedding
problem over K(t) and call a solution γ : G→ A to (??) regular if F/L is a regular
field extension where F is the fixed field of ker(γ) in K(t)s (cf. [?, Section 4.4]).

(b) Let G = Gal(K) and ϕ = resKs/L. We say that K is ω-free, if every finite embedding
problem for G has a solution (cf. [?, Section 5.10]).

A main ingredient in the proof of our main results is the field crossing argument (cf.
[?, Section 24.1]). It provides a connection between homomorphisms of Galois groups and
places of fields. Our version is more general than the one mentioned (we do not consider
only PAC fields) and tailored to our needs.

Proposition 2.9. Let E/K be a regular extension of fields and let F/E and M/K be
finite Galois extensions. Assume that M contains the algebraic closure L of K in F .

(a) Let γ : Gal(K) → Gal(F/E) be a homomorphism such that resF/L ◦ γ = resKs/L

and Gal(M) ≤ ker(γ). Then there exists a unique homomorphism γ′ such that the
following diagram commutes:

Gal(K)

γ

$$

resKs/M

''
γ′

��
Gal(FM/E)

resFM/F

��

resFM/M// Gal(M/K)∼= Gal(EM/E)

resM/L

��
Gal(F/E)

resF/L // Gal(L/K)∼= Gal(EL/E)

(3)

Moreover, let D be the fixed field of ∆ = γ′(Gal(K)) in FM . Then

(a1) the square in the above diagram is cartesian,

(a2) D is a regular extension of K,

(a3) E ⊆ D ⊆ FM and DM = FM , and

(a4) γ(Gal(K)) = Gal(F/F ∩D).

(b) Let E ⊆ D′ ⊆ FM be an intermediate field, regular over K, such that D′M = FM .
Suppose there exists a K-place ϕ′ : D′ → K ∪{∞}, unramified over E. Extend ϕ′ to
an M -place ϕ of FM and let ψ be the restriction of ϕ to F . Then the homomorphism
ψ∗ : Gal(K) → Gal(F/E) defined in Lemma ??(a) (notice that E = K) satisfies
ψ∗(Gal(K)) = Gal(F/F ∩D′).

Proof. (a) Since F and M are linearly disjoint over L, by [?, Lemma 2.5.3], F and
(EL)M = EM are linearly disjoint over EL. In particular, F ∩EM = EL. Clearly,
F (EM) = FM . Hence, by Galois theory, the square in (??) is cartesian. Since
resF/L ◦ γ = resKs/L, by the universal property of cartesian squares ([?, Proposition
22.2.1(b)]), there exists a unique homomorphism γ′ such that (??) commutes.

Let h : ∆ → Gal(M/K) be the restriction of resFM/M to ∆. We claim that h is
an isomorphism. Indeed, h ◦ γ′ = resKs/M and resKs/M is surjective, hence, h is
surjective. Now, let σ ∈ ∆ with h(σ) = 1, i.e., resFM/M (σ) = 1. There exists τ ∈
Gal(K) such that γ′(τ) = σ. Thus, resKs/M (τ) = 1. Hence, τ ∈ Gal(M) ≤ ker(γ)
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and therefore γ(τ) = 1. Thus, resFM/F (σ) = resFM/F (γ′(τ)) = γ(τ) = 1. Conclude
that σ = 1. Hence, h is injective and therefore an isomorphism.

It follows that DM = FM and M ∩D = K. In particular, D and M are linearly
disjoint over K. Also DM and the algebraic closure M̃ of M are linearly disjoint
over M , since DM = FM is regular over M . By [?, Lemma 2.5.3] D and M̃ (which
is also an algebraic closure of K) are linearly disjoint over K. Hence, D/K is regular.
Moreover, the restriction of resFM/F to ∆ is onto γ(Gal(K)). Therefore, F ∩D is
the fixed field of γ(Gal(K)) in F .

(b) It holds, with respect to ϕ, that D′ = K and M = M , hence

[D′M : D′] ≤ [M : K] ≤ [D′M : D′] ≤ [D′M : D′].

Thus, these inequalities are in fact equalities. Hence, ϕ is unramified over E and
therefore the same holds for ψ.

We wish to apply (a) to γ = ψ∗. First, since ψ is the restriction of an M -place,
Gal(M) ≤ ker(ψ∗). Second, resF/L ◦ ψ∗ = resKs/L. Indeed, let σ̄ ∈ Gal(K) and

x ∈ L. Denote σ = ψ∗(σ̄). Since ψ is an L-place, x̄ = x and σ(x) = σ(x). It follows
from (??) that σ(x) = σ̄(x). This shows that (resF/L ◦ ψ∗)(σ̄) = resKs/L(σ̄).

Now, by the uniqueness of γ′ in (a), necessarily γ′ = ϕ∗ and we obtain from (a)
an intermediate field E ⊆ D ⊆ FM such that Gal(FM/D) = γ′(Gal(K)). By
Lemma ??(c) (where we take E′ to be D′ and F to be FM and use D′ = K),
Gal(FM/D) ≤ Gal(FM/D′) or, equivalently, D′ ⊆ D. As [DM : D] = [M : K], we
have D′ = D. Thus, by (a4), ψ∗(Gal(K)) = γ(Gal(K)) = Gal(F/F ∩D′).

Remark 2.10. The condition that E/K be regular in Proposition ?? can be weakened.1

Indeed, in (b) it is redundant, as K ⊆ E ⊆ D′, where D′/K is regular. In (a) the condition
resF/L ◦ γ = resKs/L implies that resF/L is surjective and hence E ∩L = K. Thus, as L is
algebraically closed in F , K is algebraically closed in E. Therefore, it suffices to assume
that E/K is separable, instead of regular.

3 Main results

The question that we address in this work, namely, whether Θ-Hilbertianity and strong
Θ-Hilbertianity coincide, generalizes a question asked by Moshe Jarden in an unpublished
manuscript [?], where he defines p-Hilbertianity and strong p-Hilbertianity (Definition ??)
for fields with pro-p absolute Galois group.

3.1 PAC fields

Recall that a field K is called pseudo algebraically closed (PAC) if every absolutely
irreducible variety defined over K has a K-rational point. Examples of PAC fields include,
among others, infinite models of the theory of finite fields ([?, Corollary 20.10.5]), infinite
algebraic extensions of finite fields ([?, Corollary 11.2.4]), and the field R(

√
−1), where

R is the field of totally real algebraic numbers ([?, Main Theorem]). It seems that PAC
fields appear for the first time in [?] (without an explicit name).

Since their appearance, PAC fields have been extensively studied and shown to have
many more nice properties, e.g., they are ω-free if and only if they are Hilbertian ([?,
Theorem 5.10.3]). Thus, it may come as no surprise that for PAC fields the answer to
Jarden’s question is positive:

1We thank the referee for this observation.
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Theorem 3.1. Let Θ be a Sylowian map and let K be a PAC Θ-Hilbertian field with
Gal(K) pro-C(Θ). Then K is strongly Θ-Hilbertian.

Proof. Let F/K(t) be a finite Galois extension. We need to show that HK,Θ(F ) is infinite.
Let L be the algebraic closure of K in F and denote A = Gal(L/K). The restriction

maps resF/L : Gal(F/K(t)) → A and resKs/L : Gal(K) → A are both onto A. Let FΘ ∈
Θ(F/K(t)) and let B = Gal(F/FΘ). As Gal(K) is pro-C(Θ), its image A is in C(Θ), i.e.
Θ(A) = {A}. By Definition ??(a), resF/L(B) ∈ Θ(A). Hence, resF/L(B) = A. Thus, FΘ

and L are linearly disjoint over K, and hence FΘ is regular over K. Let α : B → A be the
restriction of resF/L to B.

By [?, Proposition 3.3] the constant embedding problem (resK(t)s/L : Gal(K(t)) →
A,α : B → A) has a solution. Thus, there exists a Galois extension N of K(t) containing
L and an isomorphism θ : Gal(N/K(t))→ B such that α ◦ θ = resN/L.

As K is Θ-Hilbertian and B ∈ C(Θ), there exists a K-place ρ : N → Ks ∪ {∞}
such that K(t) = K and [N : K] = [N : K(t)]. It follows from Lemma ??(a) and (b)
that ρ∗ : Gal(K) → Gal(N/K(t)) is surjective and satisfies resN/L ◦ ρ∗ = resKs/L. Then
γ = θ ◦ ρ∗ : Gal(K)→ B is an epimorphism such that α ◦ γ = resKs/L.

Let M be the fixed field of ker(γ) in Ks. Thus, M/K is a finite Galois extension.
Since α ◦ γ = resKs/L, M contains L. By Proposition ??(a) there is a regular extension
D/K such that FΘ ⊆ D and DM = FM . Furthermore, Gal(F/FΘ) = B = γ(Gal(K)) =
Gal(F/F ∩D). Thus, F ∩D = FΘ.

As K is PAC, there exist infinitely many K-places ϕ′ : D → K ∪ {∞}. Extend such
ϕ′ to an M -place of DM = FM and let ϕ be its restriction to F . Since only finitely
K-places of FM are ramified over K(t) ([?, p. 59]), we may assume that ϕ′ and therefore
also ϕ, is unramified over K(t). By Proposition ??(b), ϕ∗ : Gal(K) → Gal(F/FΘ) is an
epimorphism. Thus, by Lemma ??(b) with respect to ϕ, [F : FΘ] = [F : FΘ].

3.2 PRC fields

In this section we generalize Theorem ?? to PRC fields. Let us introduce the notation
and recall the necessary facts needed to this end (mostly taken from [?]): An extension
E/K of fields is totally real if every ordering on K extends to E. A field K is called
pseudo real closed (PRC) if every absolutely irreducible variety defined over K has
a K-rational point, provided it has a non-singular point over every real closure of K.
Equivalently, for every finitely generated totally real and regular extension E/K there
exist infinitely many K-places ϕ : E → K ∪ {∞}.

Let K be a field. By [?, §6], the set of orderings X(K) of K is a compact, Hausdorff
and totally disconnected topological space with the topology given by a subbase consisting
of sets of the form H(c) = {P ∈ X(K) | c ∈ P} for c ∈ K×. Here P denotes the positive
elements in an ordering. Each of the sets H(c) is open and closed (clopen).

A subset I of a group G is called a conjugacy domain if I =
⋃
σ∈G I

σ.
A field K is called formally real if K admits at least one ordering. A formally real

field is of characteristic 0. In what follows F/E is a Galois extension of fields with F not
formally real. An involution ε ∈ Gal(F/E) (that is, an element of order 2) is real if its
fixed field F (ε) in F is formally real. Denote the set of real involutions of Gal(F/E) by
I(F/E). This is a closed subset of Gal(F/E). By Artin-Schreier theory, every involution
ε of Gal(E) is real and self-centralizing, that is, {σ ∈ Gal(E) | εσ = σε} = {1, ε}.

Suppose E/K is totally real and let P ∈ X(K). Denote the set of involutions ε ∈
I(F/E) for which P extends to an ordering of F (ε) by IP (F/E). For X ⊆ X(K) let
IX(F/E) =

⋃
P∈X IP (F/E). If F is the algebraic closure of E, we write IP (E) for

IP (F/E), etc.
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Remark 3.2. (a) Suppose E = K. Then IP (F/K) is a conjugacy class in Gal(F/K) ([?,
Remark 1.8(a)]). In the general case, IP (F/E) is a conjugacy domain in Gal(F/E). In
fact, IP (F/E) =

⋃
Q∈X(E)
Q⊇P

IQ(F/E).

(b) Let I ⊆ I(F/E) be a conjugacy domain. From [?, Theorems 4.1 and 4.9] it follows
that for every ε ∈ I(F/E) the set Xε = {P ∈ X(K) | P extends to F (ε)} is clopen in
X(K). Hence,

{P ∈ X(K) | IP (F/E) = I} =
⋂
ε∈I

Xε r
⋃

ε∈I(F/E)rI

Xε

is clopen in X(K).
(c) Suppose E = K(t). Then there exists a polynomial g ∈ K[t] such that for every

a ∈ K with g(a) 6= 0 the map t 7→ a extends to a K-place ϕ : F → Ks ∪ {∞} with
ϕ∗(IP (K)) ⊆ IP (F/E) for every P ∈ X(K) ([?, Remark 6.2(b)]).

Finally, let us recall the PRC counterpart of [?, Proposition 3.3]:

Lemma 3.3. [?, Theorem 5.2] Let K be a PRC field. Let L/K be a finite Galois extension
with L not formally real and let π : H → Gal(L/K) be an epimorphism of finite groups. Let
X1, . . . , Xm be a partition of X(K) into disjoint clopen sets. For each 1 ≤ j ≤ m let Ij ⊆
H be a conjugacy domain of involutions such that π(Ij) = IXj (L/K). Then there exists a
regular extension F of L, Galois over K(t), and an isomorphism h1 : Gal(F/K(t))→ H
that maps IXj (F/K(t)) onto Ij that makes the following diagram commutative:

Gal(F/K(t))

resF/L ''

h1 // H

π
zz

Gal(L/K)

Lemma 3.4. Let G = lim←−i∈I Gi be an inverse limit of finite groups with canonical projec-
tions πi : G→ Gi and connecting epimorphisms πji : Gj → Gi for j ≥ i. Let I be the set
of involutions of G and suppose that every δ ∈ I is self-centralizing. Let i ∈ I be such that
1 /∈ πi(I). Then there exists j ≥ i such that for every δ ∈ I the image of the centralizer
of πj(δ) in Gi under πji is {1, πi(δ)}.

Proof. For every j ∈ I with j ≥ i denote

Dj = {(δ, σ) ∈ G×G | δ2 = 1, πi(δ) 6= 1, πi(σ) /∈ {1, πi(δ)}, πj(σδ) = πj(δσ)}.

This is a closed subset of G×G and if j′ ≥ j, then Dj′ ⊆ Dj .
Let δ ∈ I. Suppose there exists τ ∈ Gj that centralizes πj(δ) but πji(τ) /∈ {1, πi(δ)}.

Then (δ, σ) ∈ Dj for every σ ∈ G with πj(σ) = τ . In particular, Dj 6= ∅. Thus, it suffices
to show that there exists j ≥ i with Dj = ∅.

Let (δ, σ) ∈
⋂
j≥iDj . As δ2 = 1 and πi(δ) 6= 1, we have δ ∈ I. Furthermore,

πj(σδ) = πj(δσ) for every j ≥ i. Thus, σδ = δσ and therefore σ centralizes δ. By
assumption, σ ∈ {1, δ}, contrary to the definition of Dj . Thus,

⋂
j≥iDj = ∅. Since G×G

is compact, there exist i ≤ j1, . . . , jn ∈ I such that
⋂

1≤k≤nDjk = ∅. Let j ∈ I be such
that j ≥ max{j1, . . . , jn}. Then Dj ⊆

⋂
1≤k≤nDjk and therefore Dj = ∅.

Corollary 3.5. Let L/K be a finite Galois extension. Then there exists a finite Galois
extension L′ of K containing L such that the restriction to L of the centralizer of every
real involution ε ∈ I(L′/K) is {1, resL′/Lε} ≤ Gal(L/K).

Proof. By Artin-Schreier theory, there are involutions in G = Gal(K) only if char(K) = 0.
Furthermore, every involution is self-centralizing. Adjoin

√
−1 to L to assume that L is

not formally real and therefore no involution of G restricts to 1 ∈ Gal(L/K). The assertion
now follows from Lemma ??.
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Lemma 3.6. Let Θ be a Sylowian map and let K be a PRC Θ-Hilbertian field such
that Gal(K) is pro-C(Θ). Let F/K(t) be a finite Galois extension such that the algebraic
closure L of K in F is not formally real. Let E ∈ Θ(F/K(t)) such that the extension
E/K is totally real. Then there exists an epimorphism γ : Gal(K)→ Gal(F/E) such that
resF/L ◦ γ = resKs/L and γ(IP (K)) ⊆ IP (F/E) for every P ∈ X(K).

Proof. By assumption, E/K is totally real and therefore the restriction map X(E) →
X(K) is surjective. Let ρ : X(K) → X(E) be a continuous section ([?, Proposition 8.2])
of this map and let P ∈ X(K). By Remark ??(b), if P ′ ∈ X(K) is sufficiently close to P
then Iρ(P ′)(F/E) = Iρ(P )(F/E). Thus, we may construct a partition of X(K) into disjoint
clopen subsets X1, . . . , Xm, and, for each 1 ≤ j ≤ m, a conjugacy class of involutions Ij ⊆
I(F/E) such that every P ∈ Xj extends to F (ε) for every ε ∈ Ij . In particular, P extends
to F (ε) ∩ L and therefore IP (L/K) ∩ resF/L(Ij) 6= ∅. By Remark ??(a), IP (L/K) is a
conjugacy class. By assumption, Gal(K) is pro-C(Θ) and therefore the restriction of resF/L
to Gal(F/E) is surjective. It follows that also resF/L(Ij) is a conjugacy class. Conclude
that IP (L/K) = resF/L(Ij). Finally, IXj (L/K) =

⋃
P∈Xj

IP (L/K) = resF/L(Ij).

By Lemma ??, there exist a Galois extension F ′ of K(t) containing L and an isomor-
phism h : Gal(F ′/K(t))→ Gal(F/E) such that the following diagram commutes

Gal(F ′/K(t))

resF ′/L ''

h // Gal(F/E)

resF/Lww
Gal(L/K)

and h(IXj (F
′/K(t))) = Ij for each 1 ≤ j ≤ m.

As K is C(Θ)-Hilbertian, there exists a K-place ϕ : F ′ → F ′ ∪ {∞} with K(t) = K
and [F ′ : K] = [F ′ : K(t)]. We may assume that ϕ is an L-place. Then the group
homomorphism ϕ∗ : Gal(K) → Gal(F ′/K(t)), introduced in Lemma ??, is surjective,
resF ′/L ◦ ϕ∗ = resKs/L and, by Remark ??(c), ϕ∗(IP (K)) ⊆ IP (F ′/K(t)) for every P ∈
X(K). It follows that γ = h ◦ ϕ∗ : Gal(K) → Gal(F/E) is an epimorphism such that
resF/L ◦ γ = resKs/L and γ(IP (K)) ⊆ IP (F/E) for every P ∈ X(K).

We can improve the conclusion of the preceding lemma:

Lemma 3.7. Let Θ be a Sylowian map and let K be a field such that for every Ê ∈
Θ(K(t)) the extension Ê/K is totally real. Under the assumptions of the preceding lemma
there exists an epimorphism γ : Gal(K)→ Gal(F/E) such that resF/L ◦ γ = resKs/L and
for every δ ∈ I(K) the restriction of the unique ordering on Ks(δ) to L(δ) extends to an
ordering on F (γ(δ)).

Proof. By Corollary ??, there exists a finite Galois extension L′ of K containing L
such that the restriction to L of the centralizer of every real involution ε′ ∈ I(L′/K)
is {1, resL′/Lε

′} ≤ Gal(L/K). Let F ′ = FL′. Then L′ is the algebraic closure of K in F ′.

By Definition ??(a) there is Ê ∈ Θ(K(t)) such that the restriction of automorphisms
maps Gal(Ê) onto Gal(F/E). Put E′ = F ′ ∩ Ê. Then the restriction resF ′/F maps
Gal(F ′/E′) onto Gal(F/E) and, again by Definition ??(a), E′ ∈ Θ(F ′/K(t)). By assump-
tion, the extension Ê/K is totally real and therefore so is E′/K. We apply the preceding
lemma to F ′/L′ instead of F/L: There exists an epimorphism γ′ : Gal(K)→ Gal(F ′/E′)
such that resF ′/L′ ◦ γ′ = resKs/L′ and γ′(IP (K)) ⊆ IP (F ′/E′) for every P ∈ X(K). Let
γ = resF ′/F ◦ γ′. Then resF/L ◦ γ = resKs/L.

Let δ ∈ I(K) and let ε (resp. ε′) be its restriction to L (resp. L′). Let P (resp.
P1, P

′
1) be the restriction to K (resp. L(ε), L′(ε′)) of the unique ordering on Ks(δ).

Then, δ ∈ IP (K) and therefore γ′(δ) ∈ IP (F ′/E′). Hence, P extends to an ordering Q′ on
F ′(γ′(δ)). Let Q be the restriction of Q′ to F (γ(δ)) and let P2 (resp. P ′2) be the restriction
of Q (resp. Q′) to L(ε) (resp. L′(ε′)).
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Both P ′1 and P ′2 extend P . By [?, Proposition 2.1(iii)], there exists σ′ ∈ Gal(L′/K)
such that σ′(L′(ε′)) = L′(ε′) and σ′(P ′1) = P ′2. Thus, (ε′)σ

′
= ε′. Let σ = resL′/Lσ

′. Then
σ(P1) = P2 and εσ = ε.

By the first paragraph of this proof, σ ∈ {1, ε}. Hence P1 = σ(P1) = P2. Thus, P1

extends to Q.

Lemma 3.8. Let F1 and F2 be two Galois extensions of a field K. Let F0 = F1 ∩F2 and
F = F1F2. Let H ≤ Gal(F/K) and assume that the restriction to H of the epimorphism
resF/F0

is injective. Let F ′ be the fixed field of H in F and let F ′1, F
′
2, F

′
0 be the fixed fields

of the images of H in F1, F2, F0, respectively. Then F ′1 and F ′2 are linearly disjoint over
F ′0 and F ′1F

′
2 = F ′.

Proof. By assumption, the restriction map Gal(F/F ′)→ Gal(F0/F
′
0) is an isomorphism.

Hence, so are the restrictions Gal(F1/F
′
1) → Gal(F0/F

′
0) and Gal(F/F ′) → Gal(F2/F

′
2).

By Galois theory, F ′1∩F0 = F ′0 and F ′1F0 = F1. Since F0/F
′
0 is a Galois extension, F ′1 and

F0 are linearly disjoint over F ′0 ([?, first paragraph on p. 35]). Similarly, F1 and F2 are
linearly disjoint over F0. By the tower property of linear disjointness ([?, Lemma 2.5.3]),
F ′1 and F2 are linearly disjoint over F ′0. In particular, F ′1 and F ′2 are linearly disjoint over
F ′0.

Now, F ′1F2 = F ′1(F0F2) = (F ′1F0)F2 = F1F2 = F . Again, by [?, first paragraph on p.
35], F ′ and F2 are linearly disjoint over F ′2. Thus, by the tower property, F ′ and (F ′1F

′
2)F2

are linearly disjoint over F ′1F
′
2. By [?, Corollary 2.5.2], [F ′ : F ′1F

′
2] = [F : (F ′1F

′
2)F2]. But

(F ′1F
′
2)F2 = F ′1F2 = F , so F ′1F

′
2 = F ′.

Theorem 3.9. Let Θ be a Sylowian map and let K be a PRC C(Θ)-Hilbertian field with
Gal(K) pro-C(Θ). Suppose that for every Ê ∈ Θ(K(t)) the extension Ê/K is totally real.
Then K is strongly C(Θ)-Hilbertian.

Proof. If K admits no orderings, then K is PAC and the assertion follows from The-
orem ??. Suppose otherwise. Let F/K(t) be a finite Galois extension and let E ∈
Θ(F/K(t)). As in the proof of Lemma ??, the extension E/K is totally real. Let L be
the algebraic closure of K in F . By [?, Lemma 2.2], we may replace F by a field containing
F and thus assume that

√
−1 ∈ L.

By Lemma ??, there exists an epimorphism γ : Gal(K) → Gal(F/E) such that
resF/L ◦ γ = resKs/L and for every δ ∈ I(K) the restriction of the unique ordering on
Ks(δ) to L(δ) extends to an ordering on F (γ(δ)).

Let M be the fixed field of ker(γ) in Ks. This is a finite Galois extension of K. As
resF/L ◦ γ = resKs/L, we have ker(γ) ≤ ker(resKs/L), and hence L ⊆ M , and resF/L is
surjective, and hence E ∩L = K. Thus K is algebraically closed in E. Since K(t)/K and
F/E are separable and K ⊆ E ⊆ F , also E/K is separable. Therefore E/K is regular.

By Proposition ??(a) there is a commutative diagram (??) such that the following
holds: the fixed field D of γ′(Gal(K)) in FM is a regular extension of K,DM = FM and
F ∩D = E.

We claim that D/K is totally real. Indeed, let P be an ordering on K and let δ ∈
I(K) such that (Ks(δ), P̂ ) is a real closure of (K,P ). Let P ′ be the restriction of P̂ to
M(δ). Then the restriction of P ′ to L(δ) extends to an ordering Q on F (γ(δ)). Clearly,
F (γ(δ)) ∩M(δ) = L(δ). By Lemma ??, F (γ(δ)) and M(δ) are linearly disjoint over L(δ)
and F (γ(δ))M(δ) = FM(γ′(δ)). By [?, p. 241], there exists an ordering on FM(γ′(δ))
that extends both P ′ and Q. In particular, P extends to D ⊆ FM(γ(δ)).

As K is PRC and D/K is totally real, there exists a K-place ϕ : D → K ∪ {∞},
unramified in DM . Extend ϕ to an M -place of DM = FM and let ϕ be its restriction
to F . By Proposition ??(b) and since F ∩ D = E, ϕ∗ : Gal(K) → Gal(F/E) is an
epimorphism. Thus, by Lemma ?? with respect to ϕ, [F : E] = [F : E].
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Corollary 3.10. Every p-Hilbertian PRC field K with Gal(K) pro-p is strongly p-
Hilbertian.

Proof. If K admits no orderings, then K is PAC and the claim follows by Theorem ??.
Otherwise, 2|# Gal(K), hence p = 2. Thus, if E is the fixed field in K(t)s of some p-Sylow
subgroup of Gal(K(t)), then [E : K(t)] is odd. By [?, (1.26)], the extension E/K(t) is
totally real. In particular, E/K is totally real. Thus, the claim follows by Theorem ??.
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