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Introduction

Hilbert [H] proved in 1892 that for given irreducible polynomials fi(T1, . . . , Tr, X), i =

1, . . . ,m, and a nonzero polynomial g(T1, . . . , Tr) with rational coefficients there exists

(a1, . . . , ar) ∈ Qr such that f1(a, X), . . . , fm(a, X) are irreducible in Q[X] and g(a) 6= 0.

Numerous proofs of Hilbert’s irreducibility theorem have since been given. Many

of them apply to other fields. So, each field K which satisfies the theorem has been

called Hilbertian. The sets of a ∈ Kr whose substitution in the polynomials leaves

them irreducible and nonzero have been called Hilbert sets.

The investigation of Hilbertian fields has been extended in the last 98 years since

Hilbert’s original paper in several directions:

(a) Study of Hilbert subsets of Hilbertian fields (e.g. Dörge [D], Geyer [G], Sprindžuk

[S], and Fried [F]).

(b) Search for arithmetical conditions on a field which make it Hilbertian. Beyond the

classical example of fields of rational function over any field (Inaba [I] and Franz

[Fr]) two results stand out: “Each ω–free PAC field is Hilbertian” (Roquette [FJ,

Cor. 24.38]) and “The field of formal power series in at least two variables over

any field is Hilbertian” (Weissauer [FJ, Cor. 14.18]).

(c) Infinite extensions of Hilbertian fields. The first result in this direction is due to

Kuyk [K]: “Every abelian extension of a Hilbertian field is Hilbertian”. In partic-

ular the field Qcycl obtained from Q by adjoining all roots of unity is Hilbertian.

Uchida [U] extended a result of Kuyk and proved that if an algebraic extension

L of a Hilbertian field K is contained in a nilpotent extension and if [L : K]

is divisible by at least two prime numbers, then L is Hilbertian. The strongest

result however in this direction, is again due to Weissauer: “Every finite proper

extension of a Galois extension of a Hilbertian field is Hilbertian” (See [W, Satz

9.7] for a nonstandard proof and [FJ, Cor. 12.15] for a standard proof.) We make

an extensive use of this result and refer to it as Weissauer’s theorem.

(d) Realization of finite groups over Hilbertian fields, especially over number fields via

Riemann existence theorem (see Matzat’s exposition [M]).

(e) Properties of almost all e-tuples (σ1, . . . , σe) of elements of the absolute Galois
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group of a Hilbertian field K. For example, the group generated by almost all

(σ1, . . . , σe) is a free profinite group [FJ, Thm. 16.13] and if K is countable, then

the fixed field Ks(σ1, . . . , σe) of σ1, . . . , σe in the separable closure Ks of K is PAC

[FJ, Thm. 16.18].

This note is a contribution to the study of infinite extensions of Hilbertian fields.

Weissauer’s theorem implies that the compositum of an infinite Galois extension M1 of

a Hilbertian field K and a finite extension M2 of K which is not contained in M1 is

Hilbertian. So, it is natural to ask whether the compositum N of two infinite linearly

disjoint extensions M1 and M2 of K is Hilbertian. Indeed, this has been stated as

Problem 12.18 of [FJ]. However, it goes back at least to Kuyk [K] (see Remark 2.6)

and Weissauer. Kuyk proved that N is Hilbertian if an extra condition holds: “For

each finite Galois extension L of K which is contained in N we have L ∩M1 6= K or

L ∩ M2 6= K”. In particular this is the case if the degrees [N : M1] and [N : M2]

are relatively prime. The main tool in Kuyk’s proof is the possibility to realize wreath

products over K. Zorn [Z] gave a clearer exposition of Kuyk’s proof while strengthening

Kuyk’s extra condition to: “Each open normal subgroup of an open normal subgroup

of G(N/K) is the direct product G(N/M ′
1)×G(N/M ′

2) where M ′
i is a finite extension of

Mi contained in N”.

We extend here Kuyk’s result to a complete affirmative solution of problem 12.18

of [FJ]. Our proof is an elaboration of Zorn’s in the case where [N : M1] and [N : M2] are

relatively prime. For the case where the degrees are not relatively prime we generalize

a lemma of Chatzidakis on normalizers of elements in wreath products [FJ, Lemma 52].

Then we apply the setup used in the first case to conclude the proof in the second case.

An application of Weissauer’s theorem gives even a sharper result:

Theorem: The compositum of two Galois extensions of a Hilbertian field, neither of

which is contained in the other, is Hilbertian.

Of course, the solution of problem 12.18 of [FJ] immediately supplies an affirmative

solution to problem 12.19 of [FJ]:

Corollary: The separable closure of a Hilbertian field K cannot be presented as the
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compositum of two Galois extensions of K, neither of which is contained in the other.

1. Wreath products.

Recall that the wreath product H = AwrG of finite groups A and G is the semidirect

product G |×AG, where AG is the group of all functions f : G → A with the canonical

multiplication rule, and G acts on AG by the formula fτ (σ) = f(τσ). Thus each element

of H is a pair (σ, f) with σ ∈ G and f ∈ AG. The product and the inverse in H are

given by

(1) (σ, f)(τ, g) = (στ, fτg) and (σ, f)−1 = (σ−1, f−σ−1
).

Let π: H → G be the canonical projection. Embed A in AG by identifying each a ∈ A

with the function which maps 1 to a and σ to 1 for each σ 6= 1. In particular AG may

also be considered as a direct product AG =
∏

σ∈GA
σ, and each element of Aσ has the

form aσ with a ∈ A.

Our first result generalizes a Lemma of Chatzidakis [FJ, Lemma 24.52].

Lemma 1.1: Let G and A be finite groups. For σ1, . . . , σe ∈ G and 1 6= a ∈ A

let G0 = 〈σ1, . . . , σe〉 and H0 = 〈(σ1, a), . . . , (σe, a)〉. Then π maps the normalizer

N = NH(H0) of H0 in H onto G0.

Proof: Since π(H0) = G0 it suffices to prove that π(N) ≤ G0. Consider AG0 as the

subgroup of AG consisting of all functions f : G → A for which f(τ) = 1 for each

τ ∈ G−G0. It follows from (1) that H1 = {(σ, f)| σ ∈ G0 and f ∈ AG0} is a subgroup of

H. The main point to be observed here is that if (σ, f), (τ, g) ∈ H1 and ρ ∈ G−G0, then

τρ, σ−1ρ /∈ G0 and therefore (fτg)(ρ) = f(τρ)g(ρ) = 1 and f−σ−1
(ρ) = f(σ−1ρ)−1 = 1.

As (σi, a) ∈ H1, i = 1, . . . , e, we have H0 ≤ H1. In other words

(2) (σ, f) ∈ H0 implies that σ ∈ G0 and f ∈ AG0 .

Suppose that (τ, g) ∈ N . Then (σ, f) = (τ, g)−1(σ1, a, )(τ, g) ∈ H0. By (1) and

(2), σ = τ−1σ1τ ∈ G0 and f = g−σaτg ∈ AG0 . Let n = ord(σ) and act with the powers

of σ on f to get

f = g−σaτg, fσ = g−σ2
aτσgσ, . . . , fσn−1

= g−σn

aτσn−1
gσn−1

.
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Hence

(3)
fσn−1

· · · fσf = (g−1aτσn−1
gσn−1

) · · · (g−σ2
aτσgσ)(g−σaτg)

= g−1aτσn−1
· · · aτσaτg

As σ ∈ G0 and f ∈ AG0 , the left hand side of (3) belongs to AG0 . Therefore, so does

the right hand side of (3).

So, if τ /∈ G0, then the value of the right hand side of (3) at τ−1 is 1. Thus

(4) g(τ−1)−1a(τσn−1τ−1) · · · a(τστ−1)a(1)g(τ−1) = 1.

Finally, note that for j between 1 and n − 1 we have τσjτ−1 6= 1. Hence, (4) reduces

to a = 1. This contradiction to the choice of a proves that τ ∈ G0, as desired.

As a result, a certain embedding problem for a direct product of profinite groups

cannot be properly solved:

Lemma 1.2: Let C1, C2 be nontrivial profinite groups. Let G1, G2 be nontrivial finite

quotients of C1, C2, respectively, such that either

(a) the orders G1 and G2 are not relatively prime, or

(b) the orders of C1 and C2 are relatively prime.

Let G = G1 ×G2 and let ρ: C1 × C2 → G be the product of the quotient maps.

Let A be a nontrivial finite group, H = AwrG, and π: H → G the canonical projection.

Then there exists no epimorphism θ: C1 × C2 → H such that π ◦ θ = ρ.

Proof: Assume that there exists an epimorphism θ: C1 × C2 → H such that π ◦ θ = ρ.

We derive a contradiction in each of the two cases.

Case (a): There exists a prime p and elements σi ∈ Gi, i = 1, 2, of order p. Then the

order of σ = σ1σ2 is also p. Use Lemma 1.1 for e = 1 to find h ∈ H such that π(h) = σ

and π(N) = 〈σ〉, with N = NH〈h〉. Write h = h1h2, with hi = θ(ci) and ci ∈ Ci. Then

c1 commutes with c2 and therefore hi ∈ N . Hence π(hi) = ρ(ci) ∈ 〈σ〉 ∩ Gi = 1. It

follows that σ = π(h) = 1. This is a contradiction.

Case (b): The orders of G1 and G2 are relatively prime. Put Hi = θ(Ci). Then

Hi / H, π(Hi) = Gi and there exists h ∈ Hi such that σ = π(h) 6= 1. Thus h−1 =
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(σ−1, f), where f ∈ AG. Compute from (1) for a ∈ A that (aσ)h−1
= f−1(1)af(1).

Hence (Aσ)h−1
= f−1(1)Af(1) = A. It follows that A ≤ Hi ·Aσ and therefore

AG ≤ Hi ·
∏
τ∈G
τ 6=1

Aτ .

Hence, with n = |G|, the order of An divides |Hi| · |A|n−1, and therefore |A| divides

|Hi|, for i = 1, 2. This is a contradiction, since |H1| and |H2| are relatively prime.

Remark 1.3: Characterization of wreath products. Although we shall not use it in the

sequel it is interesting to note that wreath products can be characterized by less data

than above:

Given an extension of finite groups

(5) 1−→B−→H−→G−→1,

the lifting of elements of G to elements of H determines a homomorphism ψ: G →

Aut(B)/In(B). The set of all congruence classes of extensions with the same ψ bijec-

tively corresponds to the group H2(G,Z(B)) [Mc, p. 128]. In particular let B = AG

and ψ be the homomorphism obtained from the natural action of G on B. Then the

G-module Z(B) = Z(A)G is the induced module IndG
1 Z(A). Hence H2(G,Z(B)) is

trivial [R, p. 146]. It follows that the only extension (5) such that ψ is induced by the

natural action of G on B = AG is the wreath product.

Remark 1.4: Interpretation of wreath products in Galois theory. Consider a tower

of fields K ⊆ L ⊆ F ⊆ F̂ where L/K, F/L and F̂ /K are finite Galois extensions.

Let also K ′ be a field such that K ′ ∩ L = K and LK ′ = F̂ . Put G = G(L/K) and

A = G(F/L). Suppose that the fields Fσ, σ ∈ G(F̂ /K ′) are linearly disjoint over L and

their compositum is F̂ . Then there exists an isomorphism ϕ: G(F̂ /K) → AwrG which

maps G(F̂ /L) onto AG and induces the identity maps G(F/L) = A and G(L/K) = G.

We say in this set up that the fields L,F, F̂ realize the wreath product AwrG over

K.

If F0 is a Galois extension of L which is contained in F , let F̂0 =
∏

σ∈G(F̂ /K′)
Fσ

0 ,

K ′
0 = F̂0 ∩K ′, and A0 = G(F0/L). Then K ′

0 ∩ L = K and LK ′
0 = F̂0. Hence L,F0, F0

realize A0 wrG over K, as above.
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2. Main results.

We take the crucial step toward the solution of Problem 12.18 of [FJ] in the following

lemma. It involves a construction of wreath products over fields of rational functions

as in [K, Prop. 1].

Lemma 2.1: Let M1,M2 be linearly disjoint Galois extensions of a field K, and let

N = M1M2. Let f ∈ K[T,X] be an absolutely irreducible polynomial, monic in X, and

Galois over K(T ). Then there exists a finite Galois extension L of K contained in N

such that for every basis c1, . . . , cn of L over K there is a Hilbert subset B of Kn such

that for each (b1, . . . , bn) ∈ B the polynomial f(b1c1 + · · ·+ bncn, X) is irreducible over

N .

Proof: There are three parts in the proof.

Part A: Construction of L. Let C1 = G(N/M1) and C2 = G(N/M2). Then

G(N/M) = C1 × C2. If the orders of C1 and C2 are not relatively prime choose non-

trivial finite quotients G1, G2 of C1, C2, respectively, Otherwise, choose G1 and G2 with

orders having a common prime divisor. Let ρ: C1× c2 → G1×G2 be the product of the

quotient maps. Consider the field field L of Ker(ρ) in N . Then G = G(L/K) = G1×G2.

By Lemma 1.2, for no nontrivial finite group A0 there exist fields L ⊆ E ⊆ Ê ⊆ N such

that L,E, Ê realize A0 wrG over K.

Part B: Construction of wreath product over a field of rational functions. Choose

a set {uσ| σ ∈ G} of algebraically independent elements over K. For each σ ∈ G

let xσ be a root of f(uσ, X). If f is absolutely irreducible, the field K(uσ, xσ) is a

regular extension of K. Hence L(uσ, xσ) is a regular extension of L. As these fields are

algebraically independent over L, the field Q̂ = L(uσ, xσ| σ ∈ G) is a regular extension

of L [FJ, Cor. 9.10(a)]. Moreover, the field Q = L(uσ| σ ∈ G) is linearly disjoint

from K(yσ, xσ) over K(uσ). Hence Q(xσ)/Q is a Galois extension with Galois group

isomorphic to A = G(f(T,X),K(T )). The set of all Q(xσ) is linearly disjoint over Q.

So, G(Q̂/Q) ∼= AG.

Let c1, . . . , cn be a basis for L/K. Let t1, . . . , tn, be the unique solution of the
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following system of linear equations:

(1) T1c
σ
1 + · · ·+ Tnc

σ
n = uσ, σ ∈ G

As the matrix (cσi ) is invertible [L, Corollary VII.5.1], L(t1, . . . , tn) = L(uσ| σ ∈ G) = Q.

Since n is the transcendence degree of Q over L, the elements t1 . . . , tn are algebraically

independent over L and hence also over K.

Extend the action of G on L to an action on Q̂ in a natural way: (uσ)τ = uστ and

(xσ)τ = xστ . In particular τ permutes the equations of the system (1). As (tτ1 , . . . , t
τ
n)

is also a solution of (1), it coincides with (t1, . . . , tn). Thus τ leaves each element of

P = K(t1, . . . , tn) elementwise fixed. So, the fixed field Q(G) of G in Q contains P . In

particular n ≤ [Q : P ]. As LP = Q this implies that P = Q(G) and that L ∩ P = K.

The subgroupH of Aut(Q̂) generated byG and G(Q̂/Q) is contained in Aut(Q̂/P ).

As Q̂/P is separable, the latter group is finite and therefore so is H. Since P is the

fixed field of H, the field Q̂ is Galois over P and H = G(Q̂/P ).

Now consider the fixed field P ′ = Q̂(G). Its intersection with Q is P and their

compositum is Q̂. So, Q,Q(x), Q̂ realize AwrG over P .

Part C: Definition of B and conclusion of the proof. Write Q̂ as P (z) with z integral

over K[t1, . . . , tn] and let h(t1, . . . , tn, Z) = irr(z, P ). Then f(T1c1 + · · · + Tncn, X) is

irreducible over L. Use [FJ, Lemma 12.12 and Cor. 11.7] to find a Hilbert subset B of

Kn such that for each b ∈ B and for a =
∑n

i=1 bici

(2a) G(h(b, Z),K) ∼= G(h(t, Z), P ),

(2b) f(a,X) is irreducible over L,

and the specialization t 7→ b extends to a place of Q̂ over K such that the residue

fields of P,Q,Q(xσ), P ′, Q̂, respectively, are K,L, Fσ,K ′, F̂ , where Fσ is the splitting

field of f(aσ, X) over L, for σ ∈ G. In particular L,F, F̂ realize AwrG over K and

[F : L] = deg(f(a,X)).

Let b ∈ B, a =
∑n

i=1 bici, and assume that f(a,X) is reducible over N . Then

E = N ∩ F is a proper Galois extension of L. Extend each σ ∈ G(F̂ /K ′) to an element

σ of the absolute Galois group G(K) of K to observe that Eσ = N ∩ Fσ is contained

in N . Let A0 = G(E/L) and Ê =
∏

σ∈G(F̂ /K′)
Eσ. Then Ê ⊆ N and, by Remark 1.4,
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L,E, Ê realize A0 wrG over K. This contradiction to Part A proves that f(a,X) is

irreducible over N , as desired.

Lemma 2.2: Let N be a field, N ′ a finite Galois extension of N , f ∈ N [T,X] an

irreducible polynomial, which is separable in X, and g ∈ N ′[T,X] a factor of f which is

irreducible over N ′. Then, for almost all a ∈ N , if g(a,X) is irreducible over N ′, then

f(a,X) is irreducible over N .

Proof: The polynomial f decomposes over N ′ as f(T,X) =
∏m

i=1 gi(T,X) where each

gi is conjugate to g over N and for i 6= j, gi is not a multiple of gj by an element of

N ′(T ). Suppose that for a ∈ N and each i 6= j, gi(a,X) is not a multiple of gj(a,X)

by an element of N ′ (this happens for almost all a ∈ N) and g(a,X) is irreducible

over N ′. Then f(a,X) is irreducible over N . Indeed, let f(a,X) = h1(X)h2(X) be a

decomposition over N . Then h1(X)h2(X) =
∏m

i=1 gi(a,X). As g(a,X) is irreducible, it

divides, say, h1(X). Since each gi(a,X) is conjugate to g(a,X) over N , it also divides

h1(X). As g1(a,X), . . . , gm(a,X) are relatively prime, f(a,X) =
∏m

i=1 gi(a,X) divides

h1(X). Conclude that f(a,X) is irreducible over N .

Proposition 2.3: Let M1 and M2 be infinite Galois extensions of a Hilbertian field K

such that M1 ∩M2 = K. Then their compositum N = M1M2 is Hilbertian. Moreover,

given an irreducible polynomial f ∈ N [T,X], separable in X, there exist c1, . . . , cn ∈ N

and a Hilbert subset B of Kn such that for each (b1, . . . , bn) ∈ B, and for a =
∑n

i=1 bici,

the polynomial f(a,X) is irreducible over N .

Proof: Note that the second statement means that if K is only separably Hilbertian [FJ,

p. 147], then so is N . If K is Hilbertian, as we suppose, then it is imperfect. Hence, the

second statement implies in this case that N is Hilbertian [FJ, Prop. 11.16].

To prove the second statement consider a transcendental element t over K. Let N̂

be the splitting field of f(t,X) over N(t). Choose a primitive element y for N̂ over N(t)

such that h = irr(y,N(t)) has coefficients in N [t]. Then h is monic and Galois in X. If

we find c1, . . . , cn ∈ N and a Hilbert subset B of Kn such that for each (b1, . . . , bn) ∈ B

and with a =
∑n

i=1 bici, the polynomial h(a,X) is irreducible over N , then Kn has a

Hilbert subset B0 of B such that for (b1, . . . , bn) ∈ B0 the polynomials f(a,X) is also
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irreducible over N . Indeed, the proof of [FJ, Lemma 12.12] shows that if a is not a zero

of a certain nonzero polynomial with coefficients in N and h(a,X) is irreducible, then

G(f(a,X), N) and G(f(t,X), N(t)) are isomorphic as permutation groups of the roots.

In particular the former group operates transitively on the roots of f(a,X). This implies

that f(a,X) is irreducible. Note that the exclusion of finitely many values a1, . . . , ak

for a imposes the extra condition
∏k

j=1(
∑n

i=1 bici − aj) 6= 0 on (b1, . . . , bn) ∈ B. This

defines B0. So, without loss, assume that f is monic and Galois in X.

Choose an absolutely irreducible factor g of f . Let K ′
0 be a finite Galois extension

of K which contains the coefficients of g. Let K1 and K2 be finite Galois extensions of K

contained in M1 and M2, respectively, such that K ′
0∩N ⊆ K1K2. Then K ′ = K1K2K

′
0

satisfies N ∩K ′ = K1K2 and M1K2 ∩M2K1 = K1K2 (use the tower property of linear

disjointness [FJ, Lemma 9.3]).

Let M ′
1 = M1K2K

′, M ′
2 = M2K1K

′, N ′ = NK ′. Then M ′
1,M

′
2 are linearly

disjoint Galois extensions of K ′ and N ′ = M ′
1M

′
2. By Lemma 2.1 there is a finite

Galois extension L′ of K ′ contained in N ′ such that for every basis c1, . . . , cn of L′/K ′

there is a Hilbert subset B′ of (K ′)n such that for each b1, . . . , bn ∈ B′ the polynomial

g(b1c1+· · ·+bncn, X) is irreducible over N ′. Let B0 be a Hilbert subset of Kn contained

in B′. As G(N ′/K ′) = G(N/K1K2), there is a finite Galois extension L of K1K2 in N

such that L′ = LK ′. A basis c1, . . . , cn of L/K is also a basis of L′/K ′. By Lemma 2.2

and by [FJ, Cor. 11.7], Kn has a Hilbert subset B ⊆ B′ such that f((b1c1+· · ·+bncn, X)

is irreducible over N , for every b1, . . . , bn ∈ B.

We are now ready to solve Problem 12.18 of [FJ] in a much stronger form:

Theorem 2.4: Let M1 and M2 be Galois extensions of Hilbertian field K none of which

is contained in the other. Then their compositum N = M1M2 is Hilbertian.

Proof: If N is a finite extension of M1 or of M2, then it is Hilbertian, by Weissauer’s

theorem. So, assume that N is an infinite extension of both M1 and M2. In particular

K1 = M1 ∩ M2 has a finite proper Galois extension K ′ which is contained in M2.

Let M ′
1 = M1K

′. By Wiessauer’s theorem K ′ is Hilbertian. Also, M ′
1 and M2 are

infinite extensions of K ′ whose intersection is K ′ and whose union is N . Conclude from
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Proposition 2.3 that N is Hilbertian.

One of the consequences of Theorem 2.4 is a solution of Problem 12.19 of [FJ]:

Corollary 2.5: The separable (resp., solvable, p) closure Ks (resp, Ksolv, K
(p)) of a

Hilbertian field K is not the compositum of two Galois extensions of K neither of which

is equal to Ks (resp., Ksolv, K
(p)).

Proof: None of the above fields is Hilbertian. So the corollary follows from Theorem

2.4.

Nevertheless, as the separable case was the subject of an open question we sketch

a short cut in the above proof in this case.

Assume thatM1 andM2 are Galois extensions ofK which are not separably closed

such thatM1M2 = Ks. Use Weissauer’s theorem to replaceM1, M2, andK, if necessary,

by algebraic extensions to assume that M1,M2 are Hilbertian and M1 ∩M2 = K. In

particular Mi has a cyclic extension M ′
i of degree p, i = 1, 2 [FJ, Thm. 24.48].

Let K1 = M1 ∩ M ′
2, K2 = M2 ∩ M ′

1 and L = K1K2. Then G = G(L/K) =

G(L/K1) × G(L/K2) ∼= Z/pZ × Z/pZ. By [FJ, Prop. 24.47], there exists a Galois

extension F of K which contains L and there exists an isomorphism ϕ: (Z/pZ) wrG→

G(F/K) such that resL ◦ ϕ is the canonical projection of the wreath product on G.

Now choose a generator σi of G(L/Ki), i = 1, 2 and let σ = σ1σ2. Chatzidakis’

Lemma [FJ, Lemma 24.52] extends σ to an element τ of G(N/K) such that restriction

to L maps the normalizer of 〈τ〉 onto 〈σ〉. This gives a group theoretic contradiction as

in Lemma 2.

Note that this proof actually works for each normal extension N of K which

admits no p-extensions. In particular it works also for Ksolv and K(p).

Remark 2.6: Kuyk [K, p. 120] states, contrary to Theorem 2.4, that the compositum

of linearly disjoint Galois extensions of a Hilbertian field need not be Hilbertian. He

adjoins p-th roots of all elements of Q to K = Q(ζp) to get a Galois extension Q(p)

of K. Then G(Q(p)/K) is isomorphic to a product of infinitely many cyclic extensions

of order p. Kuyk claims, without a proof, that Q(p) is not Hilbertian. However, as N

is the compositum of a linearly disjoint finite Galois extension and an infinite Galois
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extension, already Weissauer’s theorem implies that Q(p) is Hilbertian, contrary to

Kuyk’s statement.
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