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Abstract

We address the question when a free profinite product of infinitely
many absolute Galois groups of fields is also an absolute Galois group
of some field.

Introduction

Koenigsmann ([Koe]; see also [HJK]) showed that the free profinite product of
finitely many absolute Galois groups is also the absolute Galois group of some
field. Recently the question to what extent this can be extended to infinitely
many groups has arisen ([Bar], [Jar]). Jarden ([Jar]) gives examples of free
profinite products of copies of the same absolute Galois group G0 converging
to 1 (aka a free profinite product in the sense of Binz-Neukirch-Wenzel [HJ,
Section 4.4]) that are not absolute Galois groups, namely, when G0 is of order
2 or the absolute Galois group of a p-adic field. Bar-On ([Bar]) gives an exact
condition for a free pro-p product of countably many Demushkin groups of
rank ℵ0 be an absolute Galois group.

In this note we present three results:
Theorem 2 shows that the free profinite product of copies of a single

absolute Galois group over any constant sheaf is an absolute Galois group.
Theorem 9 shows that the free profinite product of absolute Galois groups

Gal(Ei) converging to 1 is an absolute Galois group, provided every Ei con-
tains an algebraically closed field.

Finally, Corollary 4 answers positively the following question about a
family {Gi}i∈I of profinite groups: In order that the free profinite product



in the sense of Binz-Neukirch-Wenzel of this family be realizable as an ab-
solute Galois group, it is necessary that this family be realizable as a family
converging to 1 of subgroups of an absolute Galois group. Is this condition
also sufficient?

Actually, a more general statement is true: The above holds for every
free profinite product. The exact statement is Theorem 3.

1 Free profinite products

In this section we present the rudiments of the theory of free profinite prod-
ucts in a rather intuitive manner, intended for an uninitiated reader. Never-
theless, to follow the proofs, rigorous — and, unfortunately, very technical —
definitions are necessary, and we duly refer the reader to them in the existing
literature.

To define free profinite products of infinitely many profinite groups, one
usually considers a family {Gt}t∈T of profinite groups indexed by a profinite
space T .

If these groups are subgroups of a profinite group G, then the definition
of G being their (inner) free profinite product is straightforward: Every
continuous map

⋃
t∈T Gt → A into a profinite group A uniquely extends to

a homomorphism G → A ([R, beginning of Section 5.3] or [HJ, Definition
4.1.1]), but we require that the family be be étale continuous ([HJ, Defini-
tion 2.1.1]), that is, continuously indexed by T ([R, beginning of Section
5.2]).

But we also want to define a free profinite product of {Gt}t∈T when
these groups are not given as subgroups of one group. To this end we need
the concept of a profinite sheaf of profinite groups. Intuitively, this is a
disjoint union X =

⋃
· t∈T Xt of a family {Xt}t∈T of profinite groups indexed

by a profinite space T so that the group operations on the Xt’s extend to
continuous operations on X. The precise (and formal) definition is [HJ,
Definition 2.2.1] or [R, beginning of Section 5.1] and it writes the sheaf as
a triple (X, τ, T ), where τ : X → T is the map which maps Xt onto {t}, for
every t ∈ T .

A particular example of a profinite sheaf is the constant sheaf (T ×
G, prT , T ), where T is a profinite space, G is a profinite group, and prT : T ×
G→ T is the projection onto T . (Thus Xt = G for every t ∈ T .)

Given any profinite sheaf X = (X, τ, T ) we can assign to it its (outer)
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free profinite product (X, ω, Ĝ) ([HJ, Definition 4.2.1] or [R, Section
5.1]). Here Ĝ is a profinite group and ω : X → Ĝ is a continuous map
such that {ω|Xt : Xt → Ĝ}t∈T are homomorphisms, with the following prop-
erty: For every continuous map α : X → A into a profinite group A such
that {α|Xt : Xt → A}t∈T are homomorphisms, there exists a unique homo-
morphism ϕ : Ĝ→ A such that ϕ ◦ ω = α.

Historically, the first definition of a free profinite product of infinitely
many factors was of a different kind: Given a family {Gi}i∈I of profinite
groups (the index set I carries no topology) their free product in the sense
of Binz-Neukirch-Wenzel ([HJ, Section 4.4]) is a profinite group Ĝ to-
gether with a family of homomorphisms {ωi : Gi → Ĝ}i∈I converging to 1,
that is, such that for every open subgroup Ĝ0 of Ĝ the set {i ∈ I|ωi(Gi) 6≤
Ĝ0} is finite, with the following property: For every profinite group A and
every family of homomorphisms {ωi : Gi → A}i∈I converging to 1, there is a
unique homomorphism α : Ĝ→ A such that α◦ωi = αi for every i ∈ I. How-
ever, it turns out that this free profinite product is the outer free profinite
product over the sheaf (X, τ, T ), where X =

⋃
· i∈I Gi∪· {1∞} and T = I∪· {∞}

are the one-point compactifications of
⋃
· i∈I Gi and I, respectively, and τ maps

1∞ onto ∞ and every Gi onto {i} ([HJ, Corollary 4.4.3(d)]).
We finish this section with some basic facts about profinite groups and

profinite spaces can be found outside the standard literature on the subject.
Recall that a generalized Cantor space is the topological space {0, 1}A,

for some set A, with the product (Tychonov) topology. It is a profinite space.
If |A| = ℵ0, this the homeomorphic to the Cantor ternary set.

Lemma 1. (a) Every profinite space is a closed subspace of a generalized
Cantor space.

(b) Every infinite profinite group G is homeomorphic to a generalized Can-
tor space. More precisely, G is homeomorphic to {0, 1}A, where |A| is
the cardinality of the family of open subgroups of G.

(c) Two profinite groups are homeomorphic if and only if they have the
same cardinality.

Proof. (a) See [Kop, p. 101]. Explicitly ([Kop, Exercise 5, p. 106]): Let A
be the family of clopen subsets of a profinite space T . For every U ∈ A let
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χU : T → {0, 1} be its characteristic function, i.e., the function given by

χU(t) =

{
0 if t /∈ U
1 if t ∈ U .

Then the map f : T → {0, 1}A, given by f(t) = (χU(t))U∈A is a homeomor-
phism of T onto a closed subspace of {0, 1}A.

(b) The first assertion is [HR, Theorem 9.15].
If G is homeomorphic to {0, 1}A, then A must be infinite and |Cl(G)| =

|Cl({0, 1}A)|, where |Cl(T )| denotes the cardinality of the family of the
clopen subsets of a profinite space T . As every open subgroup of G has
finitely many cosets and every clopen subset of G is the union of finitely
many cosets of open subgroups, |Cl(G)| is the cardinality of the family of
open subgroups of G.

On the other hand, every clopen subset of {0, 1}A is of the form pr−1B (Z),
where B ⊆ A is finite, Z ⊆ {0, 1}B, and prB : {0, 1}A → {0, 1}B is the
projection on the coordinates in B. Therefore |Cl({0, 1}A)| is the cardinality
of the family of finite subsets of A, which is |A|.

(c) This follows from (b).

2 Constant sheaf

We first realize the free profinite product over a constant sheaf and then
deduce a more general result:

Theorem 2. Let G be the absolute Galois group of a field of characteristic
p ≥ 0 and let T be a profinite space. Then the free profinite product Ĝ over
the constant sheaf (T × G, prT , T ) is the absolute Galois group of a field of
characteristic p.

Proof. We first assume that T is (the underlying topological space of) the
absolute Galois group F of a field of characteristic p.

Then F acts on Ĝ ([HJ, Lemma 4.7.2]) and Ĝ o F is isomorphic to the
free profinite product G

∐
F ([HJ, Lemma 4.7.4]).

By [Koe], Ĝ o F = G
∐
F is the absolute Galois group of a field K of

characteristic p. Therefore its closed subgroup Ĝ is the absolute Galois group
of an algebraic separable extension of K.
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In the general case, by Lemma 1(a), T is a closed subspace of {0, 1}A for
some set A. Let F be the absolute Galois group of a field of characteristic
p ≥ 0 such that |F | ≥ 2|A|,ℵ0. By Lemma 1(b), F is homeomorphic to
{0, 1}B for some set B. Then {0, 1}A is homeomorphic to a closed subspace
of {0, 1}B. Indeed, as 2|B| = |F | ≥ 2|A|, we have |B| ≥ |A|, and hence there is
a surjection π : B → A. Then the map {0, 1}A → {0, 1}B given by f 7→ f ◦π
is a continuous injection. Its image is compact, and hence closed in {0, 1}B.

It follows that T is homeomorphic to a closed subspace of F .
By [HJ, Lemma 4.8.2], Ĝ, the free profinite product over the constant

sheaf (T ×G, prT , T ), is isomorphic to a closed subgroup of the free profinite
product Ĝ′ over the constant sheaf (F ×G, prF , F ). By the preceding special
case, Ĝ′ is the absolute Galois group of some field K ′ of characteristic p.
Thus Ĝ is the absolute Galois group of some algebraic separable extension
of K ′.

Let G be a profinite group and G = {Gt}t∈T an étale continuous family
([HJ, Definition 2.1.1]) of subgroups of G, over a profinite space T . Let
X = (X, τ, T ) be the associated sheaf ([HJ, Proposition 2.3.6]), that is,
X = {(t, g) ∈ T ×G| g ∈ Gt} and τ is (g, t) 7→ t.

If G is the inner free profinite product of G, then G is the outer free
profinite product over X ([HJ, Proposition 4.3.1]). But even if this is not the
case, we can still form the outer free profinite product (X,X → Ĝ, Ĝ) over
X ([HJ, Proposition 4.2.2]). We call it the free profinite product of G.

For instance, if there is a subgroup H of G such that Gt = H for every
t ∈ T , then X is the constant sheaf (T × H, prT , T ). In this case X, and
hence also Ĝ, actually does not depend on G, only on H and T .

Another example in which the associated sheaf does not depend on the
group G, (only on the fact that G is an étale continuous family of subgroups
of some group) is the following: T is the one-point compactification I ∪· {∞}
of a discrete set I, and G∞ = 1. It follows from definitions that {Gt| t ∈ T}
is étale continuous if and only if the family of inclusions {Gi → G}i∈I is
converging to 1. Moreover, X =

⋃
· i∈I Gi ∪· {1∞}, and the topology on X is

the one of the one-point compactification of
⋃
· i∈I Gi. So the free profinite

product of G is the free profinite product of {Gt| t ∈ I} in the sense of
Binz-Neukirch-Wenzel.

Theorem 3. Let G be a profinite group, T a profinite space, and G = {Gt}t∈T
an étale continuous family of subgroups of G. If G is the absolute Galois
group of some field, then so is the free profinite product Ĝ of G.
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Proof. The associated sheaf X = (X, τ, T ) of G is a closed subsheaf of the
constant sheaf Y = (T ×G, prT , T ), because X = {(t, g) ∈ T ×G| g ∈ Gt} ⊆
T × G and τ = (prT )|X . By definition, Ĝ is the free profinite product over
X. Let H be the free profinite product over Y. By Theorem 2, H is the
absolute Galois group of some field E. By [HJ, Lemma 4.8.2], Ĝ is a closed
subgroup of H. Therefore Ĝ is the absolute Galois group of some algebraic
extension of E.

3 Families converging to 1

We begin with an application of Theorem 3. It appears as Theorem 3(2) of
[Bar], proven there by completely different methods.

Corollary 4. Let G = {Gi}i∈I be a family of profinite groups. The free
profinite product in the sense of Binz-Neukirch-Wenzel of G is realizable as
an absolute Galois group if and only if G is realizable as a family of subgroups,
converging to 1, of an absolute Galois group.

Proof. Suppose that {Gi}i∈I is a family of subgroups of a profinite group
G. Let T = I ∪· {∞} be the one-point compactification of I and put G∞ =
1. It follows from definitions that {Gi}i∈I is converging to 1 if and only if
{Gt| t ∈ T} is étale continuous. Moreover, by [HJ, Corollary 4.4.3], G is the
free profinite product of {Gi}i∈I in the sense of Binz-Neukirch-Wenzel if and
only if G is the free profinite product of {Gt| t ∈ T}. So the result follows by
Theorem 3.

We now want to show that the free profinite product of a family of certain
absolute Galois groups, converging to 1, is an absolute Galois group. By
Corollary 4 it would suffice to realize this family as converging to 1, in an
absolute Galois group. However, the latter task seems to be as difficult as
the former one. So we adopt another approach.

Lemma 5 ([HJK], Proposition 2.3(b)). Let F be a valued field with residue
field F̄ . Let K be an extension of F̄ and κ a cardinality. Then there is an
extension L of F with Gal(L) ∼= Gal(K) and tr. deg(L/F ) ≥ κ.

Proof. This is [HJK, Proposition 2.3(b)], except for the last assertion. To
obtain it too, replace F by F (T ), where T is an algebraically independent
set over F of cardinality ≥ κ and extend the valuation of F to a valuation
of F (T ) with the same residue field F̄ .
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We will need a variant of [HJK, Proposition 2.5]:

Lemma 6. Let F,K be fields, each containing an algebraically closed subfield,
such that either charK = charF or charK = 0. Let c be a cardinality. Then
there is a field extension L/K such that Gal(L) ∼= Gal(F ) and tr. degL/K ≥
c.

Proof. Let F1, K1 be the algebraic closures of the prime subfields F0, K0 of
F,K, respectively. By assumption, F1 ⊆ F and K1 ⊆ K.

The unique place K0 → F0∪{∞} extends to a place ϕ1 : K1 → F1∪{∞}.
As K1 is algebraically closed, so is its residue field, hence the residue field of
ϕ1 is F1. We can extend ϕ1 to a place ϕ1 : K → F1 ∪ {∞} with the same
residue field F1.

Choose a transcendence base S for F/F1 and choose an algebraically
independent set T over K such that card(T ) ≥ c, card(S). Then there is
a surjective map ϕ2 : T → S. Extend ϕ1 and ϕ2 to a place ϕ : K(T ) →
F1(S) ∪ {∞} with residue field F1(S). This place gives a valuation of K(T )
with residue field F1(S). By [HJK, Proposition 2.3(b)] there is an algebraic
extension L of K(T ) such that Gal(L) ∼= Gal(F ).

Lemma 7. Let E,E ′ be fields. Assume that E ′ contains an algebraically
closed subfield and either charE = charE ′ or charE = 0. Then there is an
extension K/E and separable algebraic extensions K1/K,K2/K such that

(a) Res: Gal(K1)→ Gal(E) is an isomorphism,

(b) Res: Gal(K2)→ Gal(E) is the trivial map, and

(c) Gal(K2) ∼= Gal(E ′).

Proof. Let Ẽ be the algebraic closure of E. Replace E by its inseparable
closure in Ẽ to assume that Ẽ/E is separable. By Lemma 6 there is an
extension K2/Ẽ such that (c) holds. As Ẽ ⊆ K2, (b) holds.

Let T be a separating transcendence base for K2/Ẽ and put K = E(T ).
Then K2/Ẽ(T ) and Ẽ(T )/K are separable algebraic, hence so is K2/K. By
[HJK, Proposition 2.4], Res : Gal(K) → Gal(E) has a section, hence there
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is an separable algebraic extension K1/K such that (a) holds.

K̃

K1

K2

Gal(E′)

Ẽ(T )

E(T )= K

Ẽ

E
Gal(E)

Remark 8. (a) Let I be a set. It can be well-ordered, i.e., there is an ordinal
ν and a bijection f : ν → I. For every λ ≤ ν we define Iλ = {f(κ)|κ < λ}.
(Thus I0 = ∅, I1 = {f(0)}, I2 = {f(0), f(1)}, . . ., Iω = {f(0), f(1), . . .},
Iω+1 = {f(0), f(1), . . . , f(ω)}, . . ., Iν = I.) Thus for every λ ≤ ν we have: If
λ is not a limit ordinal, then Iλ = Iλ−1 ∪· {f(λ − 1)}; if λ is a limit ordinal,
then Iλ =

⋃
κ<λ Iκ = lim−→κ<λ

Iκ.

(b) Let I, f , and ν be as in (a). Let {Xi}i∈I be a family of profinite
spaces. For every λ ≤ ν let

X̄λ = (
⋃
·

i∈Iλ

Xi) ∪· {∞}

be the one-point compactification of
⋃
· i∈Iλ Xi ([HJ, Lemma 4.4.2]). In par-

ticular, X̄0 = {∞} and X̄ν is the one-point compactification of
⋃
· i∈I Xi.

For κ ≤ λ ≤ ν define πλ,κ : X̄λ → X̄κ by

πλ,κ(x) =


x if x ∈ Xi,where i ∈ Iκ
∞ if x ∈ Xi,where i ∈ Iλ r Iκ

∞ if x =∞

Then πλ,κ is surjective. It is continuous.
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Indeed, let U be a basic open subset of X̄κ, that is ([HJ, Lemma 4.4.2])
either a clopen subset of Xi for some i ∈ Iκ or U = {∞} ∪·

⋃
· i∈I′κ Xi for

some cofinite subset I ′κ of Iκ. In the former case π−1λ,κ(U) = U is clopen in
Xi. In the latter case I ′λ = I ′κ ∪· (Iλ r Iκ) is a cofinite subset of Iλ and
π−1λ,κ(U) = {∞} ∪·

⋃
· i∈I′λ Xi. So in both cases π−1λ,κ(U) is a basic open subset

of X̄λ.
It is easy to see that if κ ≤ λ ≤ µ ≤ ν, then πλ,κ ◦ πµ,λ = πµ,κ. Thus

(X̄λ, πλ,κ|κ ≤ λ ≤ ν), is an inverse system. Therefore, if µ ≤ ν is a limit
ordinal, then (X̄λ, πλ,κ|κ ≤ λ < µ), is also an inverse system and the maps
(πµ,λ|λ < µ) define a surjective continuous map π : X̄µ → lim←−λ<µ X̄λ. It is

injective as well. Indeed, if x, x′ ∈ X̄µ, there is λ < µ such that x, x′ ∈ X̄λ.
So if x 6= x′, then πµ,λ(x) 6= πµ,λ(x

′), whence π(x) 6= π(x′). Thus X̄µ
∼=

lim←−λ<µ X̄λ. If µ ≤ ν is not a limit ordinal, then X̄µ is the disjoint union of

X̄µ−1 and Xf(µ).
(c) Let I, f , and ν be as in (a). Let {Gi}i∈I be a family of profinite groups

and let λ ≤ ν. Consider the sheaf of profinite groups Xλ = (X̄λ, τλ, Tλ), where
X̄λ = (

⋃
· i∈Iλ Gi) ∪· {∞} and Tλ = Iλ ∪· {∞} are the one-point compactifica-

tions, and τλ(Gi) = {i}, for every i ∈ Iλ and τλ(∞) =∞.
Let λ ≤ ν. The free profinite product Hλ of {Gi}i∈Iλ in the sense of

Binz-Neukirch-Wenzel is the outer free profinite product over Xλ, by [HJ,
Corollary 4.4.3]. Thus H0 = 1 and Hν =

∐
i∈I Gi. Let µ ≤ ν. By (b), if

µ is a limit ordinal, then Xµ = lim←−λ<µ Xλ, hence, by [HJ, Lemma 4.2.5],

Hµ = lim←−λ<µHλ. If µ is not a limit ordinal, then Xµ is the disjoint union of

Xµ−1 and (Gi, τi, {i}), where i = f(µ− 1) and τi maps every g ∈ Gi onto i;
hence Hµ = Hµ−1

∐
Gi.

Theorem 9. Let {E} ∪ {Ei}i∈I be a family of fields. Assume that either all
of them have the same characteristic or charE = 0, and suppose that every
Ei contains an algebraically closed subfield. Let H =

∐
i∈I Gal(Ei) be the free

profinite product of the Gal(Ei) in the sense of Binz-Neukirch-Wenzel. Then
there is an extension F/E with Gal(F ) ∼= H.

Proof. By Remark 8 there is an ordinal ν, a bijection f : ν → I, and an
inverse system of epimorphisms of profinite groups (Hλ, πλ,κ|κ ≤ λ ≤ ν),
such that

(a) H0 = 1 and Hν = H;

(b) if λ is a limit ordinal, then Hλ = lim←−κ<λHκ; and
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(c) if λ > 0 is not a limit ordinal, then Hλ = Hλ−1
∐
Gλ−1, where Gλ−1 =

Gal(Ef(λ−1)).

We construct, by transfinite induction, a family of field extensions {Lλ}λ≤ν
of E such that

(d) for every λ ≤ ν there is an isomorphism θλ : Gal(Lλ)→ Hλ;

(e) if κ ≤ λ ≤ ν, then Lκ ⊆ Lλ and the following diagram commutes

Gal(Lλ)

Resλ,κ
��

θλ // Hλ

πλ,κ

��
Gal(Lκ)

θκ // Hκ

(1)

Here Resλ,κ is the restriction map of the Galois groups.

Then L = Lν is an extension of E with Gal(L) ∼= H.
The construction is by transfinite induction. As H0 = 1, we may set

L0 = Ẽ. If µ is a limit ordinal, we let Lµ = lim−→κ<µ
Lκ. Then Gal(Lµ) =

lim←−κ<µ Gal(Lκ) and Hµ = lim←−κ<µHκ. The commutativity of diagrams (1)

for κ ≤ λ < µ gives an isomorphism θµ : Gal(Lµ) → Hµ such that the left
diagram

Gal(Lµ)

Resµ,κ
��

θµ // Hµ

πµ,κ

��
Gal(Lκ)

θκ // Hκ

Gal(Lµ)

Resµ,µ−1

��

θµ // Hµ

πµ,µ−1

��
Gal(Lµ−1)

θµ−1 // Hµ−1

(2)

commutes for all κ ≤ µ.
Suppose that µ is not a limit ordinal. By Lemma 7 there is an extension

K/Lµ−1 and algebraic extensions K1/K,K2/K such that

(i) Res : Gal(K1)→ Gal(Lµ−1) is an isomorphism,

(ii) Res : Gal(K2)→ Gal(Lµ−1) is the trivial map, and

(iii) Gal(K2) ∼= Gµ−1 = Gal(Ef(µ−1)).
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Replace K by K1 ∩ K2 to assume that K = K1 ∩ K2. Then replace
K1, K2 by the separable closures of K in them to assume that K1/K,K2/K
are separable. Then, by [HJK, Theorem 3.3], there are fields Lµ, F1, F2 such
that

(iv) F1/Lµ, F2/Lµ are algebraic and F1 ∩ F2 = Lµ;

(v) Ki ⊆ Fi and Res : Gal(Fi)→ Gal(Ki) is an isomorphism, for i = 1, 2;

(vi) Gal(Lµ) = Gal(F1)qGal(F2); moreover,

(vii) Lµ−1 ⊆ Lµ, because Lµ−1 ⊆ K = K1 ∩K2 ⊆ F1 ∩ F2 = Lµ,

We construct an isomorphism θµ : Gal(Lµ) → Hµ such that the left dia-
gram in (2) commutes, for every κ < µ. As (1) commutes for λ = µ − 1, it
suffices to construct θµ such that the right diagram in (2) commutes.

Consider the subgroups Gal(F1),Gal(F2) of Gal(Lµ).
By (v) and (i), Resµ,µ−1 maps Gal(F1) isomorphically onto Gal(Lµ−1).

So θµ−1 ◦ Resµ,µ−1 |Gal(F1) is an isomorphism α1 : Gal(F1) → Hµ−1. Recall
that Hµ = Hµ−1qGµ−1 and πµ,µ−1 maps the subgroup Hµ−1 identically onto
itself. Thus πµ,µ−1 ◦ α1 = θµ−1 ◦ Resµ,µ−1 |Gal(F1).

By (v) and (iii) there is an isomorphism α2 : Gal(F2) → Gµ−1. By (v)
and (ii), Resµ,µ−1 maps Gal(F2) onto 1. As πµ,µ−1 maps Gµ−1 onto 1, we have
πµ,µ−1 ◦ α2 = θµ−1 ◦ Resµ,µ−1 |Gal(F2).

By (vi), α1, α2 extend to a unique isomorphism θµ : Gal(Lµ)→ Hµ such
that the right diagram in (2) commutes.

Corollary 10. Let {Ei}i∈I be a family of fields such that all but finitely many
Ei contain algebraically closed subfields. Let H =

∐
i∈I Gal(Ei) be the free

profinite product of the Gal(Ei) in the sense of Binz-Neukirch-Wenzel. Then
there is a field F of characteristic 0 with Gal(F ) ∼= H. If all Ei have the same
characteristic p, then there is a field F of characteristic p with Gal(F ) ∼= H.

Proof. Let I ′ ⊆ I be the subset of all i ∈ I such that Ei contains an al-
gebraically closed subfield. By Theorem 9 there is a field F ′ of character-
istic 0 (or of characteristic p, if all Ei are of characteristic p), such that
Gal(F ′) =

∐
i∈I′ Gi. Then H = Gal(F ′) q (

∐
i∈IrI′ Gi). By [HJK, Theorem

3.4] there is a field F of the desired characteristic with Gal(F ) ∼= H.

Although the condition of Corollary 10 need not be necessary, it is signif-
icant in the following sense (we again use the notation

∐
i∈I Gi for the free

profinite product in the sense of Binz-Neukirch-Wenzel):
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Proposition 11. Let {Gi}i∈I be a family of absolute Galois groups. Then∐
i∈I Gi is an absolute Galois group if and only if there is a countable subset

J of I such that
∐

i∈J Gi is an absolute Galois group and for every i ∈ IrJ ,
Gi is the absolute Galois group of a field that contains an algebraically closed
subfield.

Proof. Let H =
∐

i∈I Gi. It follows from the universal property of a free
profinite product that if J is a subset of I, then H is the free profinite product
of

∐
i∈J Gi and

∐
i∈IrJ Gi. In particular, these two groups are subgroups of

H.
Assume that there is a field F such that H = Gal(F ). Let F0 be the prime

subfield of F . The restriction π : Gal(F )→ Gal(F0) is an epimorphism. As
the family {Gi}i∈I is converging to 1, also its image {π(Gi)}i∈I is a family
of subgroups of Gal(F0) is converging to 1. Thus for every open normal
subgroup U of Gal(F0) there is a finite subset IU of I such that π(Gi) ≤ U
for all i ∈ I r IU .

As F0 is a countable field, the family of open normal subgroups U of
Gal(F0) is countable, and hence J :=

⋃
U IU is a countable set. As

∐
i∈J Gi

is a subgroup of H = Gal(F ), it is the absolute Galois group of an algebraic
separable extension of F . And if i ∈ I r J , then π(Gi) ≤

⋂
U U = 1; hence

the fixed field Ei of Gi (in the algebraic closure of F ) contains the algebraic
closure of F0 and Gi = Gal(Ei).

Conversely, assume that there is J as in this proposition. By assumption,∐
i∈J Gi is an absolute Galois group. By Theorem 9, so is

∐
i∈IrJ Gi. Hence

by [HJK, Theorem 3.4] so is their free profinite product H.

Thus realizability of a free profinite product as an absolute Galois group
is reduced to free profinite products over a countable set.
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