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1 Introduction

We address one of the major problems of Galois theory: the characterization of absolute

Galois groups among all profinite groups. Specifically, we consider a profinite group G

equipped with a subset G of subgroups each of which is isomorphic to an absolute Ga-

lois group. The problem is to characterize those pairs for which G is isomorphic to an

absolute Galois group Gal(K) of a field K that satisfies a local-global principle for points

on smooth varieties with respect to the fixed fields of the groups in G.

In [12] we extend the pairs (G,G) to, so-called, group structures of a general na-

ture. We prove that a proper profinite group structure G is projective if and only if G

is the absolute Galois group structure of a proper field-valuation structure with block

approximation.

The introduction to [12] contains an extensive historical background on the

subject.

In this work we apply the general setup of [12] to a classical situation. Let F be

a finite set of classical local fields of characteristic 0. Thus, each F ∈ F is either the field

R of real numbers or a finite extension of the field Qp of p-adic numbers for some prime

number p. We assume F is closed under Galois isomorphism: if F and F ′ are finite exten-

sions of Qp, F ∈ F, and Gal(F ′) ∼= Gal(F), then F ′ ∈ F.

Theorem 1.1 (main theorem). Let F be a finite set of classical local fields of characteris-

tic 0which is closed under Galois isomorphism and let G be a profinite group. Then G is
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1958 Dan Haran et al.

isomorphic to the absolute Galois group of a PFC field K if and only if G is F-projective

and Subgr(G,Gal(F)) is strictly closed in Subgr(G) for each F ∈ F. �

The notions appearing in Theorem 1.1. For each F ∈ F let AlgExt(K,F) be the set of all

algebraic extensions F of K (within a fixed algebraic closure K̃ of K) which are elemen-

tarily equivalent to F. We say that K is PFC (pseudo-F-closed) if it satisfies the following

local-global principle: let V be a smooth absolutely irreducible variety over K. Suppose

V(F) �= ∅ for each F ∈ ⋃
F∈F AlgExt(K,F). Then V(K) �= ∅.

The notation Subgr(G) stands for the space of all closed subgroups ofG. Subgr(G)

is the inverse limit of the discrete finite spaces Subgr(G/N), whereN ranges over all open

normal subgroups of G. Thus, Subgr(G) is a profinite space. We refer to its topology as

strict and write Subgr(G,Gal(F)) = {Γ ∈ Subgr(G) | Γ ∼= Gal(F)}.

Finally, G is F-projective if it satisfies the following local-global principle: let α :

B→ A be an epimorphism of finite groups and ϕ : G→ A a homomorphism. Suppose for

each F ∈ F and each Γ ∈ Subgr(G,Gal(F)) there is a homomorphism γΓ : Γ → B satisfying

α ◦ γΓ = ϕ|Γ . Then there is a homomorphism γ : G→ Bwith α ◦ γ = ϕ.

Theorem 1.1 generalizes several known special cases.

(1) First suppose F is the empty set. Then a PFC field is a PAC field [7, Chapter

11] and an F-projective group is a projective group. Theorem 1.1 is due in this case to

Lubotzky-v.d.Dries [7, Corollary 20.16] and Ax [7, Theorem 11.6.2].

(2) If F = {R}, then a PFC field is a PRC field and an F-projective group is a real

projective group G such that the set of all involutions of G is closed. See [10, page 450,

Theorem] for Theorem 1.1 in this case.

(3) If F = {Qp}, then a PFC field is a PpC field and an F-projective group is a p-ad-

ically projectiveG such that the set of all subgroups ofGwhich are isomorphic to Gal(Qp)

is strictly closed in Subgr(G). See [11, page 148, Theorem] for Theorem 1.1 in this case.

(4) The general case is announced in [26]. Unfortunately, the proofs of [26] are

extremely sketchy and difficult to read. The current work is based on ideas of [26] and

applies results of [12].

(5) Koenigsmann [22] proves Theorem 1.1 in the case that AlgExt(K,F) is finite.

Ershov [5, 6] proves that Gal(K) is F-projective (in a stronger sense) when (K,F) is a mul-

tivalued PFC field satisfying certain conditions.

None of those papers goes as far as we do in this work and equips K in Theorem

1.1 with a set of valuations satisfying the “block approximation theorem.” We refer the

reader to Section 11, in particular to Theorem 11.3, for the exact result. Here it suffices to

say that each minimal F ∈ AlgExt(K,F) is the Henselian closure of K at a valuation vF and

the family {vF | F ∈ AlgExt(K,F)} satisfies a very strong independence-density property.
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P-adically Projective Groups as Absolute Galois Groups 1959

In the rest of the introduction we describe the structure of the proof of Theorem

1.1 and its stronger versions (Theorems 10.4 and 11.3) which we actually prove.

Denote the set of all separable algebraic extensions of a field K (within a fixed

separable closure Ks of K) by AlgExt(K). The map F �→ Gal(F) is a bijection of AlgExt(K)

onto Subgr(Gal(K)). It transfers the strict topology of Subgr(Gal(K)) to the strict topology

of AlgExt(K). We prove that AlgExt(K,F) is strictly closed in AlgExt(K) for each F ∈ F. In

particular, this holds if K is PFC. In this case the existence of points on smooth varieties

over K translates into F-projectivity.

Conversely, let G be a profinite group. Suppose G is F-projective and Subgr(G,

Gal(F)) is strictly closed in Subgr(G) for each F ∈ F. Put C = {Gal(F) | F ∈ F}. Let G =

Subgr(G,C) be the set of all H ∈ Subgr(G) which are isomorphic to some Γ in C. Denote

the set of all maximal elements in G by Gmax. For each Γ ∈ C we construct a finite quotient

Γ̄ such that the set {Γ̄ | Γ ∈ C} is a “system of big quotients” of C in a sense made precise in

Section 7. We use it to prove that G is “strongly G-projective” (Proposition 7.5). Thus, ev-

ery G-embedding problem forGwhich is locally solvable is globally solvable (Section 7).

In particular, there is a homomorphism κ of G into the free product B∗ =
∏∗ Γ∈C Γ which

maps eachH ∈ G isomorphically into a conjugate of some Γ ∈ C. By a theorem of Geyer we

may identify B∗ with the absolute Galois group of an algebraic extension K0 of Q. Denote

the fixed field of κ(G) in Q̃ by K1. By Proposition 7.5, G = (G,Gmax) is a “proper projective

group structure” (Section 6). Let Gal(K1) = (Gal(K1),Subgr(Gal(K1),C)). Then κ extends

to a Galois cover κ : G → Gal(K1) of group structures (proof of Theorem 11.3). By the

main result of [12], there are a field K and an isomorphism ϕ : G → Gal(K) such that

res ◦ϕ = κ. Moreover, every F ∈ AlgExt(K,F) is either real closed or elementarily equiv-

alent to some F ∈ F. In particular, F has a “P-adic valuation” vF. The system of fields

F ∈ AlgExt(K,F) and valuations vF satisfies a strong version of the weak approxima-

tion theorem which we call the “block approximation theorem.” In particular, K is PFC

(Theorem 11.3).

2 The étale and the strict topologies of Subgr(G)

Let G be a profinite group. Denote the collection of all closed (resp., open, open normal)

subgroups ofG by Subgr(G) (resp., Open(G), OpenNormal(G)). We introduce two topolo-

gies on Subgr(G) and relate them to each other.

For eachH,N ∈ Open(G) withN �G let

V(H,N) =
{
A ∈ Subgr(G) | AN = HN

}
. (2.1)

The collection of all V(H,N) is a basis for a topology on Subgr(G) which we call the
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1960 Dan Haran et al.

strict topology. When G is finite, the strict topology is the discrete topology. In general,

Subgr(G) ∼= lim←−−Subgr(G/N) with N ranging over all open normal subgroups of G. Thus,

Subgr(G) is a profinite space under the strict topology. We use the adverb “strictly” as a

replacement for “in the strict topology.” For example, for a subset G of Subgr(G) we say G

is strictly open (resp., closed, compact, Hausdorff ) if it is open (resp., closed, compact,

Hausdorff) in the strict topology. Likewise, for a function f from a topological space X

into Subgr(G), we say f is strictly continuous if f is continuous when Subgr(G) is

equipped with the strict topology. We denote the strict closure of a subset G of Subgr(G)

by StrictClosure(G).

IfU1, . . . , Um∈Open(G), thenU=
⋂m

i=1Ui is open and Subgr(U) is
⋂m

i=1 Subgr(Ui).

Therefore {Subgr(U) | U ∈ Open(G)} is a basis for a topology on Subgr(G) which we call

the étale topology. As above, for a subset G of Subgr(G) we say G is étale open (closed,

compact,Hausdorff, etc.) if G is open (closed, compact,Hausdorff, etc.) in the étale topol-

ogy. Likewise, for a function f from a topological space X into Subgr(G) we say f is étale

continuous if f is continuous when Subgr(G) is equipped with the étale topology. Note

that the étale topology of Subgr(G) is weaker than the strict topology. Thus, every étale

open subset of Subgr(G) is also strictly open [12, Remark 1.2].

The envelope of a subset G of Subgr(G) is the set of all H0 ∈ Subgr(G) which are

contained in some H ∈ G. We denote it by Env(G) and use it to relate the strict topology

and the étale topology of Subgr(G) to each other.

Lemma 2.1. A subset G of Subgr(G) is étale compact if and only if Env(G) is strictly

closed. �

Proof. Suppose first Env(G) is strictly closed, hence strictly compact. Let Ui, i ∈ I,

be open subgroups of G with G ⊆ ⋃
i∈I Subgr(Ui). Then Env(G) ⊆ ⋃

i∈I Subgr(Ui).

Since each of the sets Subgr(Ui) is strictly open, I has a finite subset I0 with Env(G) ⊆⋃
i∈I0

Subgr(Ui). Thus, G ⊆ ⋃
i∈I0

Subgr(Ui). Therefore, G is étale compact.

Conversely, suppose G is étale compact. ConsiderA ∈ Subgr(G) � Env(G) andH ∈
G. Then A �≤ H. Hence, there is NH ∈ OpenNormal(G) with A �≤ HNH. Thus, A is not in

the étale open neighborhood Subgr(HNH) ofH.

The collection of all Subgr(HNH) covers G. Since G is étale compact, there areH1,. . ., Hn∈
G andN1, . . . , Nn∈OpenNormal(G) with G⊆⋃n

i=1 Subgr(HiNi) andA /∈⋃n
i=1 Subgr(HiNi).

In addition,
⋃n

i=1 Subgr(HiNi) is strictly closed. Hence,

StrictClosure(G) ⊆
n⋃

i=1

Subgr
(
HiNi

)
. (2.2)
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P-adically Projective Groups as Absolute Galois Groups 1961

Thus, A belongs to the strictly open set Subgr(G) �
⋃n

i=1 Subgr(HiNi) which is disjoint

from Env(G). Therefore,A is not in StrictClosure(Env(G)). It follows that Env(G) is strictly

closed. �

Corollary 2.2. Let G be an étale compact subset of Subgr(G). Then StrictClosure(G) is

contained in Env(G). �

For a profinite groupG, a closed subgroupH, and a subset G of Subgr(G) let GH =

{Γh | Γ ∈ G, h ∈ H}. Put Con(G) = Env(GG) = Env(G)G.

Lemma 2.3. Let G be an étale compact subset of Subgr(G). Then each of the sets GG,

Env(G), and Con(G) is étale compact. �

Proof. The set GG is the image of the compact space G × G under the étale continuous

map (Γ, g) �→ Γg. Hence, GG is étale compact.

By Lemma 2.1, Env(G) is strictly closed, hence étale compact [12, Remark 1.2].

Therefore, by the first paragraph, Con(G) = Env(G)G is étale compact. �

Lemma 2.4. Let H be a closed subgroup of G. Then ÉtaleClosure({H}) = {B ∈ Subgr(G) |

H ≤ B}. �

Proof. First suppose B ∈ ÉtaleClosure({H}). ThenH belongs to each étale open neighbor-

hood of B. In other words, ifU ∈ Open(G) and B ≤ U, thenH ≤ U. Hence,H ≤ B.

Conversely, suppose H ≤ B. Then, H belongs to each basic étale open neighbor-

hood Subgr(U) of B. Therefore, B ∈ ÉtaleClosure({H}). �

Lemma 2.5. Let ϕ : G → H be an epimorphism of profinite groups and G0 a closed sub-

group of G. The set {B ∈ Subgr(G) | ϕ(G0) ≤ ϕ(B)} is étale closed. �

Proof. By [12, Remark 1.1(b)], the map ϕ : Subgr(G) → Subgr(H) induced by ϕ is étale

continuous. By Lemma 2.4, the set {C ∈ Subgr(H) | ϕ(G0) ≤ C} is étale closed. Its inverse

image in Subgr(G) is {B ∈ Subgr(G) | ϕ(G0) ≤ ϕ(B)}, so it is étale closed. �

Lemma 2.6. Let G be an étale compact subset of Subgr(G). Then each A ∈ G is contained

in a maximal element of G. �

Proof. By Zorn’s lemma, it suffices to prove that each ascending chain G0 in G is bound-

ed by an element of G. Consider B1, . . . , Bn ∈ G0. Then the Bi are comparable. Assume

B1 ≤ B2 ≤ · · · ≤ Bn. By Lemma 2.4, Bn ∈ ⋂m
i=1 ÉtaleClosure({Bi}). Thus,

G ∩
n⋂

i=1

ÉtaleClosure
({
Bi

}) �= ∅. (2.3)
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1962 Dan Haran et al.

Since G is étale compact, G ∩ ⋂
B∈G0

ÉtaleClosure({B}) is nonempty. Each element of the

latter set is a bound of G0. �

If a subset G of Subgr(G) contains groups A and Bwith A < B, then G is not étale

Hausdorff. Thus, removing all nonmaximal elements from G is the only way to make G

étale Hausdorff while preserving the essential information stored in G. We denote the set

of all maximal elements of G by Gmax.

Lemma 2.7. Let G be an étale compact subset of Subgr(G). Then Gmax is étale compact.

�

Proof. By Lemma 2.6, Env(G) = Env(Gmax). Hence, by Lemma 2.1, Gmax is étale compact.

�

3 Relatively projective groups

Pairs (G,G) consisting of a profinite group and a subset G of Subgr(G) which satisfy a lo-

cal global principle for finite embedding problems naturally arise from pairs (K,X) con-

sisting of a field K and a set X of separable algebraic extensions of K which satisfy a

local global principle for points on absolutely irreducible varieties (Section 4). We prove

in Proposition 4.1 that G is “G-projective” in a sense we now explain.

LetG be a profinite group and G a subset of Subgr(G). An embedding problem for

G is a pair

(1) (ϕ : G→ A, α : B→ A),

where ϕ is a homomorphism and α is an epimorphism of profinite groups. The embed-

ding problem is finite if A and B are finite. We call (1) a G-embedding problem if it is

locally solvable; that is,

(2) for each Γ ∈ G there exists a homomorphism γΓ : Γ → Bwith α ◦ γΓ = ϕ|Γ .

We say (1) is a rigid G-embedding problem if

(3) for each Γ ∈ G there is B0 ∈ Subgr(B) such that α : B0 → ϕ(Γ) is an isomor-

phism.

A solution of (1) is a homomorphism γ : G → B with γ ◦ α = ϕ. We say G is

G-projective if every finite G-embedding problem for G is solvable. Our definition

generalizes the definition of a “projective group.” Indeed, “G is ∅-projective” means

“G is projective.” We refer to G as relatively projective if G is G-projective for a subset

G of Subgr(G).

If G ⊆ G ′ ⊆ Subgr(G) and G is G-projective, then G is G ′-projective. Moreover, if

G is étale compact, then by Lemma 2.6, each group in G is contained in a group of Gmax.
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P-adically Projective Groups as Absolute Galois Groups 1963

Hence, under the assumption that G is étale compact, G is G-projective if and only if G is

Gmax-projective. Hence, G is G-projective if and only if G is GG-projective.

Suppose (1) is a rigid G-embedding problem and Γ and B0 are as in (3). Put A0 =

ϕ(Γ) and γΓ = (α|A0
)−1 ◦ϕ|Γ . Then γΓ : Γ → B is a homomorphism satisfying α ◦ γΓ = ϕ|Γ .

Thus, every rigid G-embedding problem is a G-embedding problem. The next lemma es-

tablishes a sort of converse to this statement.

Lemma 3.1. LetG be a profinite group and G an étale compact subset of Subgr(G). Let (1)

be a finite G-embedding problem for G. Then

(a) there exists a commutative diagram

G

ϕ̂

ϕB̂
α̂

β

Â

ϕ̄

B
α

A

(3.1)

in which ϕ̂ is an epimorphism and (ϕ̂ : G→ Â, α̂ : B̂→ Â) is a finite rigid

G-embedding problem,

(b) if every finite rigid G-embedding problem (1) for G in which ϕ is an epimor-

phism is solvable, then G is G-projective. �

Proof of (a). Consider Γ ∈ G. Choose a homomorphism γΓ with α ◦γΓ = ϕ|Γ . Then Ker(γΓ )

is an open subgroup of Γ . Choose NΓ ∈ OpenNormal(G) with NΓ ≤ Ker(ϕ) and Γ ∩NΓ ≤
Ker(γΓ ). Then Subgr(ΓNΓ ) is an étale open neighborhood of Γ in Subgr(G) and γΓ extends

to a homomorphism γ ′
Γ : ΓNΓ → Bwith kernel Ker(γΓ )NΓ .

Since G is étale compact, there are Γ1, . . . , Γm ∈ G with G ⊆ ⋃m
i=1 Subgr(ΓiNΓi

).

Then N =
⋂m

i=1NΓi
∈ OpenNormal(G) and N ≤ Ker(ϕ). Let Â = G/N, ϕ̂ : G → Â the

quotient map, and ϕ̄ : Â → A the map induced by ϕ. Then ϕ = ϕ̄ ◦ ϕ̂. Now consider the

fiber product B̂ = B ×A Â with the projection maps α̂ : B̂ → Â and β : B̂ → B on the

coordinates. Since α is surjective, so is α̂.

For each i put Ni = NΓi
and γi = γ ′

Γi
: ΓiNi → B. Then there is a homomorphism

γ̂i : ΓiNi → B̂ satisfying α̂ ◦ γ̂i = ϕ̂|ΓiNi
and β ◦ γ̂i = γi [7, Proposition 22.2.1]. Put

B̂i = γ̂i(ΓiNi).

Claim 1. α̂ : B̂i → ϕ̂(ΓiNi) is an isomorphism.
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1964 Dan Haran et al.

It suffices to prove that α̂ is injective on B̂i. Indeed, consider b ∈ B̂i with α̂(b) = 1.

Choose g ∈ ΓiNi with γ̂i(g) = b. Then ϕ̂(g) = α̂(γ̂i(g)) = 1, so g ∈ N ≤ Ni. Thus, β(b) =

γi(g) = 1. Therefore, b = 1, as desired.

Now consider Γ ∈ G. Choose i with Γ ≤ ΓiNi. Then ϕ̂(Γ) ≤ ϕ̂(ΓiNi). By Claim 1, α̂

maps α̂−1(ϕ̂(Γ)) ∩ B̂i isomorphically onto ϕ̂(Γ). Hence, (ϕ̂ : G → Â, α̂ : B̂ → Â) is a finite

G-embedding problem for G satisfying the rigidity condition.

Proof of (b). Consider a finite G-embedding problem (1) forG. Let (ϕ̂ : G→ Â, α̂ : B̂→ Â)

be the embedding problem given by (a). By assumption, it has a solution γ̂. Then γ = β◦ γ̂
solves (1). �

4 Pseudo closed fields

Let K be a field and X a subset of the set SepAlgExt(K) of all separable algebraic exten-

sions of K. By an absolutely irreducible variety over K we mean a nonempty geometrical

integral scheme of finite type over K. We say K is pseudo-X-closed (abbreviated PXC) if it

satisfies the following condition.

(1) Every smooth absolutely irreducible variety over K, with an F-rational point

for each F ∈ X, has a K-rational point.

If V is an arbitrary absolutely irreducible variety over K, then the Zariski open

subset Vsimp of all simple points of V is also an absolutely irreducible variety over K.

Hence, (1) is equivalent to the following condition.

(2) Every absolutely irreducible variety over K, with a simple F-rational point for

each F ∈ X, has a K-rational point.

Note that K is P∅C if and only if K is PAC [7, Chapter 11].

Under a mild topological assumption on X, the PXC property of K results in a

relative projectivity of Gal(K). The topology in question is the étale topology of the space

SepAlgExt(K). This space stands in a bijective correspondence with Subgr(Gal(K)). Thus,

SepAlgExt(K) inherits the étale topology from that of Subgr(Gal(K)). Basic étale open

subsets of SepAlgExt(K) are SepAlgExt(L) with L/K finite and separable.

If X ⊆ X ′ ⊆ SepAlgExt(K) and K is PXC, then K is PX ′C. Denote the set of all

minimal fields in X by Xmin. If X is étale compact, then by Lemma 2.6, each field in X

contains a minimal field in X. Hence, K is PXC if and only if K is PXminC.

Proposition 4.1. LetK be a field and X a subset of SepAlgExt(K). Put G = {Gal(K ′) | K ′∈X}.

Suppose X is étale compact and K is PXC. Then Gal(K) is G-projective. �

Proof. By Lemma 2.3, GG is étale compact. If we prove that Gal(K) is GG-projective, it will

follow that Gal(K) is G-projective. We may therefore assume G is Gal(K)-invariant.
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P-adically Projective Groups as Absolute Galois Groups 1965

By Lemma 3.1, it suffices to solve every finite rigid G-embedding problem

(3) (ϕ : Gal(K)→ A, α : B→ A),

where ϕ is an epimorphism.

Let L be the fixed field of Ker(ϕ) in Ks. Then identify Awith Gal(L/K) and ϕ with

resKs/L. Next use [12, Lemma 6.2] to construct a finitely generated regular extension E of

K and a finite Galois extension F of E containing Lwith these properties:

(4a) B = Gal(F/E) and α is the restriction map resF/L : Gal(F/E)→ Gal(L/K);

(4b) if L0 is a field betweenK and L, F0 is a field between E and Fwhich contains L0,

and resF/L : Gal(F/F0)→ Gal(L/L0) is an isomorphism, then F0 is a purely transcendental

extension of L0.

Since E/K is finitely generated and regular, one may view E as the function field

of an absolutely irreducible smooth affine variety V over K [7, Corollary 10.2.2].

Now let {Li | i ∈ I} = {K ′ ∩ L | K ′ ∈ X}. By rigidity, choose for each i ∈ I a field

Fi between E and F containing Li such that resF/L : Gal(F/Fi) → Gal(L/Li) is an isomor-

phism. By (4b), Fi is a purely transcendental extension of Li. Hence, V(Li) �= ∅. There-

fore, V(K ′) �= ∅ for each K ′ ∈ X. Since K is PXC, V has a K-rational point, which, by

assumption, is simple. By [19, Corollary A2], E has a valuation which is trivial on K and

with K as its residue field. Lemma 7.4 in [12] gives an algebraic extension E ′ of E such

that resE ′
s/Ks

: Gal(E ′) → Gal(K) is an isomorphism. Denote its inverse by γ ′. Then γ =

resE ′
s/F ◦γ ′ solves (3). �

Again, let K be a field and X a subset of SepAlgExt(K). For each algebraic exten-

sion L of K let XL = {K ′L | K ′ ∈ X}. If [L : K] <∞, then L is PXLC [15, Lemma 7.2]. The same

result holds for arbitrary L if X is strictly closed [15, Lemma 7.4]. Here we prove that L is

PXLC under the weaker condition that X is étale compact.

Proposition 4.2 (extension theorem). Let K be a field, X an étale compact subset of

SepAlgExt(K), and L a separable algebraic extension of K. Suppose K is PXC. Then XL

is étale compact and L is PXLC. �

Proof. The map K ′ �→ K ′L from X to XL is étale continuous. Since X is étale compact, so

is XL.

Next let V be a smooth absolutely irreducible variety over L with V(K ′L) �= ∅ for

each K ′ ∈ X. Choose a finite subextension K1 of L/K over which V is already defined.

Denote the set of all finite subextensions of L/K1 by E. For each E ∈ E let TE = {K ′ ∈ X |

V(K ′E) �= ∅}.

Claim 1. TE is étale open in X.
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1966 Dan Haran et al.

Indeed, let K ′ ∈ TE. Then V(K ′E) �= ∅. Hence, K ′/K has a finite subextension K ′
0/K with

V(K ′
0E) �= ∅. The open neighborhood X ∩ SepAlgExt(K ′

0) of K ′ in X is contained in TE.

Therefore, TE is open in X.

Since L =
⋃

E∈E E, we have
⋃

E∈E TE = X. Since X is étale compact, E has a finite

subset E0 with
⋃

E∈E0
TE = X. Let F be the union of all E ∈ E0. Then TE ⊆ TF for each

E ∈ E0, so X = TF. Thus, V(K ′F) �= ∅ for each K ′ ∈ X. By [15, Lemma 7.4], F is PXFC. Hence,

V(F) �= ∅, so V(L) �= ∅. Consequently, L is PXLC. �

5 Strongly projective groups

Consider a profinite group G and a subset G of Subgr(G). Suppose G is G-projective. If G

is empty, then G is projective, so every embedding problem for G is solvable [7, Lemma

22.3.2]. Unfortunately, we are able to solve an arbitrary G-embedding problem in the gen-

eral case only if we impose a strong condition on the global solution of each finite embed-

ding problem: the solution has to map every local group Γ ∈ G into a subset of Subgr(B),

given in advance, which is closed under conjugations and taking subgroups. In addition,

we have to assume that every Γ ∈ G is maximal in G and 1 /∈ ÉtaleClosure(G). Section 6

shows that when these conditions are fulfilled,G, G naturally give rise to a proper projec-

tive group structure G = (G,X,Gx)x∈X in the sense of [12, Section 4]. By [12, Proposition

4.2], every embedding problem for G is solvable.

Consider again a profinite group G and a subset G of Subgr(G). A G-embedding

problem for Gwith local data is a triple

(1) (ϕ : G→ A, α : B→ A,B),

where A and B are profinite groups, B is a strictly closed subset of Subgr(B) which is

closed under conjugations and taking closed subgroups, ϕ is a homomorphism, and α is

an epimorphism. In addition, we assume α is B-rigid. That is,

(2) ϕ(G) ⊆ α(B) and α is injective on each B0 ∈ B.

Call (1) finite if B is finite.

Occasionally we construct B as above in the following way. Let B0 be a subset of

Subgr(B). Then B = Con(B0) is the set of all subgroups of Bwhich are contained in Bb
0 for

some B0 ∈ B0 and b ∈ B. By Lemma 2.1, B is strictly compact (hence closed) if B0 is étale

compact. In particular, this is the case if B0 is finite.

A solution of (1) is a homomorphism γ : G → B with γ(G) ⊆ B. Call G strongly

G-projective if every finite G-embedding problem (1) for Gwith local data has a solution.

If in addition G is étale compact, then G is G-projective.

Indeed, let (ϕ : G → A, α : B → A) be a rigid G-embedding problem in the sense

of Section 3, (3). For each Γ ∈ G choose BΓ ∈ Subgr(B) such that α : BΓ → ϕ(Γ) is an
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P-adically Projective Groups as Absolute Galois Groups 1967

isomorphism. Let B = Con(BΓ | Γ ∈ G). Then (1) is a G-embedding problem for G with

local data and α is B-rigid. By assumption, there exists a homomorphism γ : G→ Bwith

α ◦γ = ϕ. By Lemma 3.1(b),G is G-projective. Moreover, by Lemmas 2.6 and 2.7, G is étale

compact and G is strongly Gmax-projective.

Example 5.1 free product of finitely many profinite groups. Consider a free product G =∏∗ n
i=1Gi of finitely many profinite groups. Put G = {G1, . . . , Gn} and B = Con(G1, . . . , Gn).

Then G is strongly G-projective.

Indeed, let (1) be a finite embedding problem for Gwith local data. Then ϕmaps

each Gi onto a subgroup Ai of A and there is Bi ∈ B which α maps isomorphically onto

Ai. Then γi = (α|Bi
)−1 ◦ (ϕ|Gi

) is an epimorphism of Gi onto Bi. Extend γ1, . . . , γn to a

homomorphism γ : G→ B. Then γ solves embedding problem (1).

Remark 5.2. Suppose G is étale compact and G is a strongly G-projective group. An obvi-

ous modification of Lemma 3.1 proves (1) is solvable even if α is not necessarily rigid but

satisfies the weaker condition instead:

(3) for each Γ ∈G there areB0∈B and a homomorphism γ0 : Γ→B0 withα◦γ0 =ϕ|Γ .

However, we do not use (3) in the definition of strong projectivity because all embedding

problems which we use in this work satisfy the condition “α is B-rigid.”

Lemma 5.3. Let G be a strongly G-projective group with G ⊆ Subgr(G). Then every em-

bedding problem with local data (1) such that A is finite and rank(B) ≤ ℵ0 is solvable.

�

Proof. PutN0 = Ker(α) and identifyAwith B/N0 and αwith the quotient map B→ B/N0.

Choose a descending sequenceNi ∈ OpenNormal(B) withNi ≤ Ker(α), i = 1, 2, 3, . . . , and⋂n
i=1Ni = 1. For j ≥ i let αji : B/Nj → B/Ni and βi : B → B/Ni be the quotient maps. For

each i, B/Ni = βi(B) is closed under conjugation and taking subgroups. The map α is

injective on each B0 ∈ B, so αi+1,i is injective on B0/Ni+1. Therefore, we may inductively

construct a sequence of homomorphisms γi : G→ B/Ni satisfying γ0 = ϕ, γi(G) ⊆ B/Ni,

and αi+1,i ◦ γi+1 = γi, i = 1, 2, 3, . . . .

The γi’s define a homomorphism γ : G→ Bwith βi ◦ γ = γi, i = 0, 1, 2, . . . . Since B

is strictly closed, B = lim←−−B/Ni. Hence, γ(G) ⊆ B. Therefore, γ is a solution of (1). �

Free products of finitely many profinite groups have some nice properties.

Lemma 5.4 [13, Proposition 2 and Theorem B’]. LetG=
∏∗ i∈IGi be the free profinite prod-

uct of finitely many profinite groups Gi. Then Gg
i ∩Gj �= 1 implies i = j, g ∈ Gi. �

Lemma 5.4 carries over to strongly G-projective groups.
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1968 Dan Haran et al.

Proposition 5.5. Let G be a profinite group and G an étale compact subset of Subgr(G)

which is closed under conjugation. Suppose G is strongly G-projective. Then

(a) Γ1 ∩ Γ2 = 1 for all distinct Γ1, Γ2 ∈ Gmax;

(b) NG(Γ) = Γ for each nontrivial Γ ∈ Gmax. �

Proof. Consider an epimorphism ϕ : G → Awith A finite. Write ϕ(G) = {Ai | i ∈ I} with I

finite. For each i ∈ I choose an isomorphic copy Bi of Ai. Choose a large positive integer

e and put B = F̂e ∗∏∗ i∈I Bi. Then there is an epimorphism α : B → A which maps Bi

isomorphically onto Ai. Let B = Con(B1, . . . , Bn). Then, (1) is a G-embedding problem for

Gwith local data. By Lemma 5.3, there is a homomorphism γ : G→ Bwith α ◦ γ = ϕ and

γ(G) ⊆ B.

Proof of (a). Assume Γ1 ∩ Γ2 �= 1. Choose N0 ∈ OpenNormal(G) with Γ1N0 �= Γ2N0. Con-

sider N ∈ OpenNormal(G) with N ≤ N0. Put A = G/N and let ϕ : G → G/N be the quo-

tient map. Then let B, Bi, B, α, and γ be as above. In particular, γ(Γi) ∈ B, i = 1, 2. Hence,

there are j, k ∈ I and bj, bk ∈ Bwith γ(Γ1) ≤ B
bj

j and γ(Γ2) ≤ Bbk

k . Also, α(γ(Γ1) ∩ γ(Γ2)) ⊆
ϕ(Γ1) ∩ ϕ(Γ2) �= 1, hence γ(Γ1) ∩ γ(Γ2) �= 1, so Bbj

j ∩ Bbk

k �= 1. By Lemma 5.4, Bbj

j = Bbk

k .

Consider ΓN ∈ G with ϕ(ΓN) = α(Bbj

j ). Then, ϕ(Γi) ≤ ϕ(ΓN), i = 1, 2. It follows that the

set GN = {Γ ∈ G | ϕ(Γ1), ϕ(Γ2) ≤ ϕ(Γ)} is nonempty. By Lemma 2.5, GN is étale closed.

If N1, . . . , Nm are open normal subgroups of G and N =
⋂m

j=1Nj, then GN ⊆ ⋂m
j=1 GNj

.

Hence, since G is weakly compact,
⋂

N∈OpenNormal(G) GN �= ∅. Each Γ in this intersection

belongs to G and satisfies Γ1 ∩ Γ2 ≤ Γ . Since Γ1 and Γ2 are maximal in G, Γ1 = Γ = Γ2, in

contradiction to assumption.

Proof of (b). Let g ∈ G with Γg = Γ . Choose N0 ∈ OpenNormal(G) with Γ �≤ N0. Con-

sider N ∈ OpenNormal(G) with N ≤ N0. Put A = G/N and let ϕ : G → G/N be the

quotient epimorphism. Then let B, Bi, B, and α be as in the first paragraph of the proof.

In particular, there are i ∈ I and b ∈ Bwith γ(Γ) ≤ Bb
i . Also, γ(Γ)γ(g) = γ(Γ) and γ(Γ) �= 1,

so Bb
i ∩ Bbγ(g)

i �= 1. By Lemma 5.4, γ(g) ∈ Bb
i . Choose ΓN ∈ G with ϕ(ΓN) = α(Bb

i ). Then

ϕ(Γ) ≤ ϕ(ΓN) and ϕ(g) ∈ ϕ(ΓN).

Again, by Lemma 2.5, the nonempty set

G ′
N =

{
Γ ′ ∈ G | ϕ(Γ) ≤ ϕ(Γ ′), ϕ(g) ∈ ϕ(Γ ′)

}
(5.1)

is étale closed. Since G is étale compact, there is Γ ′ which belongs to all G ′
N. It satisfies

Γ ≤ Γ ′ and g ∈ Γ ′. Since Γ is maximal in G, we have Γ = Γ ′. Therefore, g ∈ Γ . �

Lemma 5.6. Let G be a profinite group and G an étale compact subset of Subgr(G) which

is closed under conjugation. Suppose 1 /∈ StrictClosure(G) andG is strongly G-projective.
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P-adically Projective Groups as Absolute Galois Groups 1969

Then

(a) G is strongly Gmax-projective,

(b) Gmax is étale compact Hausdorff,

(c) NG(Γ) = Γ for each Γ ∈ Gmax. �

Proof of (a). By Lemma 2.7, Gmax is étale compact. Suppose (1) is a finite Gmax-embedding

problem with local data for G. In particular, ϕ(Gmax) ⊆ α(B) and α is injective on each

B0 ∈ B. We prove (1) is a G-embedding problem with local data for G. To this end let

Γ0 ∈ G. By Lemma 2.6, Γ0 is contained in some Γ ∈ Gmax. Choose B1 ∈ B with α(B1) = ϕ(Γ).

Let B0 = B1 ∩ α−1(ϕ(Γ0)). Then B0 ∈ B, and α maps B0 isomorphically onto ϕ(Γ0), as

needed.

SinceG is strongly G-projective, there is a homomorphism γ : G→ Bwithα◦γ = ϕ

and γ(G) ⊆ B, so γ(Gmax) ⊆ B. Thus, G is strongly Gmax-projective.

Proof of (b). By (a) and Proposition 5.5(a), Γ1 ∩ Γ2 = 1 for all distinct Γ1, Γ2 ∈ Gmax. Hence,

by [12, Corollary 1.4], Gmax is étale Hausdorff.

Proof of (c). By assumption, each Γ ∈ Gmax is nontrivial. Hence, by Proposition 5.5(b),

NG(Γ) = Γ . �

Our next goal is to prove under the assumptions of Lemma 5.6 that Gmax is a profi-

nite space in the étale topology. By definition, a profinite space X is an inverse limit of

discrete finite spaces. In particular, X has a basis consisting of open-closed sets. Con-

versely, every compact Hausdorff space which has a basis consisting of open-closed sets

is profinite. (See also [30, Theorem 1.1.12] for the connection with the condition “X is to-

tally disconnected.”)

Lemma 5.7. Let X be a compact Hausdorff space and G a profinite group which acts

continuously on X. Suppose X/G has a basis consisting of open-closed sets. Then X is

profinite. �

Proof. Let x ∈ X andW an open neighborhood of x. We have to find an open-closed neigh-

borhood of x inW.

Part A: G is finite. Let S = {σ ∈ G | xσ = x}. Write G =
⋃· m

i=1 Sσi with σ1 = 1. Then

xσ1 , . . . , xσm are the distinct conjugates of x. Since X is Hausdorff, there are open neigh-

borhoods V1, . . . , Vm of x inW such that Vσ1

1 , . . . , Vσm
m are disjoint. Put V =

⋂m
i=1

⋂
σ∈S V

σ
i .

This is an S-invariant open neighborhood of x inW and Vσ1 , . . . , Vσm are disjoint.

The quotient map π : X → X/G is continuous and open. In particular, π(V) is an

open neighborhood of π(x) in X/G. By assumption, there is an open-closed neighborhood
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Ū of π(x) in X/G with Ū ⊆ π(V). Then, U = π−1(Ū) is an open-closed G-invariant neigh-

borhood of x in X and U ⊆ π−1(π(V)) =
⋃· m

i=1 V
σi . Therefore U =

⋃· m
i=1U ∩ Vσi . Since the

sets U ∩ Vσi are open, they are also closed in U, and hence in X. Thus U ∩ V = U ∩ Vσ1 is

an open-closed neighborhood of x contained inW.

Part B: G is arbitrary. The action X × G → X is continuous and x1 ∈ W. Hence, x has

an open neighborhood V and G has an open normal subgroup N with VN ⊆ W. Let ν :

X → X/N be the quotient map. Then ν(V) is an open neighborhood of ν(x) in X/N. Since

X is compact Hausdorff, so is X/N [2, Theorem 3.1(1)]. The finite group G/N acts on X/N

continuously and X/G = (X/N)/(G/N). Thus, by Part A, X/N is profinite. Therefore, ν(x)

has an open-closed neighborhood Ū in X/N with Ū ⊆ ν(V). Therefore U = ν−1(Ū) is an

open-closed neighborhood of x in X and U ⊆ VN ⊆W, as desired. �

Proposition 5.8. LetG be a profinite group and G an étale compact G-invariant subset of

Subgr(G). Suppose 1 /∈ StrictClosure(G) and G is strongly G-projective. Then Gmax is étale

profinite. �

Proof. By Lemma 5.6, G is strongly Gmax-projective and Gmax is étale Hausdorff compact.

We may therefore replace G by Gmax, if necessary, to assume G = Gmax and prove that the

étale topology of G has a basis consisting of étale open-closed sets.

Let π : Subgr(G) → Subgr(G)/G be the quotient map modulo conjugation. Put a

bar over each group in Subgr(G) and each subset of Subgr(G) to denote their images un-

der π. By Lemma 5.7, it suffices to prove that the étale topology of Ḡ has a basis consisting

of étale open-closed sets. Thus, given Γ0 ∈ G and H ∈ Open(G) with Γ0 ≤ H, it suffices to

find aG-invariant étale open-closed subset U0 of Subgr(G) with Γ̄0 ∈ Ū0 ⊆ Subgr(H). The

construction of U0 breaks up into three parts.

Part A: an open normal subgroup of G. Since 1 /∈ ÉtaleClosure(G), there is N0 ∈ Open

Normal (G) which contains no Γ ∈ G. Consider the étale open subset H =
⋃

g∈G Subgr(Hg)

of Subgr(G) and the étale closed subset H ′ = G � H of G. Both H and H ′ are G-invariant.

Since G is étale compact and Hausdorff, so is H ′. Each Γ ∈ H ′ is not contained in H, so

Γ �= Γ0. Since G = Gmax, Γ0 �≤ Γ . Therefore, there isNΓ ∈ OpenNormal(G) withNΓ Γ0 �≤ NΓ Γ

andNΓ Γ �≤ NΓH.

The set Subgr(NΓ Γ) is an étale open neighborhood of Γ in Subgr(G). Since H ′ is

étale compact, there are ∆1, . . . , ∆m ∈ H ′ with H ′ ⊆ ⋃m
i=1 Subgr(N∆i

∆i). Then N = N0 ∩⋂m
i=1N∆i

is an open normal subgroup of G, NΓ �= N for each Γ ∈ G, and NΓ0 �≤ NΓ ,

NΓ �≤ NH for each Γ ∈ H ′.
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P-adically Projective Groups as Absolute Galois Groups 1971

Part B: G-embedding problem for G with local data. Put A = G/N and let ϕ : G → A be

the quotient map. By Part A,

(4a) ϕ(Γ) �= 1 for each Γ ∈ G,

(4b) ϕ(Γ0) �≤ ϕ(Γ) and ϕ(Γ) �≤ ϕ(H) for each Γ ∈ H ′.

Now choose Γ1, . . . , Γn ∈ H ′ such that ϕ(Γ1), . . . , ϕ(Γn) represent the conjugacy

classes inA of the maximal elements ofϕ(H ′). Let B0 be an isomorphic copy ofϕ(H) and

Bi an isomorphic copy of ϕ(Γi), i = 1, . . . , n. Choose a positive integer e ≥ rank(A). Put

B = F̂e ∗∏∗ n
i=0 Bi. Then B is finitely generated and there is an epimorphism α : B → A

which maps B0 isomorphically onto ϕ(H) and Bi isomorphically onto ϕ(Γi), i = 1, . . . , n.

Let B = Con(B0, . . . , Bn). Then

(5) (ϕ : G→ A, α : B→ A,B)

is a G-embedding problem forGwith local data. By Lemma 5.3, there is a homomorphism

γ : G→ Bwith α ◦ γ = ϕ and γ(G) ⊆ B.

Part C: partition of G. For each i let B ′
i be an identical copy of Bi. Let B ′ =

∏n
i=0 B

′
i be the

direct product of B0, . . . , Bn. Let β : B → B ′ be the epimorphism which maps F̂e to 1 and

each Bi identically onto B ′
i. Put γ ′ = β ◦ γ. For each i put Ui = {Γ ∈ G | γ ′(Γ) ≤ B ′

i}. Then Ui

is a G-invariant étale open subset of G. Therefore, Ūi is an étale open subset of Ḡ.

Claim 1. Ḡ =
⋃· m

i=0 Ūi.

Indeed, since γ(G) ⊆ B, there are for each Γ ∈ G an i between 0 and m and a b ∈ B with

γ(Γ) ≤ Bb
i . Hence, γ ′(Γ) ≤ B ′

i and Γ̄ ∈ Ūi.

Moreover, by (4a), α(γ(Γ)) = ϕ(Γ) �= 1. Hence, γ(Γ) �= 1. Since β is injective on Bb
i ,

we have γ ′(Γ) �= 1. Hence, γ ′(Γ) �≤ B ′
j, so Γ̄ /∈ Ūj for all j �= i.

It follows that each Ūi is an étale open-closed subset of Ḡ; in particular, so is Ū0.

Claim 2. Γ̄0 ∈ Ū0.

Indeed, γ(Γ0) ≤ Bb
i with 0 ≤ i ≤ n and b ∈ B (Claim 1). Assume i ≥ 1. Then ϕ(Γ0) =

α(γ(Γ0)) ≤ α(Bi)α(b) = ϕ(Γg
i ) for some g ∈ G and Γg

i ∈ H ′ (by the choice of Γi). Hence, by

(4b), ϕ(Γ0) �≤ ϕ(Γg
i ). This contradiction proves that i = 0, γ ′(Γ) ≤ B ′

0, and Γ̄0 ∈ Ū0.

Claim 3. Ū0 ⊆ H̄.

Indeed, consider Γ ∈ U0. By Part B, γ(Γ) ≤ Bb
i with 0 ≤ i ≤ n and b ∈ B. If i ≥ 1,

then γ ′(Γ) ≤ B ′
i and Γ̄ ∈ Ūi, in contradiction to Claim 1. Hence, γ(Γ) ≤ Bb

0 . Therefore,

ϕ(Γg) ≤ ϕ(H) for some g ∈ G with ϕ(g) = α(b)−1. Since H ′ is G-invariant, (4b) implies

Γ /∈ H ′. Consequently, Γ ∈ H, as desired.

Finally, observe that H̄ = Subgr(H) to conclude the proof of the proposition. �
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6 Projective group structures

The crucial step of going from solvability of finite G-embedding problems for a profi-

nite group G to solvability of arbitrary G-embedding problems occurs in the category of

“profinite group structures.” We recall the definition of this concept from [12, Section 2].

A profinite group structure is a data G = (G,X,Gx)x∈X, where G is a profinite

group, X is a profinite space on which G acts continuously from the right, and Gx is a

closed subgroup of G, x ∈ X. These objects must satisfy the following conditions:

(1a) the map x �→ Gx from X into Subgr(G) is étale continuous,

(1b) Gxg = G
g
x for all x ∈ X and g ∈ G,

(1c) {g ∈ G | xg = x} ≤ Gx for each x ∈ X.

The structure G is finite if both G and X are finite.

A morphism of group structures ϕ : (G,X,Gx)x∈X → (H, Y,Hy)y∈Y is a couple

consisting of a homomorphism ϕ : G → H and a continuous map ϕ : X → Y such that

ϕ(Gx) ≤ Hϕ(x) and ϕ(xg) = ϕ(x)ϕ(g) for all x ∈ X and g ∈ G. The morphism ϕ is an

epimorphism if ϕ(G) = H, ϕ(X) = Y, and for each y ∈ Y, there is x ∈ X with ϕ(Gx) = Hy.

We callϕ a cover ifϕ(G) = H,ϕ(X) = Y,ϕ : Gx → Hϕ(x) is an isomorphism for each x ∈ X,
and ϕ(x) = ϕ(x ′) implies xk = x ′ for some k ∈ Ker(ϕ).

An embedding problem for G is a pair (ϕ : G→ A, α : B→ A), where A and B are

profinite group structures, ϕ is a morphism, and α is a cover. A solution of the problem

is a morphism γ : G → B satisfying α ◦ γ = ϕ. The problem is finite if both B and A are

finite. We say G is projective if every finite embedding problem for G is solvable. Then

every embedding problem for G is solvable [12, Proposition 4.2].

Lemma 6.1. Let G = (G,X,Gx)x∈X be a projective group structure. Put G = {Gx | x ∈ X}.

Then G is strongly G-projective. �

Proof. By definition, G is the image of the compact space X under the étale continuous

map x �→ Gx. Hence, G is étale compact.

Now consider a finite G-embedding problem

(2) (ϕ : G→ A, α : B→ A,B)

for G with local data. Replace A by A0 = ϕ(G), B by B0 = α−1(ϕ(G)), and B by B0 =

B ∩ Subgr(B0), if necessary, to assume ϕ is surjective. By [12, Lemma 3.8], ϕ : G → A

extends to an epimorphism ϕ of G onto a finite group structure A = (A, I,Ai)i∈I. Choose

a set of representatives I0 for the A-orbits of I. For each i ∈ I0 there exists x ∈ X with

ϕ(x) = i and ϕ(Gx) = Ai. The rigidity condition (2) of Section 5 gives B ′ ∈ B which

α maps isomorphically onto Ai. Hence, by [12, Lemma 4.5], there is a group structure

B = (B, J, Bj)j∈J and α : B → A extends to a cover α : B → A with Bj ∈ B for all j ∈ J. In

particular, ϕ : J → I is an epimorphism with finite fibers, so J is finite, hence B is finite.
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P-adically Projective Groups as Absolute Galois Groups 1973

Since G is projective, there is a morphism γ : G→ B with α ◦ γ = ϕ. Its group component

γ : G→ B solves embedding problem (2). Consequently, G is strongly G-projective. �

Lemma 6.2. Let G be a profinite group and G an étale compact subset of Subgr(G). Sup-

pose G =
⋃· i∈I Gi is a partition of G into finitely many disjoint open-closed subsets. Then

there exists an open normal subgroup N of G such that if ϕ : G → A is an epimorphism

with Ker(ϕ) ≤ N and Γ, Γ ′ ∈ G satisfy ϕ(Γ) ≤ ϕ(Γ ′), then there is i ∈ Iwith Γ, Γ ′ ∈ Gi. �

Proof. Let Γ ∈ G. There Γ belongs to a unique Gi. Since Gi is open in G, there is an open

normal subgroupNΓ of Gwith G ∩ Subgr(ΓNΓ ) ⊆ Gi. Thus, G ⊆ ⋃
Γ∈G Subgr(ΓNΓ ). Since G

is étale compact, there are Γ1, . . . , Γm ∈ G with G ⊆ ⋃m
j=1 Subgr(ΓjNΓj

).

For each 1 ≤ j ≤ m there is a unique i(j) ∈ I with G ∩ Subgr(ΓjNΓj
) ⊆ Gi(j). Put

N =
⋂m

j=1NΓj
. Let ϕ : G → A be an epimorphism with Ker(ϕ) ≤ N and let Γ, Γ ′ ∈ G with

ϕ(Γ) ≤ ϕ(Γ ′). Choose j between 1 and m with Γ ′ ∈ Subgr(ΓjNΓj
). Then Γ ′ ∈ Gi(j). Hence,

Γ ≤ Γ ′ Ker(ϕ) ≤ Γ ′N ≤ Γ ′NΓj
≤ ΓjNΓj

. Therefore, Γ ∈ Gi(j), as desired. �

Let G = (G,X,Gx)x∈X be a group structure. Put G = {Gx | x ∈ X}. We say G is

proper if the map x �→ Gx of X onto G is an étale homeomorphism.

Proposition 6.3. Let G = (G,X,Gx)x∈X be a proper group structure. Let G = {Gx | x ∈ X}.

Suppose G is strongly G-projective. Then G is projective. �

Proof. Consider a finite embedding problem

(3) (ϕ : G→ A, α : B→ A)

for G with A = (A, I,Ai)i∈I. The solution of this problem breaks up into three parts.

Part A: a partition of G. Consider the partition X =
⋃· i∈Iϕ

−1(i) into open-closed sets. For

each i ∈ I let Gi = {Gx | ϕ(x) = i}. Since the map x �→ Gx is an étale homeomorphism, G =⋃· i∈I Gi is a partition of G into étale open-closed sets. Lemma 6.2 gives an open normal

subgroupN of G such that if ϕ̂ : G→ Â is an epimorphism with Ker(ϕ̂) ≤ N, then

(4) x, y ∈ X and ϕ̂(Gx) ≤ ϕ̂(Gy) imply ϕ(x) = ϕ(y).

By [12, Lemma 3.8] there are a morphism ϕ̄ : Â→ A of finite group structures and

an epimorphism ϕ̂ : G→ Â such that ϕ = ϕ̄ ◦ ϕ̂ and Ker(ϕ̂) ≤ N. In particular, (4) holds.

The fiber product B̂ = (B̂, Ĵ, B̂j)j∈Ĵ = B ×A Â fits into a commutative diagram

G

ϕ̂

B̂
α̂

β

Â

ϕ̄

B
α

A

(6.1)
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1974 Dan Haran et al.

in which α̂ is a cover [12, Lemma 2.12(c)]. Let B̂ = Con
(
{B̂j | j ∈ Ĵ}

)
. Then (ϕ̂ : G →

Â, α̂ : B̂ → Â, B̂) is an embedding problem for G with local data. Since G is strongly

G-projective, there exists a homomorphism γ̂ : G→ B̂ such that α̂ ◦ γ̂ = ϕ̂ and

(5) for each x ∈ X there is j ∈ Ĵwith γ̂(Gx) ≤ B̂j.

Part B: the map γ̂ : X → Ĵ. Consider the open normal subgroup K = Ker(γ̂) of G. For each

y ∈ X, the open subgroupGyK ofG contains Sy = {σ ∈ G | yσ = y}. Also, Vy = {x ∈ X | Gx ≤
GyK} of y is an open neighborhood of y in X which is GyK-invariant. Indeed, if σ ∈ Gy,

κ ∈ K, and x ∈ Vy, then

Gxσκ = Gσκ
x ≤ (GyK)σκ = (Gσ

yK
σ)κ = (GyK)κ = GyK, (6.2)

whence xσκ ∈ Vy.

By [12, Lemma 3.6], there are y1, . . . , ym ∈ X and open-closed subsets X1, . . . , Xm

of X such that the following hold for each k between 1 andm:

(6a) Xk is Gyk
K-invariant and yk ∈ Xk ⊆ Vyk

,

(6b) X =
⋃· m

k=1

⋃· τ∈Tk
Xτ

k, where G =
⋃· τ∈Tk

Gyk
Kτ and 1 ∈ Tk ⊆ G.

Define γ̂ : X→ Ĵ as follows. For each k between 1 andm use (5) to choose γ̂(yk) ∈ Ĵ
with γ̂(Gyk

) ≤ B̂γ̂(yk). Then let

(7) γ̂(yτ) = γ̂(yk)γ̂(τ) for all y ∈ Xk and τ ∈ Tk.

By (6b), γ̂ : X→ Ĵ is well defined. In addition,

(8) γ̂ is constant on each Xτ
k with τ ∈ Tk.

Hence, by (6b), γ̂ is continuous.

Taking τ = 1 in (7) gives γ̂(y) = γ̂(yk) for all y ∈ Xk. Hence, by (7),

(9) γ̂(yτ) = γ̂(y)γ̂(τ) for all y ∈ Xk and τ ∈ Tk.

We claim that

(10) γ̂(Gx) ≤ B̂γ̂(x) for every x ∈ X.

Indeed, x = yτ, where y ∈ Xk, τ ∈ Tk. By (6a), y ∈ Vyk
, that is, Gy ≤ Gyk

K, so γ̂(Gy) ≤
γ̂(Gyk

) ≤ B̂γ̂(yk) = B̂γ̂(y). By (9), γ̂(y)γ̂(τ) = γ̂(x). Hence, γ̂(Gx) = γ̂(Gτ
y) = γ̂(Gy)γ̂(τ) ≤

B̂
γ̂(τ)
γ̂(y) = B̂γ̂(y)γ̂(τ) = B̂γ̂(x), as claimed.

We know that α̂ ◦ γ̂ = ϕ̂ on G. But we do not know that α̂ ◦ γ̂ = ϕ̂ on X. Therefore,

we define γ = β ◦ γ̂ : G → B and γ = β ◦ γ̂ : X → J and prove directly that γ : G → A is a

morphism which solves embedding problem (3).

Part C: the morphism γ : G→ B. An application of β on (8), (9), and (10) implies:

(11a) γ is constant on each Xτ
k with τ ∈ Tk, so, by (6b), γ : X→ J is continuous,

(11b) γ(yτ) = γ(y)γ(τ) for all y ∈ Xk and τ ∈ Tk,

(11c) γ(Gx) ≤ Bγ(x) for every x ∈ X.
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P-adically Projective Groups as Absolute Galois Groups 1975

Claim 1. α ◦ γ = ϕ.

That α ◦ γ = ϕ on G follows from the equality α̂ ◦ γ̂ = ϕ̂ on G. Consider therefore x ∈ X.

Since ϕ̂ : G→ Â is an epimorphism, there is y ∈ X such that ϕ̂(y) = α̂(γ̂(x)) and ϕ̂(Gy) =

Âα̂(γ̂(x)). By (10),

ϕ̂
(
Gx

)
= α̂

(
γ̂
(
Gx

)) ≤ α̂(
B̂γ̂(x)

)
= Âα̂(γ̂(x)) = ϕ̂

(
Gy

)
. (6.3)

By (4), ϕ(x) = ϕ(y). In addition,

ϕ(y) = ϕ̄
(
ϕ̂(y)

)
= ϕ̄

(
α̂
(
γ̂(x)

))
= α

(
β
(
γ̂(x)

))
= α

(
γ(x)

)
. (6.4)

Hence, ϕ(x) = α(γ(x)), as claimed.

Claim 2. γ(Gyk
) is contained in the stabilizer Sγ(yk) of γ(yk) in B.

Let j = γ(yk). By Claim 1, α(j) = ϕ(yk). By [12, Remark 2.1], Gyk
= Syk

. Hence,

(12) α(γ(Gyk
)) = ϕ(Gyk

) = ϕ(Syk
) ≤ Sϕ(yk) = Sα(j).

By (11c), γ(Gyk
) ≤ Bj. Since α : B → A is a cover, α : Bj → Aα(j) is an isomorphism that

maps Sj onto Sα(j) [12, Lemma 2.2]. Therefore, by (12), γ(Gyk
) ≤ Sγ(yk).

Claim 3. γ preserves the action.

We prove first that γ(yσ) = γ(y)γ(σ) for all y ∈ Xk and σ ∈ G. To this end we use

(6b) to write σ = λτ with λ ∈ Gyk
K and τ ∈ Tk. Then γ(λ) ∈ γ(Gyk

K) = γ(Gyk
). Hence,

by Claim 2, γ(yk)γ(λ) = γ(yk). Whence, by (11a), γ(y)γ(λ) = γ(y). By (6a), yλ ∈ Xλ
k = Xk.

Hence, by (11a), γ(yλ) = γ(y), and by (11b), γ((yλ)τ) = γ(yλ)γ(τ). Therefore, γ(yσ) =

γ((yλ)τ) = γ(yλ)γ(τ) = γ(y)γ(τ) = γ(y)γ(λ)γ(τ) = γ(y)γ(σ).

Now consider x ∈ Xτ ′
k with τ ′ ∈ Tk. Write x = yτ ′

with y ∈ Xk. Let g ∈ G. By the

preceding paragraph, γ(xg) = γ(yτ ′g) = γ(y)γ(τ ′g) = γ(y)γ(τ ′)γ(g) = γ(yτ ′
)γ(g) = γ(x)γ(g),

as claimed.

Thus, γ is a solution of embedding problem (3). �

LetG be a profinite group and G an étale profiniteG-invariant subset of Subgr(G).

Suppose NG(Γ) = Γ for each Γ ∈ G. Choose a homeomorphic copy X of G and a home-

omorphism x �→ Gx of X onto G. The action of G on G induces an action on X making

G = (G,X,Gx)x∈X a proper group structure. In this case we also refer to (G,G) as a proper

group structure. We call (G,G) projective if G is projective.
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1976 Dan Haran et al.

Proposition 6.4. LetG be a profinite group and G an étale compact G-invariant subset of

Subgr(G). Suppose 1 /∈ StrictClosure(G) and G is strongly G-projective. Then (G,Gmax) is

a proper projective group structure. �

Proof. By Lemma 5.6, NG(Γ) = Γ for each Γ ∈ Gmax and G is strongly Gmax-projective. By

Proposition 5.8, Gmax is étale profinite. It follows that (G,Gmax) is a proper group struc-

ture. By Proposition 6.3, (G,Gmax) is projective. �

Remark 6.5 (relatively projective groups). LetG and G be as in Proposition 6.4. Then Gmax

is étale profinite. Let Γ1, Γ2 be distinct groups in Gmax. By Proposition 5.5, Γ1 ∩ Γ2 = 1.

Choose étale open-closed neighborhoods U1 and U2 of Γ1 and Γ2 in Gmax, respectively, with

G = U1

⋃· U2. By [12, Lemma 2.3], the union of all Γ in Ui is a closed subset of G. Thus, G

is separated in the sense of [9, Definition 3.1]. In addition, G is strongly Gmax-projective.

Consequently, G is projective relative to G in the sense of [9, Definition 4.2].

We interpret the notions of a “morphism” and a “cover” of proper group struc-

tures in terms of the pairs (G,G): let (H,H) and (G,G) be proper group structures. Then

a morphism ϕ : (H,H) → (G,G) is just a homomorphism ϕ : H → G which maps H into

Con(G). In other words, for each ∆ ∈ H there is Γ ∈ G with ϕ(∆) ≤ Γ .

The morphism ϕ is a cover if the following hold:

(13a) ϕ(H) = G, ϕ(H) = G,

(13b) ϕ is injective on each ∆ ∈ H,

(13c) if ∆,∆ ′ ∈ H and ϕ(∆) = ∆ ′, then there exists κ ∈ Ker(ϕ) with ∆κ = ∆ ′.

A subgroup structure of (H,H) is a proper group structure (H0,H0) with H0 ≤ H

and H0 ⊆ H. Specializing [12, Corollary 4.3] to proper group structures gives the follow-

ing result.

Proposition 6.6. Let ϕ : (H,H) → (G,G) be a cover of proper group structures. Suppose

(G,G) is projective. Then (H,H) has a subgroup structure (H0,H0) whichϕmaps isomor-

phically onto (G,G). �

7 Big quotients

Let G be a profinite group and G a subset of Subgr(G). We have already mentioned in

Section 5 that ifG is strongly G-projective, thenG is G-projective. We show in this section

that the converse is also true if there are only finitely many isomorphism types of groups

in G and they have a “system of big quotients.”

Let C be a finite set of finitely generated profinite groups. Each profinite group ∆

which is isomorphic to a group in C is of type C. A set G of profinite groups is said to be of

type C if eachH ∈ G is of type C.
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P-adically Projective Groups as Absolute Galois Groups 1977

LetG be a profinite group and G a subset of Subgr(G). For each Γ ∈ C let GΓ = {H ∈
G | H ∼= Γ }. We prove an analog of Lemma 5.3 for G-projective groups.

Lemma 7.1. Let G be a profinite group and G a subset of Subgr(G) of type C. Suppose G

is G-projective and

(1) (ϕ : G→ A, α : B→ A)

is a G-embedding problem withA finite and rank(B) ≤ ℵ0. Then (1) is solvable. �

Proof. There exists a descending sequence Ker(α) = N0 ≥ N1 ≥ N2 ≥ · · · of open normal

subgroups of B with trivial intersection. Identify A with B/N0 and α with the quotient

map B → B/N0. Let ϕ0 = ϕ and α0 = α. For each i and j with j ≥ i ≥ 0 let αi : B → B/Ni

and αji : B/Nj → B/Ni be the quotient maps.

Claim 1. Let i ≥ 0 and let ϕi : G → B/Ni be a homomorphism such that (ϕi : G →
B/Ni, αi : B → B/Ni) is a G-embedding problem for G. Then there is a homomorphism

ϕi+1 : G → B/Ni+1 such that αi+1,i ◦ ϕi+1 = ϕi and (ϕi+1 : G → B/Ni+1, αi+1 : B →
B/Ni+1) is a G-embedding problem for G.

Once the claim has been proved, we may inductively construct for each i ≥ 0 a

homomorphism ϕi+1 : G → B/Ni+1 with αi+1,i ◦ ϕi+1 = ϕi. The maps ϕi define a γ ∈
Hom(G,B) with α ◦ γ = ϕ.

Without loss we prove the claim for i = 0. To this end note that for each j, (ϕ :

G → A, αj,0 : B/Nj → A) is a finite G-embedding problem for G. Indeed, given Γ ∈ G,

there is a homomorphism γ ′ : Γ → B with α ◦ γ ′ = ϕ|Γ . Thus, αj,0 ◦ (αj ◦ γ ′) = ϕ|Γ , as

desired.

For each β ∈ Hom(G,B/Nj) let

β ◦
∏
Γ∈C

Hom(Γ,G) =
{
(β ◦ψΓ )Γ∈C | ψΓ ∈ Hom(Γ,G) for each Γ ∈ C

}
. (7.1)

This is a subset of
∏

Γ∈C Hom(Γ, B/Nj). Since C is finite, each Γ ∈ C is finitely generated,

and B/Nj is finite,
∏

Γ∈C Hom(Γ, B/Nj) is finite. Hence, the collection of subsets

Hj =

{
β ◦
∏
Γ∈C

Hom(Γ,G) | β ∈ Hom
(
G,B/Nj

)
, αj,0 ◦ β = ϕ

}
(7.2)

of
∏

Γ∈C Hom(Γ, B/Nj) is finite. Since G is G-projective, Hj is nonempty.
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1978 Dan Haran et al.

The map β ◦∏Γ∈C Hom(Γ,G) �→ αj+1,j ◦ β ◦∏Γ∈C Hom(Γ,G) maps Hj+1 into Hj.

Hence, lim←−−Hj �= ∅. Thus, there are homomorphisms βj : G → B/Nj with αj,0 ◦ βj = ϕ

and

(2) αj+1,j ◦ βj+1 ◦∏Γ∈C Hom(Γ,G) = βj ◦
∏

Γ∈C Hom(Γ,G), j = 0, 1, 2, . . ..

In particular, α1,0 ◦ β1 = ϕ.

We prove that (β1 : G → B/N1, α1 : B → B/N1) is a G-embedding problem for G.

To this end consider Γ ∈ C andH ∈ GΓ . ThenH ∼= Γ . Hence, by (2),

(3) αj+1,j ◦ βj+1 ◦ Hom(H,G) = βj ◦ Hom(H,G), j = 0, 1, 2, . . ..

Use (3) to inductively construct homomorphisms ηj : H → B/Nj, j = 1, 2, . . ., with η1 =

β1|H and αj+1,j ◦ ηj+1 = ηj. The ηj’s define a homomorphism η : H→ Bwith α1 ◦ η = β1, as

needed. This concludes the proof of the claim. �

Lemma 7.2. Let C be a finite set of finitely generated profinite groups,G a profinite group,

and G a subset of Subgr(G) of type C. Consider a finite G-embedding problem with local

data for G

(4) (ϕ : G→ A, α : B→ A,B).

Then there are

(5a) a positive integer e,

(5b) a finite set {∆λ | λ ∈ Λ} of groups of type C,

(5c) an epimorphism β : B∗ = F̂e ∗∏∗ λ∈Λ ∆λ → B such that,

(6) (ϕ : G→ A, α ◦ β : B∗ → A)

is a G-embedding problem for G with A finite, rank(B∗) ≤ ℵ0, and β(∆λ) ∈ B for each

λ ∈ Λ. �

Proof. The proof has two parts.

Part A: free product. For each Γ ∈ C let ΛΓ be the set of all homomorphisms λ : Γ → B

satisfying:

(7) λ(Γ) ∈ B and there is an embedding ε : Γ → G such that α ◦ λ = ϕ ◦ ε.
Since Γ is finitely generated and B is finite, ΛΓ is a finite set. For each λ ∈ ΛΓ

choose an isomorphic copy ∆λ of Γ and an isomorphism δλ : ∆λ → Γ . Let Λ =
⋃· Γ∈CΛΓ .

Then {∆λ | λ ∈ Λ} is a finite set of groups of type C. Put e = rank(B). Choose an epimor-

phism βe : F̂e → B. Then consider the free product B∗ = F̂e ∗∏∗ λ∈Λ ∆λ. Let β : B∗ → B be

the unique epimorphism whose restriction to F̂e is βe and to∆λ is λ◦δλ. By (7), β(∆λ) ∈ B

for all λ ∈ Λ.

Part B: G-embedding problem. Let Γ ∈ C and H ∈ GΓ . Then, there is an isomorphism

θ : Γ → H. The definition of embedding problems with local data (Section 5) gives a ho-

momorphism η of H into B such that η(H) ∈ B and α ◦ η = ϕ ◦ ι, where ι is the inclusion
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P-adically Projective Groups as Absolute Galois Groups 1979

H → G. Put λ = η ◦ θ and ε = ι ◦ θ. Then α ◦ λ = ϕ ◦ ε, so λ ∈ ΛΓ . Thus, δ−1
λ ◦ θ−1 maps H

onto the subgroup ∆λ of B∗. Furthermore, α ◦ β ◦ (δ−1
λ ◦ θ−1) = α ◦ (λ ◦ δλ) ◦ (δ−1

λ ◦ θ−1) =

α ◦ λ ◦ θ−1 = α ◦ η ◦ θ ◦ θ−1 = ϕ ◦ ι. Therefore, (6) is a G-embedding problem for G. �

Lemma 7.3. Let G be a profinite group and G a subset of Subgr(G) of type C. For each

Γ ∈ C let Γ̄ be a finite quotient of Γ . Suppose GΓ is strictly closed in Subgr(G). Then G has

an open normal subgroup N satisfying: for each Γ ∈ C and each H ∈ GΓ the group Γ̄ is a

quotient ofH/H ∩N = HN/N. �

Proof. Let Γ ∈ C and H ∈ GΓ . Then H ∼= Γ , so H has an open normal subgroup MH with

H/MH
∼= Γ̄ . ChooseNH ∈ OpenNormal(G) withH∩NH ≤MH. Let UH = {H ′ ∈ GΓ | H ′NH =

HNH}. Then UH is a strictly open neighborhood of H in GΓ . By assumption, GΓ is strictly

compact. Hence, there areHΓ,1, . . . , HΓ,m(Γ ) ∈ GΓ with GΓ =
⋃m(Γ )

i=1 UHΓ,i
.

Let N =
⋂

Γ∈C

⋂m(Γ )
i=1 NHΓ,i

. Consider Γ ∈ C and H ∈ GΓ . Then there is i with

HNHΓ,i
= HΓ,iNHΓ,i

. By construction, N ≤ NHΓ,i
. This gives a sequence H/H ∩ N →

H/H ∩ NHΓ,i
∼= HNHΓ,i

/NHΓ,i
= HΓ,iNHΓ,i

/NHΓ,i
∼= HΓ,i/HΓ,i ∩ NHΓ,i

→ HΓ,i/MHΓ,i
∼= Γ̄ ,

where the arrows are epimorphisms. Therefore, Γ̄ is a quotient ofH/H ∩N. �

Definition 7.4 (big quotients). For each Γ ∈ C let Γ̄ be a finite quotient of Γ . We say {Γ̄ | Γ ∈
C} is a system of big quotients for C if it has the following property: let e be a nonnegative

integer, J a finite set, and for each j ∈ J let ∆j be a profinite group of type C. Consider

the free product B∗ = F̂e ∗∏∗ j∈J ∆j. Let Γ ∈ C and let ∆ be a closed subgroup of B∗ with

epimorphisms Γ
γ−→ ∆ → Γ̄ . Then ∆ is conjugate to a closed subgroup of some ∆j and γ is

an isomorphism.

Proposition 7.5. Let C be a finite set of finitely generated groups, G a profinite group,

and G a G-invariant subset of Subgr(G) of type C. Suppose C has a system of finite big

quotients, GΓ is strictly closed in Subgr(G) for each Γ ∈ C, and G is G-projective. Then

(a) G is strongly G-projective,

(b) there is a homomorphism δ : G → ∏∗ Γ∈C Γ which maps each H ∈ G injectively

into a conjugate of some Γ ∈ C,

(c) suppose, in addition, 1 /∈ C; then (G,Gmax) is a proper projective group

structure. �

Proof of (a). By assumption, G =
⋃

Γ∈C GΓ is strictly closed. By [12, Remark 1.2], G is étale

compact. It remains to solve a finite G-embedding problem for G with local data (4). Let

{Γ̄ | Γ ∈ C} be a system of finite big quotients for C.

Part A. Γ̄ is a quotient of ϕ(H) for each Γ ∈ C and each H ∈ G. Lemma 7.3 gives N ∈
OpenNormal(G) such that Γ̄ is a quotient of H/H ∩ N for all Γ ∈ C and H ∈ GΓ . We may
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1980 Dan Haran et al.

assumeN ≤ Ker(ϕ), otherwise replaceNwithN ∩ Ker(ϕ). PutA ′ = G/N. Let ϕ ′ : G→ A ′

be the quotient map and ϕ̄ : A ′ → A the map induced by ϕ. Then Γ̄ is a quotient of ϕ ′(H)

for all Γ ∈ C and H ∈ GΓ . Also, ϕ = ϕ̄ ◦ ϕ ′. Put B ′ = B ×A A
′ and let α ′ : B ′ → A ′ and

β : B ′ → B be the canonical projections.

Put B ′
0 = {B0 ×A ϕ

′(H) | B0 ∈ B, H ∈ G, α(B0) = ϕ(H)} and B ′ = Con(B ′
0). Then

ϕ ′(G) ⊆ α ′(B ′). By definition, α is injective on each B0 ∈ B. Therefore, α ′ is injective on

each B ′
0 ∈ B ′

0, hence on each B ′
0 ∈ B ′. Thus,

(8) (ϕ ′ : G→ A ′, α ′ : B ′ → A ′,B ′)

is a finite G-embedding problem with local data for G.

Since β(B ′) ⊆ B, any solution γ ′ of (8) gives rise to a solution β ◦γ ′ of embedding

problem (4). Thus, replacing (4) with (8), if necessary, we may assume Γ̄ is a quotient of

ϕ(H) for each Γ ∈ C and eachH ∈ G.

Part B: solving embedding problem (6). Lemma 7.2 gives a G-embedding problem (6)

for G with rank(B∗) ≤ ℵ0, and β(∆λ) ∈ B for each λ ∈ Λ. Since G is G-projective, Lemma

7.1 gives a homomorphism γ∗ : G → B∗ with α ◦ β ◦ γ∗ = ϕ. We claim that β ◦ γ∗
solves (4).

Let Γ ∈ C and H ∈ GΓ . Put ∆ = γ∗(H). Then ∆ is a subgroup of B∗ as well as a

quotient of Γ . Moreover, α(β(∆)) = ϕ(H). Therefore, by Part A, Γ̄ is a quotient of ∆. By the

definition of big quotients, ∆ is conjugate to a closed subgroup of ∆λ for some λ ∈ Λ, and

γ∗ is injective onH. Since β(∆λ) ∈ B, we have β ◦ γ∗(H) ∈ B.

Proof of (b). Consider embedding problem (4) with B = A = 1. The proof of (a) gives

a homomorphism γ∗ : G → F̂e ∗∏∗ λ∈Λ ∆λ which maps each H ∈ G isomorphically into

a conjugate of some ∆λ. Define a homomorphism δ∗ : F̂e ∗∏∗ λ∈Λ ∆λ →∏∗ Γ∈C Γ which is the

trivial map on F̂e and which maps each ∆λ ∈ GΓ isomorphically onto Γ . Then δ = δ∗ ◦ γ∗ is

a homomorphism of G into
∏∗ Γ∈C Γ which maps each H ∈ G injectively into a conjugate of

some Γ ∈ C.

Proof of (c). Since Γ �= 1 for each Γ ∈ C and G is strictly closed, 1 /∈ StrictClosure(G). By

(a), G is strongly G-projective. Therefore, by Proposition 6.4, (G,Gmax) is a proper projec-

tive group structure. �

8 P-adically closed fields

We prove in the next section that any finite family of absolute Galois groups of P-adically

closed fields has a system of big quotients. This section gives the necessary prerequisites

for the proof.
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P-adically Projective Groups as Absolute Galois Groups 1981

Let p be a prime number. Denote the algebraic closure of Q in Qp by Qp,abs. It is

well defined up to an isomorphism.

Let (L, v) be a valued field. Call (L, v) P-adic if there is a prime number p satisfying

these conditions:

(1a) the residue field L̄v is finite, say with q = pf elements;

(1b) there is a π ∈ L with a smallest positive value v(π) in v(L×); call π a prime

element of (L, v);

(1c) there is a positive integer ewith v(p) = ev(π).

Refer to (p, e, f) as the type of (L, v) and to p as the residue characteristic of (L, v).

We say (L, v) is P-adically closed if (L, v) admits no finite proper P-adic extension of the

same type. Refer to a field L as P-adically closed if L admits a valuation v with (L, v) P-

adically closed.

Remark 8.1 (comparison with former definitions). Prestel and Roquette [28] use “p-adi-

cally closed” instead of “P-adically closed of residue characteristic p.” The same expres-

sion, “p-adically closed,” is used in [11] for “P-adically closed field of type (p, 1, 1).”

The proposition below summarizes well-known facts about P-adically closed

fields (see also [24, Section 1]). We use F ≡ F ′ to denote elementary equivalence between

fields and (F, v) ≡ (F ′, v ′) to denote elementary equivalence between valued fields.

Proposition 8.2. (a) Qp is P-adically closed of type (p, 1, 1).

(b) Every P-adically closed valued field (L, v) is Henselian of characteristic 0.

(c) A field L is P-adically closed for at most one P-adic valuation.

(d) Suppose (K, v) is a P-adic field. Then (K, v) has a P-adically closed algebraic

extension (L,w) of the same type. Call (L,w) a P-adic closure of (K, v). If (K, v) is discrete,

then (L,w) is uniquely determined up to a K-isomorphism.

(e) In the notation of (d), L is minimal among all P-adically closed extensions

of K.

(f) Let K be a subfield of a P-adically closed field L. Suppose K is algebraically

closed in L. Then, K is a P-adically closed field of the same type as L and K ≡ L. Moreover,

the restriction of the P-adic valuation of L to K is the P-adic valuation of K.

(g) A P-adic field (L, v) is P-adically closed if and only if (L, v) is Henselian and

v(L×)/nv(L×) ∼= Z/nZ for every positive integer n.

(h) Suppose a field L is elementarily equivalent (in the language of fields) to a P-

adically closed field F. Then L is a P-adically closed field of the same type as F. Moreover,

let v (resp.,w) be the P-adic valuation of L (resp., F). Then (L, v) ≡ (F,w).
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1982 Dan Haran et al.

(i) Every finite extension of a P-adically closed field is a P-adically closed field of

the same residue characteristic.

(j) Every P-adically closed field of residue characteristic p is elementarily equiv-

alent to a finite extension of Qp,abs and also to a finite extension of Qp.

(k) Let L be a P-adically closed field. Then Gal(L) is a finitely generated prosolv-

able group.

(l) Let L be a P-adically closed field and L0 = L ∩ Q̃. Then res : Gal(L)→ Gal(L0) is

an isomorphism.

(m) Let F be a P-adically closed field and F ′ an arbitrary field. Suppose F ′ ≡ F.

Then Gal(F ′) ∼= Gal(F).

(n) Let F be a P-adically closed field and F ′ an arbitrary field. Suppose Gal(F ′) ∼=

Gal(F). Then F ′ is a P-adically closed field of the same type as F. �

Proof of (a). Let K be a finite proper extension of Qp. Then [K : Qp] = ef, where e is the

ramification index and f is the residue degree [3, page 19, Proposition 3]. In particular,

e = v(p), where v is the unique normalized p-adic valuation of K. Also, the residue fields

of Qp and K are Fp and Fpf , respectively. Hence, e > 1 or f > 1. This proves (a).

Proof of (b). That (L, v) is Henselian is stated in [28, page 34, Theorem 3.1]. By (1a), p =

char(L̄v) is a prime number. Hence, either char(L) = 0 or char(L) = p. By (1b) and (1c),

v(p) �= 0. Therefore, char(L) = 0.

Proof of (c). Suppose v and v ′ are P-adic valuations of L. By (b), both are Henselian. Since

their residue fields are not separably closed (by (1a)), Schmidt-Engler [16, Proposition

13.4] implies v is equivalent to v ′.

Proof of (d). See [28, page 37, Theorem 3.2].

Proof of (e). Let (L0, w0) be a P-adically closed field withK ⊆ L0 ⊆ L. Denote the unique P-

adically closed valuation of L byw. By (b), both (L,w) and (L0, w0) are Henselian. Extend

w0 to a valuationw1 of L. Then (L,w1) is Henselian.

Assume w1 is inequivalent to w. By (1a), both L̄w and L̄w1
are algebraic exten-

sions of finite fields. Hence, none of them is the residue field of a nontrivial valuation of

the other. This meansw andw1 are incomparable. Hence, by Schmidt-Engler [16, Propo-

sition 13.4], L̄w is separably closed, in contradiction to (1a). Therefore, w and w1 are

equivalent.

Thus, (L,w) extends (L0, w0) and (L0, w0) extends (K, v). Since (L,w) and (K, v)

have the same type, also (L0, w0) has the same type. In particular, the residue charac-

teristic of (L0, w0) is p. Since (L0, w0) is P-adically closed, (L0, w0) = (L,w), as contended.
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P-adically Projective Groups as Absolute Galois Groups 1983

Proof of (f). Theorem 3.4 on [28, page 38] says K is P-adically closed of the same type as

L. Moreover, the P-adic valuation of K is the restriction of the P-adic valuation of L. By

[28, page 86, Theorem 5.1], K ≡ L.

Proof of (g). See [28, page 34, Theorem 3.1].

Proof of (h). Denote the P-adic valuation of F by v. Let (p, e, f) be the type of (F, v) and π a

prime element F. Consider the Kochen operator

γ(X) =
1

π

Xq − X

(Xq − X)2 − 1
, (8.1)

with q = pf. Put γ(F) = {γ(x) | x ∈ F and xq − x �= ±1}. By [19, Lemma 4.1(iii)], γ(F) is the

valuation ring of v.

Since L ≡ F, γ(L) is a valuation ring of L. Denote the corresponding valuation by

w. Then (L,w) ≡ (F, v). Since (F, v) satisfies (1), so does (L,w). Thus, (L,w) is P-adic.

Finally note that the conditions of (g) for a P-adic field to be P-adically closed are

elementary in the language of valued fields. Consequently, (L,w) is P-adically closed.

Proof of (i). Let (L, v) be a P-adically closed field and L ′ a finite extension of L. Since

L is Henselian, v uniquely extends to a valuation v of L ′ and (L ′, v) is Henselian. Since

both [L̄ ′
v : L̄v] and (v((L ′)×) : v(L×)) are finite, (L ′, v) is a P-adic valued field and v((L ′)×)/

nv((L ′)×) ∼= Z/nZ for every positive integer n. By (g), L ′ is P-adically closed.

Proof of (j). Let (L, v) be a P-adically closed field of residue characteristic p. By (b),

char(L) = 0. Put L0 = L ∩ Q̃. By (f), L0 is a P-adically closed field of the same type as L

and L0 ≡ L.

Let v0 be the P-adic valuation of L0. By (b), (L0, v0) is Henselian. Moreover, v0|Q is

the p-adic valuation vp of Q. Hence, Qp,abs ⊆ L0. The relation [K : Qp,abs] = ef for finite

extensions K/Qp,abs and the finiteness of the type of L0 imply [L0 : Qp,abs] <∞.

It follows that F = L0Qp is a finite extension of Qp with F ∩ Q̃ = L0. By (i), F is

P-adically closed. By (f), F ≡ L0. Consequently, F ≡ L.

Proof of (k) and (l). Let L0 and F be as in the proof of (j). By [14, Satz 3.6], Gal(F) is finitely

generated (see also [18, page 2]). By [3, page 31, Corollary 1], Gal(F) is prosolvable. By

Krasner’s lemma, Q̃Qp = Q̃p, so res : Gal(F) → Gal(L0) is an isomorphism and Gal(L0)

is finitely generated. Since L ≡ L0, every finite quotient G of Gal(L) is a finite quotient of

Gal(L0) (see [7, Remark 20.4.5(d)]). It follows from [7, Corollary 16.10.8] that the epimor-

phism res : Gal(L)→ Gal(L0) is an isomorphism. Consequently, Gal(L) is prosolvable and

finitely generated.
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1984 Dan Haran et al.

Proof of (m). By (h), F ′ is a P-adically closed field. Let F0 = F∩Q̃ and F ′0 = F ′∩Q̃. Then F0 ≡
F ′0. Hence, F0

∼= F ′0 [7, Lemma 26.6.3(b)]. By (l), Gal(F) ∼= Gal(F0) and Gal(F ′) ∼= Gal(F ′0).

Therefore, Gal(F) ∼= Gal(F ′).

Proof of (n). Efrat [4, Theorem A] (in the case p �= 2) and Koenigsmann [21, Theorm 4.1]

(in general) construct a Henselian valuation v ′ of F ′ with char(F̄ ′v ′) �= 0. It follows from

[24, Assertion E9] that F ′ is P-adically closed. Moreover, if F is a finite extension of Qp,

then so is F ′. �

Lemma 8.3. For each prime number p the group Gal(Qp) is torsion-free. �

Proof. For p �= 2 there is an x ∈ Qp with x2 +p− 1 = 0 (Hensel’s lemma). For p = 2 there is

an x ∈ Q2 with x2 +7 = 0 (use Hensel-Rychlik). Since both p−1 and 7 are sums of squares

(namely, 12 + · · · + 12), Qp is not formally real. Therefore, by Artin-Schreier, Gal(Qp) is

torsion-free. �

We summarize some well-known facts about real closed fields and algebraically

closed fields of characteristic 0.

Remark 8.4 (algebraically closed and real closed fields). Let F be a finite extension of R.

Then either F = R or F = C. Suppose F ≡ F. If F = R, then F is real closed and Gal(F) =

Z/2Z. If F = C, then F is algebraically closed and Gal(F) is trivial. Now let K be a subfield

of F. Then res : Gal(F)→ Gal(F∩K̃) is an isomorphism and F ≡ F∩K̃ [27, page 53, Corollary,

5.6 and page 51, Corollary 5.3]. Conversely, if F ′ extends F and F ′ ≡ F, then F ′ ∩ F̃ = F.

9 Construction of big quotients for classical groups

We say that a field F is classical local of characteristic 0 if F is either R, C, or a finite

extension of Qp for some p. A profinite groupG is classical local of characteristic 0 ifG is

isomorphic to the absolute Galois group of a classical local field of characteristic 0.

Let F be a finite set of classical local fields of characteristic 0. Put

C =
{

Gal(F) | F ∈ F
}
. (9.1)

We have already mentioned that each Γ ∈ C is finitely generated and prosolvable

(Proposition 8.2(k)). We use the next result together with Lemma 8.3 to equip C with a

system of big quotients.

Notation 9.1. Let p be a prime number and G a profinite group. Denote the maximal pro-

p-quotient of G by G(p). Let Gp be a p-Sylow subgroup of G.
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P-adically Projective Groups as Absolute Galois Groups 1985

Proposition 9.2. Let p, l be prime numbers and let F be a finite extension of Qp. Then F

has a finite Galois extension F ′ with the following properties.

(a) Let ∆ be a quotient of Gal(F) which has Gal(F ′/F) as a quotient. Then, ∆p is

not a free pro-p-group and ∆l is not a free pro-l-group.

(b) Let p ′ be a prime number, L an algebraic extension of Qp ′ , and γ : Gal(F) →
Gal(L) an epimorphism. Suppose there is an epimorphism β : Gal(L) → Gal(F ′/F). Then

p = p ′, γ is an isomorphism, and [F : Qp] = [L : Qp]. �

Proof. By Proposition 8.2(k), Gal(F) is finitely generated.

Construction of F ′. Denote the compositum of all extensions of F of degree at most

max(p − 1, l − 1) by E0. In particular, E0 contains the roots of unity ζp and ζl of orders

p and l, respectively.

By [11, Lemma 11.1], E0 has a finite extension E1 with this property:

(1) rank(Gal(E ′
1/E0)(p)) = rank(Gal(E0)(p)) for every Galois extension E ′

1 of E0

which contains E1.

Since ζp ∈ E0, Gal(E0)(p) is not a free pro-p-group [20, page 96, Satz 10.3]. By [11,

Lemma 11.2], E0 has a proper finite p-extension E2,p with this property:

(2a) for every Galois extension E ′
2 of E0 containing E2,p, the group Gal(E ′

2/E0) is

not a free pro-p-group.

Similarly, E0 has a proper finite l-extension E2,l satisfying this:

(2b) for every Galois extension E ′
2 of E0 containing E2,l, the group Gal(E ′

2/E0) is

not a free pro-l-group.

Put E2 = E2,pE2,l.

Since Gal(Qp) is finitely generated, Qp has only finitely many extensions of de-

gree [F : Qp]. Let L1, . . . , Lk be all extensions of Qp satisfying this:

(3) [Lj : Qp] = [F : Qp], Gal(Lj) is a quotient of Gal(F), but Gal(Lj) �∼= Gal(F),

j = 1, . . . , k (kmay be 0).

For each j choose a finite Galois extension Fj of F such that Gal(Fj/F) is not a quo-

tient of Gal(Lj) [7, Proposition 16.10.7]. Let F ′ be the compositum of all extensions of F of

degree at most m = max([Ei : F], [Fj : F])i=1,2; j=1,...,k. Then F ′ is a finite Galois extension

of F which contains E1, E2, F1, . . . , Fk.

Proof of (a). Let ∆ be as in (a). Then ∆ ∼= Gal(M/F) for some Galois extension M of F.

Since Gal(F ′/F) is a quotient of ∆, there is a Galois extension F ′′ of F in M with Gal(F ′′/

F) ∼= Gal(F ′/F). In particular, F ′′ is the compositum of extensions of F of degree at most

m, so F ′′ ⊆ F ′. Since [F ′′ : F] = [F ′ : F], we have F ′ = F ′′ ⊆M.
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1986 Dan Haran et al.

Assume Gal(M/F)p is a free pro-p-group. Then Gal(M/E0)p is also a free pro-p-

group [7, Corollary 22.7.7], so cdp Gal(M/E0) ≤ 1 [29, page 235, Theorem 6.5]. There-

fore, by [29, page 255, Theorem 3.2], Gal(M/E0)(p) is pro-p-free. This contradiction to

(2a) proves that Gal(M/F)p is not a free pro-p-group. Similarly, Gal(M/F)l is not a free

pro-l-group.

Proof of (b). Let p ′, L, γ, and β be as in (b). Denote the fixed field of Ker(γ) (resp., Ker(β ◦
γ)) in Q̃p by N (resp., F ′). Then F ′ is a Galois extension of F in N satisfying Gal(F ′/F) ∼=

Gal(F ′/F). In particular, F ′ is a compositum of extensions of F of degree at mostm. Hence,

F ′ ⊆ F ′. Since [F ′ : F] = [F ′ : F], we have F ′ = F ′.

By construction, E0 ⊂ E2,p ⊆ F ′ ⊆ N and E2,p/E0 is a proper p-extension, so p

divides [N : E0]. Let E(p)
0 be the maximal pro-p-extension of E0. Then Gal(N ∩ E(p)

0 /E0) is

the maximal pro-p-quotient of Gal(N/E0). Also, E2,p ⊆ N ∩ E(p)
0 . Hence, by (2a), Gal(N ∩

E
(p)
0 /E0) is not a free pro-p-group. It follows from [29, page 255] that cdp Gal(N/E0) > 1.

Let L0 be the fixed field of γ(Gal(E0)) in Q̃p ′ . Then Gal(N/E0) ∼= Gal(L0). Hence,

by the preceding paragraph, cdp Gal(L0) > 1. This implies p∞ � [L0 : Qp ′ ] [29, pages 291-

292]. Also, L0 is the compositum of all extensions of L of degree at most max(p − 1, l − 1).

In particular, ζp ∈ L0. By (1) applied toN instead of to E ′
1 and by [23, Satz 4],

(4) rank(Gal(L0)(p)) = rank(Gal(N/E0)(p)) = rank(Gal(E0)(p)) = 2 + [E0 : Qp].

In particular, rank(Gal(L0)(p)) ≥ 3. Hence, p ′ = p and rank(Gal(L0)(p)) = 2+ [L0 : Qp] [23,

Satz 4]. It follows from (4) that [E0 : Qp] = [L0 : Qp]. Since [E0 : F] = [L0 : L], this implies

[F : Qp] = [L : Qp].

Finally assume Gal(L) �∼= Gal(F). By assumption, Gal(L) is a quotient of Gal(F).

Hence, L = Lj with 1 ≤ j ≤ m. By construction, Gal(Fj/F) is not a quotient of Gal(L). Since

F ⊆ Fj ⊆ F ′, this implies Gal(F ′/F) is not a quotient of Gal(L), in contradiction to our

assumption. Thus, Gal(F) ∼= Gal(L). Consequently, by [7, Proposition 16.10.6(a)], γ is an

isomorphism. �

The following result gives sufficient conditions for a finite set C of finitely gener-

ated profinite groups to have a system of big quotients (Definition 7.4).

Proposition 9.3. Let C be a finite set of finitely generated profinite groups. Suppose each

Γ ∈ C is finite or prosolvable. For each infinite Γ ∈ C let Γ̄ be a finite quotient of Γ , and

for each finite Γ ∈ C let Γ̄ = Γ . Suppose there exists a prime number l such that for every

infinite Γ ∈ C and every profinite group ∆ with epimorphisms Γ
γ−→ ∆ → Γ̄ the following

hold:

(5a) Γl is torsion-free;

(5b) ∆l is not a free pro-l-group;
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P-adically Projective Groups as Absolute Galois Groups 1987

(5c) there is a prime number p �= l such that ∆p is not a free pro-p-group;

(5d) if ∆ is isomorphic to a subgroup of some Γ ′ ∈ C, then γ is an isomorphism.

Then {Γ̄ | Γ ∈ C} is a system of big quotients for C. �

Proof. Let {∆j | j ∈ J} be a finite collection of profinite groups of type C and let e be a

positive integer. Put B∗ = F̂e ∗
∏∗ j∈J ∆j. Let Γ be a group in C and ∆ a closed subgroup of B∗

with epimorphisms Γ
γ−→ ∆→ Γ̄ .

First suppose ∆ is finite. By [13, page 160, Theorem 1], ∆ is conjugate to a closed

subgroup of some ∆j. By (5d), γ is an isomorphism.

Now suppose ∆ is prosolvable. Let l be a prime number as in the proposition. By

the first paragraph and (5a) (applied to ∆j instead of to Γ), no element of B∗ has order

l. In particular, ∆l is torsion-free. By [25, Theorem 2(2)], ∆ is conjugate to a subgroup of

some ∆j. Again, by (5d), γ is an isomorphism. �

Lemma 9.4. Let F be a finite set of classical local fields of characteristic 0. Put C =

{Gal(F) | F ∈ F}. Then C has a system of big quotients. �

Proof. Let S be the set of all residue characteristics of F ∈ F. Choose a prime number

l not in S ∪ {2}. By Proposition 8.2(k) and Remark 8.4, each Γ ∈ C is finitely generated

and prosolvable. Moreover, Γl is torsion-free (Lemma 8.3). Omit C from F, if necessary,

to assume 1 /∈ C. For each Γ ∈ C choose F ∈ F with Γ ∼= Gal(F). If Γ is finite (i.e., F = R),

choose Γ̄ = Γ . If Γ is infinite and F is a finite extension of Qp, let Γ̄ = Gal(F ′/F), where F ′

is the finite extension of F given by Proposition 9.2. We apply Lemma 8.3 to prove that

{Γ̄ | Γ ∈ C} is a system of big quotients for C in the sense of Definition 7.4.

Since each Γ ∈ C is an absolute Galois group, Γl is torsion-free. Let F ∈ F, Γ =

Gal(F), ∆ a profinite group, and Γ
γ−→ ∆ → Γ̄ epimorphisms. Let p be the residue

characteristic of F. By Proposition 9.2(a), ∆p is not a free pro-p-group and ∆l is not a

free pro-l-group. Finally, suppose ∆ is isomorphic to a subgroup of some Γ ′ ∈ C. Iden-

tify ∆ with Gal(L), where L is an algebraic extension of Qp ′ . By Proposition 9.2, γ is an

isomorphism. Thus, all parts of condition (4) hold. By Proposition 9.3, C has a system of

big quotients. �

10 Spaces of classically local fields

Let F be a finite set of classical local fields of characteristic 0 and let K be a field. For each

F ∈ F let AlgExt(K,F) be the set of all algebraic extensions of K which are elementar-

ily equivalent to F. Put AlgExt(K,F) =
⋃

F∈F AlgExt(K,F). Call a field K pseudo-F-closed

(abbreviated PFC) if it is pseudo-AlgExt(K,F)-closed; that is, V(K) �= ∅ for each smooth

absolutely irreducible variety V satisfying V(F) �= ∅ for all F ∈ AlgExt(K,F).
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We call a profinite group G (strongly) F-projective if G is (strongly) G-projective,

where G =
⋃

F∈F{H ∈ Subgr(G) | H ∼= Gal(F)}.

Our first main result is that “K is PFC” implies “Gal(K) is strongly F-projective.”

The only still missing ingredient of the proof is the strict closedness of AlgExt(K,F).

Lemma 10.1. Let K be a field and F a finite extension of Qp or of R. Then AlgExt(K,F) is

strictly closed in AlgExt(K). �

Proof. We prove the theorem in the case where F is a finite extension of Qp. The same

proof applies to the case where F is R or C. We only have to replace the references to

Proposition 8.2 by references to Remark 8.4. By Proposition 8.2(f) and Remark 8.4, F ≡
F ∩ Q̃. Hence, we may replace F by F ∩ Q̃.

So, assume without loss that F is a finite extension of Qp,alg. By [7, Lemma 20.6.3],

AlgExt(Q,F) = {Fσ | σ ∈ Gal(Q)}. Thus, AlgExt(Q,F) is the image of the strictly con-

tinuous map Gal(Q) → AlgExt(Q) given by σ �→ Fσ. Since both spaces are profinite,

AlgExt(Q,F) is strictly closed in AlgExt(Q).

Now put X = AlgExt(K,F). Consider F ∈ StrictClosure(X). Then, for every finite

Galois extension N of K, WN = {E ∈ X | E ∩ N = F ∩ N} �= ∅. By Proposition 8.2(m),

Gal(E) ∼= Gal(F) for each E ∈ X. Therefore,

(1) every finite quotient of Gal(F) is a finite quotient of Gal(F).

Conversely, let F0 = F ∩ Q̃. Observe that the map ϕ : AlgExt(K) → AlgExt(Q)

given by L �→ L ∩ Q̃ is strictly continuous. It maps AlgExt(K,F) into AlgExt(Q,F) (by

Proposition 8.2(f)). Hence, F0 = ϕ(F) ∈ StrictClosure(AlgExt(Q,F)). By the second para-

graph of the proof, F0 ∈ AlgExt(Q,F). Thus, F0 ≡ F. Hence, by Proposition 8.2(m),

Gal(F0) ∼= Gal(F), so Gal(F) is an image of Gal(F). In particular, every finite quotient of

Gal(F) is a finite quotient of Gal(F). Combining with (1), we conclude that Gal(F) and

Gal(F) have the same finite quotients. By Proposition 8.2(k), Gal(F) is finitely generated.

Hence, by [7, Proposition 16.10.7(b)], Gal(F) ∼= Gal(F). It follows that Gal(F) is finitely

generated and isomorphic to Gal(F0). Since res : Gal(F)→ Gal(F0) is surjective, it is bijec-

tive [7, Proposition 16.10.6(a)].

Next observe that the intersection of finitely many sets WN contains a set of this

form. Hence the intersection is nonempty. Therefore, there is an ultrafilter D of X which

contains each WN. Put F∗ =
∏

E∈X E/D. By the fundamental property of ultraproducts,

F∗ ≡ F [7, Corollary 7.7.1].

Embed F in F∗ by mapping each x ∈ F onto the element (xE)/D, where xE is x if x ∈
E and xE = 0 otherwise. Put F∗0 = F∗∩Q̃. Then, by Proposition 8.2(f), F0 ≡ F ≡ F∗ ≡ F∗0. Also,

F0 ⊆ F∗0. Let x ∈ F∗0. Put f = irr(x,Q). Since F0 ≡ F∗0, the number of roots of f in F0 is equal

to the number of roots of f in F∗0. Hence, x ∈ F0. Therefore, F0 = F∗0. By Proposition 8.2(l),
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P-adically Projective Groups as Absolute Galois Groups 1989

res : Gal(F∗) → Gal(F0) is an isomorphism. Hence, so is res : Gal(F∗ ∩ K̃) → Gal(F0).

Since F ⊆ F∗ ∩ K̃ and res : Gal(F)→ Gal(F0) is an isomorphism, we have F = F∗ ∩ K̃. Again,

by Proposition 8.2(f), F ≡ F∗. Consequently, F ∈ X, as desired. �

In order to formulate the first main result of this work we have to impose a certain

restriction on F.

Remark 10.2 (isomorphism of Galois groups of P-adic fields). We say F is closed under

Galois isomorphism if for all classical local fields F, F ′ the following holds:

(2) F ∈ F and Gal(F) ∼= Gal(F ′) implies F ′ ∈ F.

Actually, by Remark 8.4, it suffices to impose condition (2) only for a finite exten-

sion F of Qp and a finite extension F ′ of Qp ′ . By Proposition 9.2, Gal(F) ∼= Gal(F ′) implies

p = p ′ and [F ′ : Qp] = [F : Qp]. So, for each F ∈ F there are only finitely many fields F ′ with

Gal(F ′) ∼= Gal(F).

Section 2 of [17] gives for each p examples of nonisomorphic extensions F and F ′

of Qp with Gal(F) ∼= Gal(F ′). Indeed, [17, page 2, Theorem] and [31, page 281, Theorem]

prove for arbitrary finite extensions F, F ′ of Qp (if p = 2, the theorem assumes
√

−1 ∈ F)
that Gal(F) ∼= Gal(F ′) if and only if [F : Qp] = [F ′ : Qp] and F ∩ Qp,ab = F ′ ∩ Qp,ab. Here Qp,ab

is the maximal abelian extension of Qp.

Finally consider classical local fields F and F ′ of characteristic 0. Suppose F is

elementarily equivalent to F ′. Then F is isomorphic to F ′. Indeed, we may assume F is a

finite extension of Qp and F ′ is a finite extension of Qp ′ . By Proposition 8.2(h), p = p ′. Let

F0 = F ∩ Q̃ and F ′0 = F ′ ∩ Q̃. By Proposition 8.2(f), F0 ≡ F and F ′0 ≡ F ′. Hence, by [7, Lemma

20.6.3], F0
∼= F ′0. We may therefore assume F0 = F ′0 and F0 is a finite extension of Qp,alg.

But then the isomorphism res : Gal(Qp)→ Gal(Qp,alg) (see Proposition 8.2(l)) maps both

Gal(F) and Gal(F ′) onto Gal(F0). Consequently, F = F ′.

Lemma 10.3. Let F be a finite set of classical local fields of characteristic 0. Suppose F is

closed under Galois isomorphism. Then for every field K,

(3)
⋃

F∈F{F ∈ AlgExt(K) | F ≡ F} =
⋃

F∈F{F ∈ AlgExt(K) | Gal(F) ∼= Gal(F)}. �

Proof. By Proposition 8.2(m), the left-hand side of (3) is contained in its right-hand side.

Conversely, let F ∈ AlgExt(K) and F ∈ F be fields with Gal(F) ∼= Gal(F). If F is real

closed, then so is F and F ≡ F (Remark 8.4). Otherwise, F is a finite extension of Qp

for some p. By Proposition 8.2(n), F is elementarily equivalent to a finite extension F ′

of Qp. Hence, by Proposition 8.2(m), Gal(F ′) ∼= Gal(F) ∼= Gal(F). Since F is closed un-

der Galois isomorphism, F ′ ∈ F. Consequently, F belongs to the left-hand side of (3).

�
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Theorem 10.4. Let F be a finite set of classical local fields of characteristic 0 not contain-

ing C which is closed under Galois isomorphism. Let K be a PFC field. Put

G =
⋃

F∈F

{
Gal(F) | F ∈ AlgExt(K), Gal(F) ∼= Gal(F)

}
. (10.1)

Then Gal(K) is strongly F-projective and (Gal(K),Gmax) is a proper projective group struc-

ture. �

Proof. Let C = {Gal(F) | F ∈ F}. For each Γ ∈ C let

GΓ =
⋃

F∈F
Gal(F)∼=Γ

{
Gal(F) | F ∈ AlgExt(K,F)

}
. (10.2)

By Lemma 10.1, GΓ is strictly closed in Subgr ( Gal(K)). By Lemma 10.3, G =
⋃

Γ∈C GΓ , so

G is strictly closed in Subgr(Gal(K)). Hence, by [12, Remark 1.2], G is étale compact. By

Proposition 4.1, Gal(K) is G-projective. By Lemma 9.4, C has a system of big quotients. It

follows from Proposition 7.5 that Gal(K) is strongly G-projective and (Gal(K),Gmax) is a

proper projective group structure. �

11 Realization of strongly projective groups as absolute Galois groups

The second main result of this work is a converse to Theorem 10.4. We consider again

a finite set F of classical local fields of characteristic 0 not containing C. We prove that

each F-projective group G which satisfies the group-theoretic analog of Lemma 10.1 is

isomorphic to Gal(K) for some PFC field K. Moreover, we construct K equipped with a

“field-valuation structure” satisfying the “block approximation condition.” We recall the

definitions of these concepts from [12].

A field structure is data K = (K,X, Kx)x∈X, where K is a field, X is a profinite space

with a continuous action of Gal(K) on X, and for each x ∈ X, Kx is a separable algebraic

extension of K satisfying the following conditions:

(1a) for each finite separable extension L of K the set XL = {x ∈ X | L ⊆ Kx} is open;

(1b) Kxσ = Kσ
x for all x ∈ X and σ ∈ Gal(K);

(1c) {σ ∈ Gal(K) | xσ = x} ⊆ Gal(Kx).

Thus, Gal(K) = (Gal(K), X,Gal(Kx))x∈X is a group structure called the absolute

Galois structure associated with K [12, Section 6].
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Denote the set of all valuations, including the trivial one, of a field L by Val(L). A

subbasis for the patch topology of Val(L) consists of all sets

Vala(K) =
{
v ∈ Val(K) | v(a) > 0

}
,

Val ′a(K) =
{
v ∈ Val(K) | v(a) ≥ 0} (11.1)

with a ∈ K.

A field-valuation structure is a structure K = (K,X, Kx, vx)x∈X satisfying the fol-

lowing conditions:

(2a) (K,X, Kx)x∈x is a field structure;

(2b) vx is a valuation of Kx satisfying vxσ = vσ
x for all x ∈ X and σ ∈ Gal(K); here

vσ
x(uσ) = vx(u) for each u ∈ Kx;

(2c) for each finite separable extension L of K define a map νL : XL → Val(L) by

νL(x) = vx|L; then νL is continuous.

We call K Henselian if (Kx, vx) is Henselian for each x ∈ X.

The absolute Galois structure associated with K is the same one associated with

the underlying field structure, namely Gal(K) = (Gal(K), X,Gal(Kx))x∈X. We call K proper

if Gal(K) is proper.

Definition 11.1 (block approximation condition). A block approximation problem for a

field-valuation structure K = (K,X, Kx, vx)x∈X is data (V,Xi, Li,ai, ci)i∈I0
satisfying the

following:

(3a) (Gal(Li), Xi)i∈I0
is a special partition of Gal(K): for each i ∈ I0 the set Xi is

open-closed in X, and for all x ∈ Xi, Li ⊆ Kx, Gal(Li) = {σ ∈ Gal(K) | Xσ
i =

Xi}, and X =
⋃· i∈I0

⋃· ρ∈Ri
X

ρ
i , where Ri is any subset of Gal(K) satisfying

Gal(K) =
⋃· ρ∈Ri

Gal(Li)ρi;

(3b) V is a smooth affine variety over K;

(3c) ai ∈ V(Li);

(3d) ci ∈ K×.

A solution of the problem is a point a ∈ V(K) with vx(a − ai) > vx(ci) for all

i ∈ I0 and x ∈ Xi. We say K satisfies the block approximation condition if each block

approximation problem for K is solvable.

The block approximation condition has several interesting consequences.

Proposition 11.2 [12, Proposition 12.3]. Let K = (K,X, Kx, vx)x∈X be a Henselian field-

valuation structure satisfying the block approximation condition.

(a) Put K = {Kx | x ∈ X}. Then K is PKC.
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1992 Dan Haran et al.

(b) Suppose x1, . . . , xn ∈ X lie in distinct Gal(K)-orbits. Then vx1
|K, . . . ,vxn |K sat-

isfy the weak approximation theorem.

(c) Suppose x, y ∈ X lie in distinct Gal(K)-orbits. Then vx|K and vy|K are indepen-

dent.

(d) Suppose X has more than one Gal(K)-orbit. Then the trivial valuation is not in

νK(X).

(e) For each x ∈ X, K is vx-dense in Kx.

(f) (Kx, vx) is a Henselian closure of (K, vx|K). �

Theorem 11.3. Let F be a finite set of classical local fields of characteristic 0 and G an

F-projective group. Let

(4) C = {Gal(F) | F ∈ F}, G = Subgr(G,C) =
⋃

Γ∈C Subgr(G, Γ).

Suppose

(5a) C /∈ F,

(5b) F is closed under Galois isomorphism,

(5c) Subgr(G, Γ) is strictly closed in Subgr(G) for each Γ ∈ C.

Then there is a proper field-valuation structure K = (K,X, Kx, vx)x∈X such that

(6a) K satisfies the block approximation condition,

(6b) there is an isomorphism ϕ : (G,Gmax)→ Gal(K); in particular, G ∼= Gal(K),

(6c) {Kx | x ∈ X} = AlgExt(K,F)min,

(6d) K is PFC. �

Proof. By Lemma 9.4, C has a system of finite big quotients. By Proposition 8.2(k), each

Γ ∈ C is finitely generated and prosolvable. Finally, by assumption, G is G-projective.

Hence, by Proposition 7.5,G = (G,Gmax) is a proper projective group structure. Moreover,

Proposition 7.5 gives a homomorphism δ : G→∏∗ Γ∈C Γ which maps eachH ∈ G injectively

into a conjugate of some Γ ∈ C. By assumption, each Γ ∈ C is the absolute Galois group

of a Henselian algebraic extension of Q or a real closure of Q. Therefore, by [8, Theorem

10.1], we may identify
∏∗ Γ∈C Γ with Gal(D) for some algebraic extension field D of Q. Let

E be the fixed field of δ(G) in Q̃. Then δ : G → Gal(E) is an epimorphism of profinite

groups which extends to a cover δ : G → Gal(E) of group structures, with E being a

field structure whose underlying field is E. Indeed, E is the field structure associated to

the quotient structure (G,Gmin)/Ker(δ) [12, Example 2.5]. Note that Gal(E) need not be

proper.

Put X = Gmax. By [12, Theorem 15.4], there is a proper Henselian field-valuation

structure K = (K,X, Kx, vx)x∈X which satisfies the block approximation condition and

there is an isomorphism ϕ : G→ Gal(K) such that
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(7a) E = K
⋂

Q̃, Eδ(x) = Kx ∩ Q̃, and vx is trivial on Eδ(x) for all x ∈ X,
(7b) resK̃/Ẽ ◦ϕ = δ.

By Lemma 10.3, F ∈ AlgExt(K,F) if and only if Gal(F) ∼= Gal(F) for some F ∈ F. Therefore

the isomorphism ϕ : G → Gal(K) establishes, via Galois correspondence, a bijection

of Subgr(G,C) onto AlgExt(K,F) which maps Subgr(G,C)max onto AlgExt(K,F)min. This

proves (6c).

By Proposition 11.2(a), K is pseudo-{Kx | x ∈ X}-closed. Therefore, by (6c), K is

PFC. �

Problem 11.4. Is it possible to remove the condition “F is closed under Galois isomor-

phism” from Theorem 11.3? �
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