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PERMANENCE CRITERIA FOR SEMI-FREE PROFINITE GROUPS

LIOR BARY-SOROKER, DAN HARAN*, AND DAVID HARBATER **

Dedicated to Moshe Jarden on the occasion of his 65th bigthda

AsstracT. We introduce the condition of a profinite group being sereéf which is more general than being
free and more restrictive than being quasi-free. In paeicevery projective semi-free profinite group is free.
We prove that the usual permanence properties of free greaupg over to semi-free groups. Using this, we
conclude that ik is a separably closed field, then many field extensiong(afy)) have free absolute Galois
groups.

1. INTRODUCTION AND RESULTS

A central problem is Galois theory is to understand the alted@balois groups of fields, and a key aspect
is to find fields with free absolute Galois groups. For examipl€ is an algebraically closed field, then
K = C(x) is such afield. This was proved f6r= C by Douady; and in the general case by Rop [19] and the
third author|[[9], with another proof later by Jarden and theonid author [8]. The major conjecture in this
context, Shafarevich’s conjecture, asserts that the nabaimelian extensio®?° of the rational numbers
Q has a free absolute Galois group.

In [11], the third author and K. Stevenson suggest a strategproving the freeness of a profinite
group: breaking the argument into two simpler pieces, vimsitfreeness and projectivity. This strategy
was carried out in [10] in the context of a two-variable Lantrgeries field = k((x, y)). For any base field
k, the absolute Galois group GHIY is quasi-free[[11], though it is not free since it is not paijve. In
[10] the third author proves that the commutator subgroua qfiasi-free group is quasi-free, and hence
Gal(K®) is quasi-free. Now, if in additiok is separably closed, then G&R®) is also projective. Therefore
Gal(K®) is free, for suclk. This can be viewed as an analog of Shafarevich’s conjecture

In the above situation, it is key that the commutator subgrafua quasi-free group is quasi-free. This
leads to the question of when a closed subgroup of a quasigh@up is quasi-free, particularly in the
case of projective subgroups. Since closed subgroupsitirgrejectivity, this question generalizes the
corresponding classical question about free subgroupsreggrofinite group. A partial answer is given
in [23], where Ribes, Stevenson, and Zalesskii prove thaipgm subgroup of a quasi-free group is quasi-
free.

The classical question — when is a closed subgroup of a fre@pgtself free — has been dealt with
in numerous papers, e.g! [5,/13] 15} [16, 18]. The second mli#tsoused twisted wreath products|in [5] to
attack this question. Not only does this approach reprovgyrofthe previously known results, but it also
proves the so-called ‘Diamond Theorem’ (see [4, Theorem.3h:

Theorem. Let F be a free profinite group of infinite rank m. Let,N¥l, be normal subgroups of F and let
M be a subgroup of F such thaty;Mh M, < M but My £ M and M, £ M. Then M is free of rank m.
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(The diagram

N

M1 N M,
suggests the name Diamond Theorem.) Recently the first gpitheed this theorem for finiten > 2 [2].

It would thus be desirable to carry over this and other peenae properties of free profinite groups
to the class of quasi-free profinite groups. However, outhods seem to work well only after a slight
modification of the notion: We say that a profinite group ofrité rankm is semi-freaf every nontrivial
finite split embedding problem for it has independerroper solutions. (See Sectigh 2 below.)

The modified notion is in some ways more natural. First we have

(a) infinitely generated free profinite groups are semi-{fdeoreni 3.6),

(b) semi-free groups are quasi-free, but not vice-versap@sitio{ 6.1), and

(c) the absolute Galois group kf(x, y)) is semi-free (Theoremn 4.1).

Moreover, we are able to prove the following theorem (whexgeCV] corresponds to the Diamond
Theorem above). Also, as Examjple]6.5 below shows, not alhe$ea properties hold for the class of
quasi-free groups.

Main Theorem. Let F be a semi-free profinite group of infinite rank m and let &alclosed subgroup of
F. Then, in each of the following cases the group M is sengi-dfaank m.
) (F: M) < oo,
(1) F/M is finitely generated, whem@l = ", M is the normal core of M.
(111) weight(F/M) < m (the definition of weight is recalled at Section 5.1.5).
(IV) M is a proper subgroup of finite index of a closed normal subgrof F.
(V) Misnormalin F, and FM is abelian.
(VI) There exist closed normal subgroupg,M/, of F such that MnN M, < M but My £ M and
Mz £ M.
(VII) M contains a closed normal subgroup N of F such th&Xlis pronilpotent andF : M) is divisible
by at least two primes.
(VIII) M is sparse in F (see Definitidn 5.1).
(IX) (F : M) = [T p*®, wherea(p) < oo for all p.

The proof of Main Theorem is in Sectigh 5.

This theorem gives rise to new constructions of fields hafrieg absolute Galois groups; see Sedfibn 8.
One of them generalizes the construction of fields with flesolute Galois groups discussed above in the
second paragraph of the introduction. Another was providedarden, using ideas of Pop.

We conclude the introduction with some ideas of the proofe §hbal is to prove thaM is semi-free,
i.e. that an arbitrary finite split embedding problé&mfor M has many independent proper solutions. We
know thatM is a subgroup of a semi-free grokipso we wish to transfer the solvability problemRoThe
first thing we do is to induce a split embedding probigrior F with the property that a weak solution &f
induces a weak solution &, (see Proposition 4.6 for the exact definition8)f The embedding problem
& is constructed usingavisted wreath produdisee Definitioh 4]1).

Now & has many independent proper solutions bec&usesemi-free. Each one of these proper solu-
tions, sayy, induces a solution of E;. (Herev = & o y/|m, Wherer is the Shapiro map; see Definitibn3.2.)
We encounter two dliculties: (1)v is hot necessarily propersolution; (2) for two distinct proper solutions
Y1 # Y of & we may get thaty = v,.

We extract from([5] a condition under whistremains a proper solution. This settles the firéliclilty.

To treat (2), we use that fact that in our situatign, ¥, are not only distinct, but also independent. Hence
the image ofy; x ¢, is also a wreath product (Lemrhald.4). This fact leads us termgdine the work in
[5], and find a necessary conditions for any two independetgy solutiong/1, ¥, to induce independent
proper solutionss, v2, as needed fokl to be semi-free. See PropositionHl6 b.
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Note that this strategy does not apply to the correspondiablem for quasi-free groups, where the
distinct proper solutions for a split embedding problemdteat be independent, and since the imaggof
Y, for distinct solutiongyy, ¥, of €& need not be a twisted wreath product in the absence of indepes.
By avoiding this dfficulty, our focus on semi-free groups permits us to show tlatynsubgroups of semi-
free groups are semi-free (and in particular quasi-freaj;that if such a subgroup is also projective then
it is free (see Theorem 3.6).

2. INDEPENDENT SUBGROUPS AND SOLUTIONS OF EMBEDDING PROBLEMS

Definition 2.1. Let F be a profinite group.
(a) Open subgroupdls,..., M, of F areF-independentif

n n
(F:( M) =] [(F: m).
i=1 i=1
If My,..., M, are normal irF, this is equivalent to

F/ ﬁ M; = ﬁ F/M,
i=1 i=1

(b) Afamily M of open subgroups d¢f is F-independentif every finite subset oM is F-independent.

The notion ofF-independence coincides with independence with respeabetblaar probability mea-
sure onF [4], Section 18.3]. There is also the following equivalerdacttterization of independence: Open
subgroupsMy, ..., M, are F-independent if and only iF acts transitively or{[{L, F/M;. This criterion
can be used to obtain alternative short proofs of garts ¢ andPcopositio 2.2 below.

A key example of independence occurs in the case of a GaltdsefigensionL /K. If F = Gal(L/K)
andLy, ..., L are the fixed fields oM, ..., My in L, then by the Galois correspondentg, . .., M, are
F-independentif and only if4, ..., L, are linearly disjoint oveK.

The following properties can be either proven directly odwaiged from the corresponding properties of
linear disjointness of fields:

Proposition 2.2. Let My, ..., M, be open subgroups of a profinite group F.

@ F: Ny M) < TTL(F - My).

(b) Let My < N; < F. Then M, M, are F-independent if and only if\NM, are F-independent and
Mi1, N1 N M are Ni-independent.

(c) The subgroups M. .., M, are F-independent if and only if M. .., M,_; are F-independent and

"1 Mi, M, are F-independent.
(d) LetM <N; < Fforeachl <i<n.If My,..., M, are F-independent, then so arg,N. ., Nj.
(e) Suppose M« F. Then M, M, are F-independent if and only if E M1 M.

Proof. (a) This follows by induction from the cage= 2, which is standard.

(b) First assum;, M, areF-independent. Then, sincll{ N M, : M; N M) < (Nz : M;) we have

(F Min Mz) _ (F . Ml)(F . Mz)
(NlﬂMziMlﬁMz) (NlﬂMziMlﬁMz)
(F - N1)(Ng : Mg)(F : My)

> (F : N)(F : My).

(Nl NMy: M N Mz) - ( l)( 2)
Therefore equality holds by (a), ai, M, areF-independent. Similarly, sincé{ : Ny N M) < (F : My)
we have

(F NN Mg)

(F . Ml N Mz) _ (F . Ml)(F . Mz)
(F . Nl) (F . N]_)
> (Np:Mg)(Ng: NpnMy),
soMs, N1 N M, areN;-independent by (a). Conversely,
(F . Ml N Mg) = (F . N]_)(Nl . M]_ N (N]_ N Mg)) = (F . Ml)(Nl . N]_ N Mz)

_ g (FiNen M) .
= (F: Ml)w = (F : M)(F : My).

(N1 : M1 (NN Mp))
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(c) By part (a),
n n-1 n
(F ()M < (F [ \M)F: M) < [ [(F: M.
i=1 i=1 i=1
So F : Ny Mi) = TTL,(F : My) if and only if the above two inequalities are equalitiesy &#me assertion
follows.
(d) Since (); Mi : Ni N) < [Ti(Mi : Ni) we have

: N (FimiMi) IL(F: M) .
(F: ON.) =AM AN S TN [ ]F: N,

[
so equality holds by (a).
(e) We have ;M5 : M) = (M2 : M1 N My). Thus

(F . Ml)(F . Mz) = (F . Mle)(le M1 N Mz)(F . Mz)
= (F . MlMg)(F Min Mz)
m}

Recall that arembedding problemfor a profinite grougr is a pair of epimorphisms of profinite groups
Q) (: F>G,a: H—- G).

The embedding problem is calldighite if H andG are finite. It is calledsplit (respectivelynontrivial )

if a splits (respectively is not an isomorphism). We abbreViatée split embedding problem’ and write
‘FSEP’. A (weak) solutionfor an embedding problem is a homomorphismF — H with @ oy = ¢. A
solution is said to beroper if it is surjective.

Definition 2.3. We call solutions of a finite embedding probldmh iidependentif their kernels are Kes-
independent.

We now introduce a criterion for the independence of propkirti®ns of finite embedding problems in
terms of fiber products of groups.

Let{a;: Hi — G| i € |} be a family of epimorphisms of profinite groups. Thiiirer product with
respect to the;’s is defined by

><GHi ={he ]_[ Hil ai(h) = aj(hy) Vi, j e 1.
(Hereh; = h(i) is the value ofh ati.) This is a closed subgroup ¢f H;, hence a profinite group. The
projection on the-th coordinate, pr. Xg Hi — Hi, is surjective. The fiber product is equipped with a
canonical epimorphism' = a; o pr;: Xg Hi — G, which is independent afe |.
In particular, ifl is a finite set, say = {1,..., n}, then

X Hi=Hixg - xg Hn={(hy,--- ) € [ [Hil aa(h) = - = an(hn)}.
Fiber products are associative:

Lemma 2.4. Leta;i: Hi — Go, i = 1,...,n,andB: G — Gy be epimorphisms of finite groups. Then the
natural map( X g, Hi) Xg, G — Xg(Hi Xg, G) is an isomorphism.

Proof. An elementin( Xg, Hi) xg, G is of the form (fi1, . . ., hy), g), where the elements € H; andg € G
all have the same image @. An element inXg(H; Xg, G) is of the form (61, 9) ..., (h, g)), for such
elementdy € H; andg € G, because the fiber product is taken o@emhe map that takesHy, . .., hn), g)
to ((h1,9) ..., (hy, Q) is clearly an isomorphism. O

A key property, in our setting, of fiber products is that sioins y; of embedding problemsps( F —
G,ai: Hi = G),i € I, induce a canonical solutiog; = []y;, of the embedding probleny( F —
G,a': XgHi — G). More precisely, ' (X)) = vi(x) for eachx € F; e.g., ifl = {1,...,n}, then
V(X)) = ((X), -, ¥n(X)). We obtain the original solutions via the projection oe #toordinates, i.e.
i = pr; o ' for eachi € 1. In particular, taking= = G andy = id, we see that if all the;’s split, so does
a/'.

Given a single epimorphism: H — G and a set, we write H'G for the fiber producp<¢ Hi, where
Hi = H andaj = a for eachi € I.
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Lemma 2.5. Let | be asetand le€ = (¢: F - G,a: H — G) be a finite embedding problem for a
profinite group F. Pug' = (¢: F = G,a': H('3 — G). Then solutiongyi}ic; of & are independent and
proper if and only if the solutiop' = []y; of &' is proper.

Proof. We first assume thalt is finite, | = {1,...,n}. If one of they;'s is not surjective, theny' is
not surjective. Hence, we may assume that. ..,y are surjective. LeK = Kerp and M; = Kerny;,
i = 1,...,n. By the definition ofy' we have Kep' = N, M;. SincelH}| = [H|"/IG|"%, we get that' is
surjective if and only if E : OL; Mi) = [H|"/IGI™. But (F : N, M) = (F : K)(K : O\ M) = GI(K :
N, Mi); hencey! is surjective if and only if K : N, M;) = [H|"/IGI" = [T, (K : M), as desired.

In the general casbl'G is the inverse limit ofHé, where J runs through the finite subsets bfand
the epimorphisms pr H'G - Hé are given by the restriction of coordinates frdnto J. Obviously,
Y’ = prl oy!, for eachl. Hencey' is proper if and only if ally”’s are proper. By the first paragraph of
this proof this happens if and only if thig's are independent and proper. O

3. SEMI-FREE PROFINITE GROUPS

Definition 3.1. A profinite groupF of infinite rank isquasi-free if there exists an infinite cardinah
such that every nontrivial FSEP fér has exactlym distinct proper solutions (see [10,/11] 23]). Byl[23,
Lemma 1.2] such a group is necessarily of ramk

In the following definition we give a stronger variant of qisieeness.

Definition 3.2. A profinite groupF of infinite rank issemi-fred if every nontrivial FSEP folF hasm
independent proper solutions, whaenas the rank off.

Remark3.3. The above definitions consider onilyfinitely generated profinite groups, with the notions
of quasi-free and semi-free being left undefined in the fipiteenerated case. The reason is that for
a profinite groupF of finite rankm, there is no proper solution tany finite embedding probler& =

(p: F - G,a: H — G) for which H has rank greater tham. By leaving the notions undefined in the
finitely generated case, we thus avoid the perverse situatizvhich a finitely generated free group would
violate the conditions of being quasi-free or semi-freee @ould instead consider the class of grobpsf
finite rank for which there is a proper solution to every FSEr which rank{) < rank(F). But a finite
rank group would satisfy that condition if and only if it isef, by [4, Lemma 17.7.1]; so this would not
be a new condition on such groups. For the purposes of thisrpge case of infinite rank is fiicient to
consider, and we restrict to that situation.

Remark3.4. In Definition[3.2, it would sifice to assume just that raifkis at mosim. More precisely, let
F be a profinite group and let be an infinite cardinal. Assume that rak< mand every nontrivial FSEP
for F hasmindependent proper solutions. Then rdhk m, and thud- is semi-free.

Indeed, consider any nontrivial FSEP and{ligat| i < m} be a set of independent proper solutions. Then
Kery; # Kenyg;j foralli # j. This implies thaF has at leastn open subgroups, the sgtery; | i < m}, and
hence ranlE > m(seel[4, Proposition 17.1.2]). Therefore réhke m, as needed.

Clearly, every semi-free group is quasi-free. One mighpeasthat the opposite is also truemf= No,
then for both notions it dtices to have one proper solution of any nontrivial FSEP (seéethma below),
and hence they are equivalent. nif > Xy, then there are quasi-free groups that are not semi-free. We
postpone the discussion of this to Secfidn 6.

Lemma 3.5. Let F be a countably generated profinite group. Then F is demai-of rankN if and only if
every FSEP for F is properly solvable.

Proof. Let& = (po: F — G,ap: H — G) be a nontrivial FSEP. For each integer 0, letan_1: HE —
Hg‘l be the projection map. Inductively, we can find solutipgs F — HZ of the FSEP

En=(¢pn1: G — HY Y ang: HE — HID).
Thengy = I(im%: G — Hg is surjective. Lemm&2l5 implies the existenceNgfindependent proper
solutions, and thub is semi-free. O

1a term coined by Moshe Jarden as an alternative to “strongdgiefree”, which we initially used.
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We extend[[111, Theorem 2.1]:

Theorem 3.6. Let F be a profinite group of infinite rank m. The following cdiwhs are equivalent:
(a) Fis free.
(b) F is semi-free and projective.
(c) F is quasi-free and projective.

Proof. We show thatfay> (@). LetE = (¢: F — G,a: H — G) be a nontrivial finite embedding problem
for F. Fix a setl of cardinalitym. Let H; be the corresponding fiber product; lef:pH; — H be
the projection on thé-th coordinate, for each € I; and leta' = @ o pr;: H('3 — G be the canonical
epimorphism.

SinceF is free of rankm and since rank-d'G) < m, we have a proper solution: F — H'G of the
embedding problemy; F — G, a: H('3 — G) [22, Theorem 3.5.9]. Put; = pr, o ¢ for eachi € |. Then,
by LemmdZ.b, the solutiorgilic; of & are independent and proper. &ss nontrivial, they are distinct.

Implication [B)= () is trivial and ()= @) is [11, Theorem 2.1]. O

From a technical point of view, it is preferable to work witket ofpairwiseproper solutions of a FSEP
instead of independent set of solutions. The following lteshows that it is possible.

Proposition 3.7. Let M be an infinite family of pairwise F-independent open normalgoups of a
profinite group F. Thep\ contains an F-independent subfami, of cardinality| M.

Proof. By Zorn’s Lemma there is a maxim&-independent subfamilp, of M. We have to show that
Mol = IM|. Assume the contrary; that igylo| < IM|.

Let M; be the family of all finite intersections of the elementshd§. If Mo is finite, then so isMy; if
My is infinite, then My| = |Mol. In particular|M;| < |M|. The groups inM; are open irF. Let M, be
the family of all open subgroups &f containing a group inV;. Again, if Mj is finite, then so isMy; if
My is infinite, then M| = |My]. In particular| Ma| < |IM|.

For every proper subgrouyof F there exists at most o € M suchthaM < N. Indeed, iftM1, M €
M are distinct, theMM1 M, = F, by Propositiofl 2]2(e), and hence we cannot HdyeM, < N < F. Since
IMo| < IM|, there existdl € M such that

*) M < Ne M; onlyfor N=F.

We claim thatMo U {M} is F-independent. (This will produce the desired contradictmthe maximality
of Mo.) Thus we have to show, for distinbty, ..., M, € Mo, thatMy, ..., My, M areF-independent.
PutN = N, M;. By Propositiod 22(c) it sfices to show tha, N areF-independent. By construc-
tion, N € M;. HenceMN € M,. SinceM < MN, by ), MN = F. Hence, by Propositidn 2.2(e}), N
areF-independent. O

Corollary 3.8. Let m be an infinite cardinal and let F be a profinite group ofkat most m. Then F is
semi-free of rank m if and only if every nontrivial FSEP hasampise independent proper solutions.

4. HNITE SPLIT EMBEDDING PROBLEMS AND TWISTED WREATH PRODUCTS
We follow [5] and establish the connection between FSEPswisted wreath products.

Definition 4.1 (Twisted wreath product)Let A, Gy < G be finite groups with a (right) action &g on
A. Write Inogo(A) for all functionsf: G — A such thatf(or) = f(o)" for all o € G andr € Gy with

componentwise multiplication. Then @Oc(A) = AlGCo) andG acts on In@o(A) by
f7(0) = f(op), o,peG, fe Indgo(A).

The twisted wreath product, Awrg, G, is defined to be the semidirect product ofgg\(d\) andgG, i.e.
Awrg, G = Indgo(A) = G. Here and belowy : Awrg, G — G denotes the canonical projectiéo — o
(seell4, Definition 13.7.1]). Similarlyyy : A~ Gg — Gp denotes the canonical projectianr — o of the
semidirect product.

There is an epimorphisnn: Indgo(A) — A defined byng(f) = f(1). It extends to an epimorphism
2 Indg (A) < Go — Ax Go defined byfr — f(1)r for f € Indg (A) andr € Gy, sincemo(f7) = f7(1) =
f(r) = f(1)" = no(f)" forall f e Indgo(A) andr € Go. We callz the Shapiro map of Awrg, G.
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Remark4.2. (@) If G = Gg in Definition[4.1, themAwrg, G = A= G.
(b) Seel[21], where a related notion, known as a permutdtieresath product, is used in a similar
context.

The following technical result will be needed later.

Lemma 4.3. Under the above notation, let B 771(Go). Then B is a subgroup of Wrg, G of index
(G : Go)lAl. If A # 1, then B does not containdg (A).

Proof. As the Shapiro map is surjective, (In@O(A) = Gp : B) = |Al. Thus the index 0B in Awrg, G is
(G : Go)lA.
If A+ 1, thereisf € Indgo(A) such thatf (1) # 1; thenz(f) ¢ Go, and hencd ¢ B. O

Lemma 4.4. Consider groups H= A;wrg, G, fori=1,...,n. Then G acts on[] A; componentwise and

X Hi = ([TA)wrg, G.
Proof. We have

X Hi = (o). (fho))] fi € Indg (A), o € G,
[ A wieG = ((fu.... f)o| fieINg(A). o G,

and the isomorphism is given l§¢f10), ..., (fao)) = (f1,..., f)o. O

Lemma 4.5. Letp: F — G be an epimorphism of a profinite group F onto a finite group &t M be a
closed subgroup of F, let&a= ¢(M) < G, and assume thatdacts on a finite group A. Consider the FSEP

Eo(A) = (¢lm: M — Go,ap: A= Gy — Gp),
and lety be a solution of the corresponding FSEP
EA) =(¢p: F > G,a: Awrg,G — G),
with notation as in Definition 4]1. Let be the Shapiro map of Wrg, G. Theny(M) < Indgo(A) = Gg and
o yly is a solution oEy(A).

Proof. We havey(M) < a™(Go) = Indg (A) = Go. Thusr o y|y is defined. Let': Indg (A) < Go — Go
be the restriction ofr. From the commutativity of

M
‘V \LVJIM

Indgo(A) =~ Go — > Go

A > Go
we havexg o o Y|y = ¢lum, i.e.7 o Y|y is a solution. O

Although the solutiomnr o y/|v in the preceding lemma need not be proper, evenisf proper, the proof
of [4}, Proposition 25.4.1] shows that, under some assumptimM, the properness af does imply the
properness of o ¥|y. Moreover, ifF is a free profinite group of infinite rank, that proof produces a
family of m distinct proper solutions afy(A). We generalize this in pa b of the following proposition,
where we consider proper solutions that are not just disting in fact independent.

Proposition 4.6. Let M < F be profinite groups, let AG; be finite groups together with an action of G
on A, and let

81(A) = (/1: M — Gl,a/]_Z A Gl d Gl)
be a FSEP for M. Let DFg, L be subgroups of F such that

(2a) D is an open normal subgroup of F with MD < Kery,
(2b) Fqis an open subgroup of F with M Fo < MD,
(2c¢) L is an open normal subgroup of F with4 Fo n D.

PutG=F/L, Gp = Fo/L <G, and lety: F — G be the quotient map.
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(a) Then there is an epimorphisg : Go — Gj, through which an action of gon A is defined, such
that every weak solution of the FSEP

EA) =(¢p: F > G,a: Awrg, G — G)

induces a weak solution = p o 7 o Y|y of E1(A). Herern is the Shapiro map of wrg, G and
p: AxGg —» Ax Gy is the extension af; by the identity of A.

(b) Let ne N. Assume that there is a closed normal subgroup N of F with M N L such that there
is no nontrivial quotienf of A" through which the action of gon A" descends and for which the
FSEP

(3) @: F/N - G,a: Awrg, G — G),
whereg is the quotient map, is properly solvable. Then any n inddpehproper solutiong of
&(A) induce n independent proper solutionsf E1(A).

M Fo MD —F

|
kelr;z ‘ ‘

MND-—FoND—D

N—MnL——L

Proof. (@) We can extend to a mapMD — G; by md +— u(m) for all me M andd € D. Its restriction to
Fo is an epimorphisnp; : Fg — Gj. It decomposes ag = ¢1 © ¢o, Wherepg: Fg — Gg is the restriction
of ¢ to Fo ande;: Go — G; is an epimorphism. (Here we use that ilef = L < D < Kery; to obtain
¢1.) LetGq act onA via ¢;. Then we have the following commutative diagram

Fo——F

Ax Gy 0. Go——G

$1
Pl o1
@
AxGy —— Gy,

wherep is given byplg, = ¢1 andpla = ida. By LemmdZ4.bx o y|m is a (not necessarily proper) solution
of Eo(A) : (olm: M — Go, ag: A= Gy — Gp). Hencer = p o o Y|y is a solution ofE1(A).

@) Let{y;}!" ; be a family of independent proper solutionsS§A). Let 1< i < n, and lety; = pomoyi|u
be the induced solution @& (A), as in(&). It sifices to show that eachis proper and the familyy;}! , is
independent.

By Lemmal4.4, Awrg, G)§ = A"wrg,G. So by Lemmad ZI5y1, ..., ¢, define a proper solution,
v F - A'wrg, G, of

E(A") = (p: F > G,a: A"wrg, G — G).
Applying Lemmd4.b, withA" playing the role ofA there, we get that = p’ o n’ o i is a solution of
Sl(An) = (/J: M- Gl,a’]_: A" > G]_ - Gl)

(Herep’ andn’ are defined ap andx with A" replacingA.) By Part C of [4, Proposition 25.4.1] (again,
with A" replacingA), 7' ((N)) = A". Butv(N) = po’(#’(¢(N))) = o’(A") = A". ThereforeA" < v(M), and
thusv is a proper solution o£1(A"). Asy = [] ¢i, we get thaty = []v;. Consequentlyys,...,v, are
independent proper solutions (Lemmal 2.5). O

Corollary 4.7 (cf. [4, Proposition 25.4.1])Let F be a semi-free profinite group of infinite rank m and let
M be a closed subgroup of F. Assume that for every open nowbgrsup D of F there exist L andioFas
in (20),(2d) of Propositiori 4.6, and there existsNF with N < M N L such that no FSEP

(¢: F/N - F/L,e: Awrg,,  F/L — F/L),

where A is a nontrivial finite group on whichgL acts and wherep is the quotient map, is properly
solvable.
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Then M is semi-free of rank m.

Proof. By [4l, Corollary 17.1.4], rank{l) < rank(F) = m. Let &;(A) be a FSEP as in Propositibn 4.6.
ChooseD as in [Z&) of Propositidn 4.6. Withg, L, N be as above, l&f(A) be as in Propositidn 4.6. Since
F is quasi-free of rankn, there exists a famil{f of independent proper solution 8{A) of cardinalitym.
This in turn induces a familyy of solutions of&;(A) (Lemmal4.b). The hypotheses of Proposifiod 4.6
hold by the assumptions of the present corollary. Thereforevery positive integen and for every
non-trivial quotientA of A", the embedding problem (3) of Propositlonl4.6 has no progletien. Hence
U1,...,¢n € ¥inducevy,...,vqs € N which are independent and proper. Thereffas a family of
independent proper solutions of cardinaliy O

5. SEMI-FREE SUBGROUPS

5.1. Proof of[Main Theoreml LetF be semi-free of ranknand letM < F.

5.1.1. Casel. Assume thatM is open inF. We apply Corollary 4]7. Given an opéh< F, we take an
openL <«F with L < M n D. Then forFo = M andN = L, there are no proper solutions of the embedding
problem appearing in Corollaky 4.7, singaés an isomorphism and is not. ThereforeM is semi-free.

5.1.2. Casdl). Assume thaf/M is finitely generated, wherl®l = ", M is the normal core oM in
F.

We apply Proposition 416. L&t1(A) = (u: M — Gi,a1: A= Gy — G;) be a nontrivial FSEP foM.
Let D be an open normal subgroup®fwith M N D < Keru. LetFo = MD andN = M n D. ThenF/N is
finitely generated (as an open subgrougrgf x F/D). Thus,F has only finitely many open subgroups
containingN of index at most = (F : D)|AJ%. Their intersectionl, is an open normal subgroup Bf
containingN and contained iD.

Now, forn = 2, the embedding problerl(3), i.e.

(2: F/N - F/L,@: Awrg,,L F/L — F/L),

for any nontrivial quotienA of AZ, has no proper solution. Indeed, assume there exists arsojution
¥ F/N — Awrg,, F/L of @). By Lemma 4.B there is a subgro@pof H = Awrg,, F/L of index
(H : B) = (F : Fo)lAl <r that does not contain Ker In particular, d : B) > (H : BKera) = (F/L : a(B)).
Write y~%(B) asK/N, for someN < K < F. Then € : K) = (F/N : K/N) = (H : B) <r, and hencé < K.
As ¢ = a oy, we haveK/L = ¢(K/N) = a(¥(K/N)) = a(B). Therefore

(H:B)=(F:K)=(F/L:K/L)=(F/L:a(B)) < (H: B),

a contradiction.

SinceF is semi-free, there exists a famify of independent, and in particular pairwise independent,
proper solutions of the nontrivial FSERA) = (¢: F — F/L,a: Awrg,,  F/L — F/L) such that¥| = m.
By Propositiof 4.%(b) witm = 2, ¥ induces a family\ of pairwise independent proper solutionséaf
and|N| = [¥| = m. By Corollary[3.8 we get tha¥l is semi-free of rankn.

5.1.3. Cased 1V VI, an@ VlIl.The proof of Casé VI is verbally identical with the proof oftiamond
Theorem,[[4, Theorem 25.4.3], provided that we replate [dp&sition 25.4.1] by our Corollaiy4.7.

Casd 1V immediately follows from CageVl. So does Chsd VlincgiFE : M) = (F/N : M/N)
is divisible by two primes and the Sylow subgroups are norimat/N, there are two (Sylow) normal
subgroupd’1, P, of F/N such thatP; N P, = 1 andP;, P, ¢ M/N. The preimage#;, M, of Py, P, are
normal inF and satisfyM; " M, = N < M, butM; £ M andM, £ M.

5.1.4. CasdV.Assume thaM < F andF/M is abelian. It follows thaM is also semi-free either by Cases
[Mand[V1 or directly from Corollary 4.7. We show the formeff. F/M is cyclic, then, by CaselllM is
semi-free. Otherwise, there exists a grsubgroup of rank 2 ifF/M, sayH. It factors asH = C; x C,,
whereC,, C, are nontrivial cyclic prop group. TherC; nC, = 1 andC,, C,<F/M (sinceF/M is abelian).
The preimaged;, M, of Cy, C, are normal inF and satisfyM; N My = M, butM; £ M andM; £ M.
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5.1.5. Case$II[VIN, andIX. The proofs of these three cases are based on[Case | and onlemeatary
arguments than the other cases.

Recall that weightt/M) = 1 if M is open, and weigh{/M) is the cardinality of the set of open
subgroups of that containM if (F : M) = oo ([4}, Section 25.2]).

Proof of CaséTll. LetE(M) = (p: M — G,a: H — G) be a FSEP foM and letMg = Kerg. There is an
openD < F such thaD N M < Mg. By Caséll we may replade by its open subgroupM to assume that
DM = F. Thendm ¢(m), ford € D, m € M, extendspy to an epimorphisnp: F — G. LetFq be its
kernel. It contain®, hence=oM = F andFgN'M = Mg. Thus M : Mp) = (F : Fo) and we have the FSEP
EF)=(p: F > G,a: H->G).

Let ¥ be a family of independent proper solutions&(f) of cardinalitym. Eachy € ¥ defines a
solutiony’ := ylu of E(M). LetV = {y/| ¢ € ¥} and letX C ¥’ be a maximal subset of independent
proper solutions (Zorn's Lemma). We claim théhas cardinalityn.

Assume dfferently, that is to say, assuridg < m. LetN = ",y Kery’ if X # 0 andN = Mo if X = 0.

In both casedN < M.

It suffices to findy € ¥ such thatNKery = Fo. Indeed, then for every open subgroip of Mg

containingN we have Np : Np N Kery) = (Fp : Keny),

M——F
N No Mo Fo
N N Keny No N Kery M n Kery = Kery’ —— Kery

i.e., Np and Keyy’ are Mp-independent. In particular, takindy = Mp, we have My : Kery’) = (Mg :
M n Kery) = (Fo : Keny), and hence/’ is surjective. Furthermore, for any finite subdgtof X, taking
No = Ny ex Keny” we get by Proposition 212(c) that U {y'} is an independent set of solutions. Therefore
so isX U {¥/}, which contradicts the maximality of.

To complete the proof, for eaghe ¥ let L, = NKery and assume that, # Fo. Since{Kery | y € ¥}
is Fo-independent, the sét, | ¢ € ¥} is also independent by Proposition]212(d). Sihge+ Fq for all
¥ € ¥, this implies in particulat,, # Ly, for all distincty1,y> € ¥. Hence weightto/N) > m. But
weight(Fo/M) < m by the hypothesis of Cagellll and the fact thatis an open subgroup &. Moreover
weightM/N) < m, by [4, Lemma 25.2.1(b)]. Hence weight{/N) < m by [4, Lemma 25.2.1(d)], a
contradiction. O

Definition 5.1. A closed subgroup/ of a profinite groupF of infinite index is calledsparseif for all
n € N there exists an open subgrokipf F containingM such that for every proper open subgraupf K
containingM we have K : L) > n.

The following lemma shows that this definition is equivalenf2, Definition 2.1]:

Lemma 5.2. If M is sparse in F, then for ever n € N there exists K as in Definitidn 3.1 of index at least
{inF.

Proof. Let¢,n € N. Choose an open subgrol{p of index¢y > ¢ in F such thatM < Kq. By the definition
there existK; with M < K; < F such thatK; : L) > né, for all proper open subgrougsof K; that
containM. Then the assertion follows witki = Ko N K3, since K : K) < 4. O

Proof of Cas€ VIll.Let M be a sparse subgroup Bf LetEp(A) = (u: M — G,a: AxG — G) be a
nontrivial FSEP foM.

Choose an open normal subgrdepof F such thaEyNM < Kery and letFo = ME,. SinceM is sparse
in Fo [2, Corollary 2.3], there is an open subgrd€pf Fo containingM such thatK : L) > |A?|G| for each
proper open subgroup of M that containgvl. Extendu to an epimorphisnp: K — G by ¢(re) = u(r),
r e M, e e Eq. By Caséll K is semi-free of rankn; hence it sffices to show that two independent proper
solutionsgys, ¥ of E(A) = (¢: K = G, a: AxG — G) induce two independent proper solutiaghgw, ¥2|m

(Corollary(3.3).
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By Lemma[4.#,A? ~ G is the fiber product oA x G — G with itself. Thusy, ¢, induce a proper
solutiony of E(A?) = (¢: K = G,a: A2 =G — G) (LemmaZb). Lel. = Keny. Then K : ML) =
(A2 =< G : y(M)) < |AG|. Hence, by the choice df, we get thatML = K. Thereforey|y is a proper
solution ofEy(A%) = (p: M - G, a: A2 <G — G). Buty|y = ¢ilm X olm. Consequentlyy|y, woly are
independent proper solutions &(A), as claimed. O

The following corollary of Case VIl extends|[2, Lemma 2.d[ftee groups of uncountable infinite rank.

Corollary 5.3. If M is a sparse subgroup of a free profinite group F of rank>n2, then M is a free
profinite group ofank(M) = maxNo, rank{F)}.

Proof. The case where rank] < 8q is proven in[[2]. Assumen = rank(F) is infinite. By Theoreri 316
is semi-free of rankn. By Casé VII] of the Main TheorenM is semi-free of rankn. Also, M is projective,
being a closed subgroup of a free profinite group. Consetyubhts free of rankm (Theoreni3B). o

Casd X is, in fact, a special case of CaseMVIll:

Lemma 5.4. Let M be a closed subgroup of a profinite group F of infinite indé&ssumdF : M) =
[T, p*® with all o(p) finite. Then M is sparse in F.

Proof. Forn e N takeK to be an open subgroup BfcontainingM such thatp®® | (F : K) for all p < n.
Then for eachM < L £ K only primesp > n can divide K : L). Therefore,K : L) > n. O

As a conseguence of Corolldry 5.3 and Lenima 5.4, we_gét [bpdRition 5.1]:

Corollary 5.5. Let M be a closed subgroup of a free profinite group F of rank @ AssuméF : M) =
[1p p*(® with all o(p) finite. If (F : M) is infinite, then M is free profinite group of ramkaxNo, rank(F)}.

6. QUASI-FREENESS VS. SEMI-FREENESS

We now construct an example of a quasi-free group that isarot-free.

For a profinite groui and an infinite seX denote byf{x C the free product of copie€y}xex of Cin
the sense of |1]. That gy C contains a copgy of C for eachx € X; and every family of homomorphisms
Ux: Cx = Ainto a finite groupA, such thaty«(Cyx) = 1 for all but finitely manyx € X, uniquely extends to
a homomorphisny: F{x C — A. As usual lef-,, denote the free profinite group of countable rank.

Proposition 6.1. Let X be a set of infinite cardinality m. Let € [],Z/pZ be the direct product of all
prime cyclic groups. Let = (Fx C) =« F,,. Then

(a) F is quasi-free of rank m, and

(b) the FSEP

4) (F—->172/42 - 1)
has at most countably many independent proper solutions.
In particular, for m> Ng, F is quasi-free but not semi-free.

Proof. @) The rank off{yx C is m and the rank of,, is X < m. Hence the rank of is m. In particular,
every FSEP foF has at mosin proper solutions. Let

5) (¢: F>G,a: H—-G)

be a nontrivial FSEP. Let: G — H be its splitting. We need two auxiliary maps: Firstly, thesésts a
nontrivial homomorphism: C — Kera; namely, an epimorphism & onto a subgroup of Kerof prime
order. Secondly, sincg,, is free of infinite rank, there exists an epimorphigm F,, — ¢ 1(¢(F,)) such
thata o ¢/ is the restriction of, to F,,. In particulary’(F.,) contains Ket. Sincey is continuous, there is
aY c X such thatX \ Y is finite andp(Cy) = 1 for everyy € Y.

For everyy € Y define a homomorphism,: F — H in the following manner: Its restriction @8, = C
coincides withr; if y # X € Y, the restriction offy to Cy is trivial; if x € X \'Y, the restriction offy to Cy
is 8 o ¢; and, finally, the restriction afy to F.isy’. Thusa o Yy = ¢. Asyy(F) 2 v (F,) 2 Kera, the
mapyy is a proper solution of (5).

As yy, # Yy, for distinctyy,y, € Y, (B) has at leadY| = mdistinct proper solutions.
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(D) Let ¥ be an independent set of proper solutions[df (4). The mag/4Z — 1 decomposes as
a = By, wherey: Z/4Z — Z/2Z andB: Z/2Z — 1. If Y1,y € ¥ are independent, theno v,y o ¢y
are independent proper solutions 6f Z/2Z — 1,¢: F — 1) (Proposition 212(d)). In particulay,o ¢ #

v oo Thus{y o /| ¥ € ¥} has at least the cardinality 8f.

On the other hand;/4Z is a 2-group and the 2-Sylow subgroup®fs of order 2. Hence every € ¥
maps eaclC, = C into Kery, the unique subgroup &/4Z of order 2, and henceg o y is trivial on Cy.
Thereforey o y is trivial on F{x C. It follows thaty o  is determined by its restriction #%,,. But there are
No (continuous) homomorphisnl?s, — Z/4Z. Thus|¥| < No. O

Remark6.2 One can modify the construction in the proposition to getlasolute Galois group which is
quasi-free but not semi-free. E.g., Bt= H([1p:2Zp) *D * F., whereD is the free product of the constant
sheaf of copies df.,/2Z over some profinite space of weight One can show along the lines of the proof
of Propositior 6.1 thaf is quasi-free but not semi-free. MoreovEris real projective in the sense 6f [6,
p. 472] and hence isomorphic to an absolute Galois groupibit{éorem 10.4]. We leave out the details,
since the assertion is outside the scope of this work.

Remark6.3. In order to complete the picture we show that being semiiBetrictly weaker than being
free. In fact, if F is semi-free of infinite rankn andG is of rank< m, thenF = G is semi-free. This
leads to many examples of semi-free but not free profinitegspe.g., také& to be finite and recall that

a free group has no torsion. Furthermore, we can construsmn&fsee group of arbitrary cohomological
dimensiond, by takingF free andG of cohomologicad. If d > 1 then the group is not free, or even
projective, since its cohomological dimension is gredtantone. Another example is the absolute Galois
group given in Theoreim 7.1 below, which is semi-free but isprojective (and hence not free) because its
cohomological dimension is greater than one.

The conditiorm > 8y in the above proposition is essential:

Remark6.4. If rank(F) = Ny, thenF is semi-free if and only if it is quasi-free.
Indeed, assumE is quasi-free. Then every FSEP is solvable. By LemimaF3i5§ semi-free. The
opposite direction is immediate.

We now show that Cagelll of our Main Theoremdoes not carry tivguasi-free subgroups of quasi-
free groups.

Examples.5. Let X be a set of cardinalityn > Xo and letF = (K[ C) * F, be the group of Propositién.1.
Let M be the kernel of the map — F.,. ThenF is quasi-free of rankn, weight/M) < m, butM is not
quasi-free.

Indeed, by Propositidn 8.F, is quasi-free of rankn. We have

weight(F/M) = rank(F,) = No

sinceF/M = F,. Itis easy to see tha¥l is generated by the conjugatesfgf C in F. SinceFyC is
generated by copies @ andC = [],Z/pZ is generated by elements of prime order, ds¢s generated
by elements of prime order. HenZgg?Z is not an image oM. In particular,M is not quasi-free.

Remarl6.6. Itis interesting to ask which of the cases of the Main Thedrelas for quasi-free groups. As
we have seen, CaBellll does not hold.[In|[23] Gase | is proveddd is proved in[10] foM = [F, F].
Combining the methods of this paper together with [10], oae extend the result to ary such that
F/M is abelian but not a prg-group. The proof of Cade VIl (and hence &I 11X)) can be caroeer to
quasi-free groups. However, we do not know if the diamondti, i.e. Case VI, which is the central
result of this paper, holds for quasi-free groups. All ott@ses are open in the quasi-free case.

In order to use our method, i.e. using wreath products, fasgfree groups foM of infinite index in
F, one needs to come up with a new idea, as explained at the Settbn 1.

7. HELDS WITH SEMI-FREE ABSOLUTE GALOIS GROUPS

The main result in[[11] (Theorem 5.1 there) was that for anlg fle the absolute Galois group of
K :=k((x, 1)) is quasi-free. In fact more is true:
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Theorem 7.1. Let k be a field. Then the absolute Galois group of the field=K((x, t)) is semi-free of
rank cardKk.

The proof of this stronger result is essentially containethe proof of the original theorem in_[11].
We explain below what additional observations need to beentadomplete the argument, and how these
observations also yield stronger forms of other resultdi.[See alsd [12, Theorem 5.1] for more details.

First we recall the strategy used to provel[11, Theorem 5THe proof of that theorem relied on a
related geometric assertiof, [11, Proposition 5.3]. Thapgpsition asserted that given a split short exact

sequence 1> N -» T —f> G — 1 of finite groups with non-trivial kernel, arg-Galois connected normal
branched cover* — X* = Sped[[x,t]] can be dominated by B-Galois connected normal branched
coverZ* — X*. Moreover it said that this cover may be chosen suchZhat> Y* satisfied a splitting
condition (thaz* — Y* is totally split at the generic points of the ramificationdsofY* — X*), and that
the set of isomorphism classes of such covErs> X* has cardinality equal tm := cardk((x, t)).

The proof of [11, Proposition 5.3] relied an [11, Theorem]4vthich was a more global version of that
assertion. Namely, it considered a smooth connected ¢toxer a fieldk := k((t)), and then considered a
finite split embedding problem for the absolute Galois grofghe function fieldK of X (this fieldK being
a global analog of the more local fiekd considered in[[11, Proposition 5.3]). The conclusion waslar:
that anyG-Galois branched covéf — X of normal curves can be dominated bl-&alois branched cover
Z — X; that this cover can be chosen with a splitting property;thiadithere aren := cardK distinct such
choices of corresponding normal branched covers X. (The splitting property is that — Y is totally
split over a given finite sdd c Y of closed points, and the decomposition group& e% X at the points of
Z over§ € D are the conjugates ef(G;), whereG; is the decomposition group of — X até and where
o is a section off.)

Moreover, for the sake of [11, Proposition 5.3], more wasshm [11, Theorem 4.1], to enable passage
from a global solution to a more local solution. ébe a smooth projective model fot overk[[t]]; and
with Y, Z as above, leY, Z be the corresponding normal branched covers. R.be a closed point oK
whose residue field is separable okgiet X* be the spectrum of the complete local ring>oft P, and
suppose that the pullback” — X* of Y — X is connected. Then among the pullba@s— X* of
the above solutiong — X there arem distinct proper solutions of the corresponding local enclirgl
problem. This additional condition was applied in the cab¢he x-line overk in order to obtain[[11,
Proposition 5.3].

More specifically, the relationship between the local agsef11, Proposition 5.3] and the more global
assertion[[11, Theorem 4.1] is based on viewk((, t)) as the fraction field of the complete local ring of
X:= P&[[t]] at the pointx = t = 0. In order to apply([11, Theorem 4.1] to the proofiof][11, Rysition 5.3],

a change of variables can be made to reduce to the case in thieighime ) is unramified inY* — X*.
The reduction of this cover moduld) (s then induced from a branched cover of the projedtiiae, by
the Katz-Gabber theorem [17, Theorem 1.4.1]. A patchingment then shows that this coverm}fis in
turn the closed fiber of a cover @ﬁ[tll that restricts tor* — X*. This enables [11, Theorem 4.1] to be
cited; and by the extra conditions in the paragraph aboeeptbper solutions to the embedding problem
over the function field opﬁ[m] yield distinct proper solutions to the embedding probleraré{(x, t)).

Theorem 4.1 ofl[11] was a variant on results of Pog [20, Maiedrem A] and of Haran and Jarden
[7, Theorem 6.4], showing that finite split embedding praideover the function fields of curves over
complete discretely valued (or more generally large) fidldge proper regular solutions (and that some
additional conditions can also be satisfied, e.g. the exgéstef an unramified rational point). Like those
earlier results,[[11, Theorem 4.1] was proven using patchi@enerators were chosen for the kerNel
of the given finite split embedding problem; and cyclic cewaere constructed with groups generated by
each of those elements in turn. These were then patchedhevdetform a global solution; in doing so, a
compatibility condition (agreement on overlaps) had todttesfied by the cyclic covers on the “patches”.
Such a construction was carried outinl[11, Proposition 88} the construction there assumed that branch
points ofZ — Y that correspond to distinct generatorsZzohad the property that their closuresYnare
disjoint. In order to apply this to the proof af [11, Theorem i where the branch points all coalesce on
the closed fiber aP, in order to preserve the solutions ov€), it was necessary to blow up the closed
fiber to separate the branch points.

We can now describe the proof of Theoren 7.1:
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Proof. As discussed above, this theorem is a strong form af [11, fidmed.1], and to prove this result it
sufices to prove a corresponding strong form[ofl[11, ProposBi@}: that among the cove® — X*
whose existence is asserted in that proposition, therelibses having cardinalitsn, and which is linearly
disjoint as a set of covers &f. To prove this, we need to see that in the situatiori_of [11,ofée 4.1],
an additional property holds: that there amechoices ofZ — X that are linearly disjoint oveY, that
properly solve the given global embedding problem, and itdtice proper solutions ovet* that are
linearly disjoint overy* = Y xx X*.

To show this stronger version of [11, Theorem 4.1], the keptas that the branch points associated to
the generators dfl can be chosen im different (and even disjoint) ways. As shown in the original firoo
given any choices of these points ¥n(which correspond to curves ofithat are finite ovek[[ X]]), any
other choice of points that is congruent to the original ceanodulo a sfliciently high power of will also
work. (Indeed, this is how it was shown that there mraistinct solutions, both oveXx and overxX*.) What
needs to be shown here is that by varying the branch pointsawebtainm solutions that are linearly
disjoint overY. Since Galois branched covers with no common subcoverraarly disjoint, it stfices to
show that the set ah solutionsZ — X, such that the covei® — Y have pairwise disjoint branch loci, can
be chosen such that eagh— Y has no non-trivial étale subcovéf — .

In the above situation, iZ — Y has a non-trivial étale subcovéy — Y, then the Galois group
Gal(Z/W), which is a subgroup ofl = Gal(Z/Y), must contain all the inertia groups af— Y. But this
is ruled out by the explicit construction in the proof bf [IHroposition 3.5]. Namely, that result asserts
that the closed fibeZ — Y of Z — Y is anN-Galois mock cover; i.e., each irreducible componer# of
maps isomorphically ont¥, with the irreducible components being indexed by the sosEN inI". The
construction in the proof there shows that for each generadd N, there is a closed poir®@, € Z lying
in the ramification locus 0Z — Y, such thah generates the inertia group 8f— Y at Q, and also the
inertia groups at the generic points of the ramification congmts passing throudgh,. Since the elements
n together generatl, this shows that th&l-Galois coveiZ — Y has no non-trivial étale subcovers, as
desired.

Thus the above strong form of [11, Theorem 4.1] indeed hdit#sice so does the strong form bf [11,
Proposition 5.3]; and thus also Theorem 7.1 above, thegfiamnm of [11, Theorem 5.1]. O

Another key result of [11], viz. Corollary 4.4 there, asedrthat ifK is the function field of a smooth
projective curve over a very large fiekg then the absolute Galois group i¢fis quasi-free. This can also
be strengthened, as follows:

Theorem 7.2. If K is the function field of a smooth projective curve &ver a large field k, then the
absolute Galois group of K is semi-free.

This result has been independently proved by Jaiden [14].

Proof. By a recent result of Pop (sele [10, Proposition 3.3]), evargd field is very large. So the as-
sumption ork in [11, Corollary 4.4] can be (a priori) weakened from vemgkto large. Concerning the
strengthening of the conclusion, this can be done in a simidy to what was done above for Theoleni 7.1.
Namely, [11, Corollary 4.4] followed from [11, Theorem 4.8fhich was a variant of [11, Theorem 4.1] in
which the fieldk = k((t)) was replaced by a more general large fiEldAs in the case of Theorem T.1, to
prove[ 7.2 it stfices to show that the proper solutiafis— Xg in [11, Theorem 4.3] can be chosen so as to
be linearly disjoint oveiYy; and for this it stfices to show that they can be chosen so that &chk Yy
has no non-trivial étale subcovers.

Theorem 4.3 of [11] was proven usirig [11, Theorem 4.1], bynigk = F; obtaining a proper solution
for the function field of the induced curvé:= Xy Xg RoverR = K[[t]]; descending fronR to ak-algebra
A of finite type, corresponding tolavariety V; considering the descend&dGalois covelZy — Xa as a
family of I'-Galois covers 0Ky parametrized by/; and then specializing tepoints ofV (thereby obtaining
solutions overXp) using thatk is (very) large. To prove the desired strong form/[ofl[11, THeeo 4.3],
observe that in the context of the above use of [11, Theorémthe branch points (which can be varied
arbitrarily modulo some dficiently high power ot) can be chosen so as not to be constant; i.e. not of the
form P’ xk with P’ a point ofXo. As a result, the the varying branch locus of the family-aBalois covers
of Xo parametrized by is base-point free. So as in the proof of the strong form_of [Heorem 4.1],
the specialized covers can be chosen to have no non-tetaté subcovers; and hence they are linearly
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disjoint. This shows that[11, Theorem 4.3] can be strengbteas claimed to include the desired linear
disjointness assertion; and hence Thedrern 7.2, the stoonygdf [11, Corollary 4.4], also holds. O

8. HELDS WITH FREE ABSOLUTE GALOIS GROUPS

We present two families of fields having free absolute Gajo@ips. For each we use Theorem 3.6 to
reduce the proof of freeness to proving that the group is-$exaiand projective.

The semi-freeness follows from the Diamond Theorem (Maiaokem, Casg VI) together with the
semi-freeness of the absolute Galois group of the base fibidh was established in the previous section.
The projectivity is achieved by fferent means (here we just quote it).

8.1. Fields containing the maximal abelian extension ok((x, t)). We follow [10] to find fields with free
absolute Galois group. Let us start with a general fact aed give some concrete examples.

Corollary 8.1. Let K = k((x, 1)), where k is separably closed and let L be a separable exterdi&. If
L contains the maximal abelian extension of K, and its aliegialois groupGal(L) satisfies one of the
cases of the_Main Theorém as a subgrou@af(K), thenGal(L) is a free profinite group.

Proof. The group Gak) is semi-free of rankn by Theoreni_ Z11. Hence so is GaJ( Also, Gal() is
projective [10, Theorem 4.4] (see al§o [3]). Thus, ThedreBry®elds that Gal() is free. O

Example8.2 Let K = k((x,y)), wherek is separably closed. Ld&E be a Galois extension df not
containing the maximal abelian extensiA” of K. Let L be any subextension &K2®/K2, We claim
that Gal() is free of rank equal to the cardinality bf

To see this, first note that G&lJ is semi-free (Theoref 7.1). If = K2, then by [10, Theorem 4.6(b)]
it follows that Gal() is free. (Equivalently, this follows froin Main Theorém @&g together with Corol-
lary[8.1.)

Now consider the cade # K2, SinceK2 ¢ E andK? c L, it follows thatL ¢ E. FurthermoreE/K
andK2/K are Galois. Hence by the Galois correspondeMes Gal(L) satisfies Case VI of the Main
Theorem withF = Gal(K), M; = Gal(E), andM, = Gal(K?"). By Corollary(8.1, Gal() is free.

Gal(K®) —— Gal(K)
Ga|0-)
Gal(E) n Gal(k2) —— Gal(E)

8.2. Jarden’s example — extension of rootsThis example is adapted from [14]. Liebe a PAC field of
characteristigp > 0 andK = k(x). Let ¥ C k[X] € K be the set of all monic irreducible polynomials. For
eachf € ¥ choose a set of compatible roots

{fs

ptn}cKs
(Here compatible means tha‘ti?)” = fw forall n,n prime top.) Let
L=K(f7|feF andptn).

Note thatl /K is Galois if and only ifK contains all roots of unity. Thus in genetalK is not Galois. In
what follows we show that Gdlj is free of rank equal to the cardinality bf

Fact 8.3. Gal(L) is projective.

This fact follows from theorems of Efrat and Pop (see Thear&t4.9 and 11.6.4 in [14]).
Lemma 8.4. There exist Galois extensions, L, of K such that L L1L,, butLZ Lj,i=1,2.
Proof. Let Ly denote the extension &f generated by all roots of unity. Let

L, = Lo(x% ptn)andlL, = Lo(f% f e F\{x}andp 1 n).

ClearlyL,, L, are Galois extensions #f. It is obvious that. C L;L,. Choose an integen > 1 that is not
divisible by p. Since &+ 1) ¢ L, we get thalL ¢ Ly; and similarlyx ¢ L, implies thatL ¢ L. o

Theorem 8.5. Gal(L) is free of rank equal to the cardinality of L.
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Proof. By Theoreni 3.6 it sfiices to show that Gdlj is both projective and semi-free of rank equal to the
cardinality ofL. We already mentioned that Gh(is projective (Fadi 813).

Theoren_Z.R implies that G&| is semi-free of rankn := |K| = |L|. (Recall thatk is PAC, and in
particular large.) Taking absolute Galois groups of thedfi¢l;, L, in the above lemma establishes the
condition of Casé VI of the Main Theorem, thus G3l{s semi-free of rankn. O

In fact, even more is true. Namely, we have learned from Papttie proof of his theorem (referred
to above) applies more broadly. In particular, it appliesha case thak = F((t)) for some separably
closed fieldF (using that this field, like a PAC field, has projective absolute Galois group aradisfies
a universal local-global principle”). Following the sameanstruction as above, we again deduce that the
resulting fieldL has free absolute Galois group of rdhk Note that by Corollary 25.4.8 of [4], this also
implies that the absolute Galois groupFe((t))(x)®°is free forF separably closed.

Moreover, ifk’ is the field obtained frork by adjoining a set of compatibi" roots to all the non-zero
elements ok, then Pop’s argument also shows that= Lk’ has projective absolute Galois group in the
case thak is a local field such aBp((t)) or Q. (Here the adjunction of additional roots is to deal with the
fact that Galk) is no longer projective.) Since Lemihal8.4 then holds witleplaced by’ (and withL; in
the proof replaced by its compositum wikl), the above proof of Theorelm 8.5 then shows that IGaié
a free profinite group.

AcknowledgmentWe thank Moshe Jarden for the suggestion to consider[CasttHe Main Theorem.
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