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 Introduction. The theory of separably closed fields of a fixed characteristic and a
 fixed imperfectness degree is clearly recursively axiomatizable. Ershov [1] showed
 that it is complete, and therefore decidable. Later it became clear that this theory
 also has the prime extension property in a suitable language (cf. [4, Proposition 1]);
 hence it admits quantifier elimination. The purpose of this work is to give an explicit,
 primitive recursive procedure for such quantifier elimination in the case of a finite
 imperfectness degree.

 To be precise, the language A that we have in mind is the first order language of
 fields enriched with (m + 1)-place function symbols AT, where m = 0, 1,2,... and
 1< < pm. To interpret AT in a field M of characteristic p, consider the p-adic
 expansion]1 + 12P + * + jmpmrn1 Of] - 1, and for xl,... ,Xm e M let aj(x1,. .., xm)
 =X .. **Xi,". If x1,.. ., Xm are p-independent and y E M is p-dependent on them, then
 a1(x1, ... ,XM),... , (xi .. .., Xm) are linearly independent over MP and y is
 linearly dependent on them. In this case there are unique a,,... , ap,, E M such
 that y = Ej a~xj(x1 . ... 5 xm); define X7(x 1 5 ... 5 xm; y) = aj. Set X7(x1 i ... .xm;y) = 0
 otherwise.

 Denote by SCF(p, e) the theory of separably closed fields of characteristic p and
 finite imperfectness degree e, containing the above interpretation of the functions A1.
 We will prove:

 MAIN THEOREM. The theory SCF(p, e) allows primitive recursive quantifier
 elimination in A and is primitive recursively decidable.

 We intend to treat the case of infinite imperfectness degree in a subsequent paper;
 a unified treatment of both cases would involve many technical complications that
 can be avoided in the finite case.

 The quantifier elimination procedure can be roughly described as follows: Given a
 well-formed formula in A, we first transform it into a form such that the variable to
 be eliminated represents roots of a separable polynomial over the field. Then we use
 the fact that our fields are separably closed, so we can eliminate one quantifier.

 We do not attempt to find the "most effective" algorithm for the procedure in the
 Main Theorem; in fact, for the sake of clarity of the exposition we prefer to divide the
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 464 DAN HARAN

 algorithm into smaller steps, even though this makes the procedure sometimes

 unnecessarily longer.

 Acknowledgement. This note is based on research done in 1985/86 at Rutgers

 University, partly supported by the NSF. The author wishes to thank C. Wood and

 G. Cherlin for their interest and encouragement.

 ?1. Reduction of the problem. We fix a nonnegative integer e, write N = pe, and

 introduce the following notation. Let Lo denote the first order language of the
 theory of fields enriched with constants ti ... ., te, and let L be Lo enriched with N
 unary function symbols Al, ... , AN. Let al, a2,... , aN be an enumeration of the
 monomials t 1 . . . tie, where O < jl,...je < P say, OCj = ti. tie , where il + j2P
 + ... + Iepel is the p-adic expansion of j- 1.

 A field M of characteristic p and imperfectness degree e together with a p-basis is a

 structure in Lo and L in the following way. The constants t.1 . . ., te are interpreted as
 elements of the given p-basis (so that Ot, C2'... , aN correspond to a linear basis of M
 over MP), and A1 . ... , AN: M -* M are implicitly defined by a = (Al(a))PcL1 + +
 (XN(a))PaN, for every a E M.

 Let T denote the theory of separably closed fields of characteristic p and
 imperfectness degree e in L. (In particular, T includes the axioms defining the

 functions, ... ., AN in the above manner.)
 The following lemma serves as a "flow chart" for our algorithms. It lists various

 "subroutines" and shows how the main algorithm is composed from them.

 Let X=(Xi,...,Xm) and Y=(Y1,...,Y,,) be blocks (=finite sequences) of
 variables. In ?2 we will define when a quantifier-free formula *(X, Y) in Lo is pre-
 separable in Y and assign to such a formula an integer 1 ? -1, the level of /. With
 the aid of this notion (the precise definition is immaterial at this stage) we can give
 the layout for our procedure.

 (REDUCTION) LEMMA 1.1. Given a quantifier-free formula lakX, Y) in Lo, assume that
 we can do the following procedures in a primitive recursive way:

 (a) Find an integer 1 ? - 1 and a formula *'(X, Y) pre-separable in Y at level I such
 that

 (3 Y1, ,3Yn)l#(X5 Y)=T (3 Yl . 3 Yn)Q 0(X Y).

 (b) If l/I is pre-separable in Y at level 0 or - 1, find a quantifier-free formula

 M'(X, Y1, .5. ., Yn- 1) in Lo such that

 (3 Yn) 0 (X5 Y) -Tt (X, Yl 5..., 5 n-J-

 (c) If / is pre-separable in Y at level 1> 1, let Z be a block of variables of length m
 x N, and find a formula ifr'(Z, Y) in Lo pre-separable in Y at level I - 1 such that

 l/(sY) -T 0 (Al (XJ), .. * * N(XJ5 .. * * Al(Xm)5 .. * * 'N(XM)5 Y).

 Then we can find in a primitive recursive way a quantifier-free formula I'(X) in L such
 that
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 QUANTIFIER ELIMINATION 465

 PROOF. By (a) we may assume that / is pre-separable in Y, say at level 1. By
 induction, using (c), we may find for every 0 < k < I a formula fk(U, Y) pre-

 separable in Y at level k such that */(X, Y) T lk(u, Y), where U is a block of
 variables and u is a block (of the same length) of terms in L constructed from the

 variables X1, ... , X,,, and the function symbols in L. Therefore we may assume that
 I < 0; by (b) we may eliminate Y,

 Applying this argument, we may inductively find for every 0 < j < n a quantifier-

 free formula qp(Vj, Y1,..., 'Yj) in Lo such that

 (3 Y1 I. . ., 3 Yn) +(X5 Y) -T (3 Y1 .. , 3 Yj) fj(v, Y),

 where Vj is a block of variables, and vj is a block (of the same length) of terms in L

 constructed from the variables X1, ... , X,,, and the function symbols in L. If j = 0,
 this gives the desired formula. //

 Note that the formula Xj(V) = U is equivalent modulo T to

 0 V, 5 .. 5i N)(Vpl 06 + + VPNON = V A Vj =U)5

 and Xj(V) # U is equivalent to

 (3]V, ...VN)(V'i al + + VNaN = V A VTj U).

 Therefore, if /(X, Y) is a quantifier-free formula in L we can find a block Y'

 - (Y',..., Y') and a quantifier-free formula /'(X, Y. Y') in Lo such that

 (Y1, 5 ' YnM+X5 Y) -T(OY15 ... S5n 5Y .. 5 3 SYD)OX, Y. Y ).

 Thus if conditions (a)-(c) of the lemma are satisfied (as we show in ??2 and 3), we
 obtain:

 THEOREM 1.2. The theory T of separably closedfields of characteristic p and finite

 imperfectness degree e in L allows primitive recursive quantifier elimination and is
 primitive recursively decidable.

 The second assertion of Theorem 1.2 is an easy consequence of the following
 observation:

 REMARK 1.3. If t1, ... , te are p-independent elements in a field of characteristic p,

 then they are algebraically independent over Fp.
 The Main Theorem immediately follows from Theorem 1.2. To see this, consider

 the set of axioms S = T u SCF(p, e) in the language A u L. Interpreting the

 functions AT according to their definition in SCF(p, e), we can find for every formula
 qp in A a formula (P2 in the language of fields, equivalent to q(l modulo SCF(p, e), and
 hence also modulo S. By Theorem 1.2 we can find a quantifier-free formula (p3(X) in

 L equivalent to TP2 modulo T, and hence also modulo S. Now (p3(X) is equivalent
 modulo S to

 cp = [e (T1... Te 1) = 1] A (P' (X)5

 where qT'(X) is obtained from (p3(X) by replacing t1, ... , te by the variables T1, . .,Te
 and all terms of the form Xj(u) by X3(T, . ... , Te u), for 1 < j < pe. (Note that t , ... , te
 are p-independent elements in a field M if and only if M # Ael (t 5... . te, 1) = 1.) Thus
 cp = p modulo SCF(p, e).
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 466 DAN HARAN

 ?2. Elimination. Let R = Fp[tl,.. ,tJ] be the ring of polynomials and E=
 Fp(t1,. . ., te) the field of rational functions in t1,. . ., te over the prime field Fp. Since
 tl,. . ., te are assumed to be p-independent elements in a field of characteristic p, they
 are algebraically independent over Fp.

 Let X and Y be tuples of variables, Y = (Y1,..., Y), and let q be an integer. For
 h(X, Y) E E[X, Y] we shall abbreviate h(X, Y.,..., Ye) by h(X, Ye).

 Consider the formula

 (1) fi(X, Y) = O A ... A fr(X, Y Ag(XY) O A A g(X, Y) 7 O,

 where f1,... f, g1,. . ,g-E R[X, Y], and r, s > 1.
 DEFINITION 2.1. Let I be a nonnegative integer. Formula (1) is pre-separable in

 Y (at level 1) if there is a polynomial h(X, Y) E R[X, Y] separable in Y, such that
 f1(X, Y) = h(X, YPZ) and (ah/aYJ)(X, YPZ) = g1(X, Y).

 Furthermore, (1) is pre-separable in Y at level - 1 if Y, does not appear in
 fi' ..fr *

 A quantifier-free formula q)(X, Y) is pre-separable (at level 1) in Y if it is a

 disjunction of pre-separable formulas l,... q(k in Y of the form (1) at levels
 11 .. . , lk, respectively, and I = max(11, ... , lk).

 We call a quantifier-free formula separable in Y if it is pre-separable in Y at level
 <0.

 (ELIMINATION) LEMMA 2.2. Let i/i(X, Y) be a formula separable in Y and let

 qf'(X, Y1, ... 1 Yn_ 1) be a quantifier-free formula in Lo such that

 (2) (3Yn) / (X, Y) - # (X, Y1,...) Yn- )

 modulo the theory of algebraically closed fields containing E. Then (2) is true also
 modulo T.

 PROOF. Without loss of generality / is of the form (1). Let M be a separably closed

 field containing E and let x and (Y1, ...n - 1 ) be tuples of elements of M such that
 M = OtXSYoS... 5Yn- J.

 If Yn does not appear in ft,. . ., fr, then f1(xy1, . - 1) = 0, for i = 1,... , r and
 gj(x, Y1,. ,n- 15 Yn) # 0, for ] = 1,... , s. As M is infinite, there is yn e M such that
 gj(xy1... ,Yn -lY) #5 0, for j = 1,...,s. Thus M l= f(x,y).

 If (1) is pre-separable in Y at level 0 then by the definition of q' there is Yn in the
 algebraic closure M of M such that M l= *(x, y), where y = (y, ... .n - 1y n). But
 fi(x, y) = 0 and (Of1/aYn)(x, y) = g1(x, y) : 0, so Yn is separable over M, whence Yn
 eM.ThusM i/,(x,y). //

 It is well known that the theory of algebraically closed fields containing E allows a

 primitive recursive quantifier elimination in Lo [3, 8.3]; thus we can find for a given
 / the formula /' in Lemma 2.2 in a primitive recursive way. This gives condition (b)
 of Lemma 1.1.

 Our attempt to write quantifier-free formulas as separable formulas leads us first
 to condition (a) of Lemma 1.1:

 (STRATIFICATION) LEMMA 2.3. Let 9P(X, Y) be a quantifier-free formula in Lo. Then
 we can find an integer 1 ? - 1 and a formula p'(X, Y) pre-separable in Y at level I such
 that
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 QUANTIFIER ELIMINATION 467

 PROOF. By [2, Lemma 2.14], S can be effectively written as a disjunction of
 formulas describing basic sets, i.e., conjunctions of the form (1) with s = 1 such that

 the affine variety V defined over E by f1,.. ., f, is irreducible over E and g1 does not
 vanish on V. Considering each disjunct separately, we may assume that (p represents
 such a basic set.

 Let (x, Yi, , y.) be a generic point of V over E, and denote F = E(x). We may
 assume that Yi , yan are algebraically dependent over F (otherwise (p is pre-
 separable in Y at level - 1).

 It suffices to find a polynomial f(X, Y) e R[X, Y] that vanishes on V, but f(X, Y)
 - h(X, YP'), where h(X, Y) E R[X, Y] and (ah/aYk)(X, YP') does not vanish on V, for
 some 1 < k < n (so, in particular, h(X, Y) is separable in Yk). Indeed, (p is then

 equivalent modulo the theory of fields to (P, v P2, where (P, is

 f(X, Y) = O A f1(X, Y) = 0 A A f,(X, Y)0

 A Oh (X, YP') 0 A gl(X, Y) 0
 a Yk

 and 92 is

 y (X, YP)= 0 A fl(X, Y) = 0 A A fr(X, Y) = 0 Ag(X, Y) # 0.

 Thus, abbreviating (3 Y1,.. ., 3 Yn) by (3 Y),

 (3 Y) p(X, Y) -T (3 Y) (PI(X Y) v (3 Y) 92(X, Y) -T (3 Y)p 1(XM Y) v (3 Y) 92 M Y)9

 where (p' is the formula obtained from (p, by transposing Yk and Y,. Clearly (p' is pre-
 separable in Y at level 1, and 92 can be effectively written as a disjunction of formulas
 representing basic sets of dimension strictly smaller than dim V. Thus the lemma will
 follow by induction on the dimension on V.

 To find f as above, choose a minimal nonempty subset of {Y,. , -Y}
 algebraically dependent over F, say (to simplify the notation) {YI, Y ., Yd}. Find
 f e R[X, Y1,..., Yd] such that f(x,yl,. ,d) = 0 (e.g., let f(xyI,.. Fd- Yd)
 be an irreducible polynomial (not necessarily monic) of Yd over F(y1,., Yd - )).
 Without loss of generality f(x, Y) is irreducible in F[Y]-otherwise replace
 it by an appropriate factor. Let 1 < k < d; by Gauss' lemma (cf. [5, p. 128])
 f(x, Y) is irreducible within F(Y1,..., Yk_1, Yk+1,..., Yd)[Yk], and therefore
 f(XYI,...,yk1, YYyk+I1'..I,yd) is an irreducible polynomial of Yk over
 F(yl- - , Yk -1, Yk + 1, * - -, d)-

 Now find the largest power q of p such that f e R[X, Yf], and write f(X, Y)
 - h(X, Yq) with h E R [X, Y]. Then there is 1 ? k < d and a monomial P of h(X, Y)

 such that p j degy, P. Thus (ah/aYk)(X, Y) # 0. But (ah/aYk)(X, Yq) is of smaller degree
 in Yk than f(X, Y) = h(X, Yq), and hence (ah/aYk)(x, yq) # 0. //

 ?3. Substitution. We need some notation.
 Let V be a block of variables over the field E = Fp(t1,... .te) Then the basis

 CX, X2, .. ,CXN of R over RP (see ?1) is also a basis of the module R[VP] over the
 ring RP[VP] = (R[V])P. Let A1,...,AN: R[VP] -* R[V] be the maps defined by

 h = (AI(h))Pe + ..+ (AN(h))PaN, where h E R[VP].
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 468 DAN HARAN

 (It will be clear from the context which block of variables A1,.. ., AN are associated

 with.) If M # T and a,, a2,.. . e M then (Aj(h))(a) = Aj(h(a)); thus h(a) = 0 if and
 only if (Aj(h))(a) = Aj(h(a)) = 0, j = 1,-.. , N. In other words,

 (3) h(V) = 0-TAl(h(V)) = 0 A A AN(h(V)) = 0?T A Aj(h(V))= 0
 jeJ

 We consider the R-homomorphism p: R[X, Y] -+ R[ZP, Y], where X =(X,,...,

 Xm), Y = (Y1, . * *, V) Z = (ij I i = 1,... ,m, - =1,... , N), given by the substitutions
 Xi = *N= zipaj' i-= I..., ImI i.e. by

 N N

 p(h(X, Y)) = h ZPcj, Zpmjaj, Y1,. Yn. j=1 ~j=1

 Furthermore, let a: R[X, Y] -+ R[X, Y] and a: R[Z, Y] -+ R[Z, Y] denote the dif-
 ferentiation with respect to Yn, and 7t: R[X, Y] -+ R[X, YP] and 7t: R[Z, Y]
 R[Z, YP] the substitution of (YP,..., YnP) for (Y,,..., Yn).

 LEMMA 3.1. (a) The maps A1,.. ., An, a, p and 7i are additive; moreover, p and i are
 ring-homomorphisms.

 (b) p o a = a o p and p o 7f = 7f o p.

 (c) it o Aj = Aj o 7 on R[ZP, YP].
 (d) a o Aj o af = Aj o aT o a (either as maps from R[XP, Y] to R[X, Y] or as maps

 from R[ZP, Y] to R[Z, Y]).

 (e) If 1 ? 1 then A op o =it 7 o Aj o p o 7.
 (f) If 1 ? 1 then 7r-' ' 0 o Aj ? p ? 7i = Aj ? p ? 7 a o.
 PROOF. (a) is trivial; the equalities of (b), (c) and (d) are easily checked on

 monomials with coefficients in R, which suffices by (a).
 (e) Note that p o 7t(R[X, Y]) c R[ZP, YP]. Therefore by (c) and (b)

 71- 1O Aj ? p ? 7f = Aj o 71- 1 o p ? = Aj O p O 7;1 1 o r = Aj o p O 7r .

 (f) Note that 7t o a o p(R[X, Y]) c R[ZP, YP]. Thus

 7I- 11 O a O Aj O p O 7f = 7;1 1 (O o Aj o 7r) o p (by 3.1 (b))

 I -r 1O Aj o 7; o 0 o p (by 3. 1 (d))
 = Ai o ' -I 0 A a i ap (by 3.1(c))

 = AL o p0 o a10a (by 3. 1(b)) //

 Extend the map p to quantifier-free formulas: if (p is a quantifier-free formula in
 the blocks of variables X, Y, let p(y) be the formula in the blocks of variables Z, Y

 obtained from y by the substitution of EN .I1 ZPJocj for Xi, i 1,...,m, i.e., by
 replacing each atomic subformula h(X, Y) = 0 by p(h)(Z, Y) = 0.

 PROPOSITION 3.2. Let y(X, Y) be a formula pre-separable in Y at level 1.
 (a) If y(X, Y) is separable in Y then so is p(y)(Z, Y).

 (b) If 1 ? 1 then we can effectively find a formula /(Z, Y) pre-separable in Y at level
 < 1 such that p(p)(Z, Y) -T f(Z, Y). In particular,

 P(XROO XmWh Y) oT f (Xgenerali is oN(Xf th f (Xm). .N(Xm), Y)-

 PROOF. Without loss of generality 9 is of the form (1).
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 QUANTIFIER ELIMINATION 469

 (a) If Y, does not appear in fA,. . . ,f then it does not appear in p(f),. . . pP(fr) If
 a(f1) = g1 # 0 (i.e., s is pre-separable in Y at level 0) then a o p(f1) = p(gl) # 0, by
 Lemma 3.1(b). Thus p(y) is separable in Y in both cases.

 (b) By (3) we have p(o)(Z, Y) -T Vj J j(Z, Y), where /j(Z, Y) is

 Ai o p(f1) = O A p(f1) = 0 A A P(fr) = 0
 A Ai o p(g1)#AO A P(g1)# 0A A P(g) 0 ?

 and J = {1 ? j < NI A4 o p(g1) # O}. We claim that Hi is pre-separable in Y at level
 - 1 for every j E J.

 By assumption there is h E E[X, Y] separable in Y, such that

 f1(X, Y) = h(X, YP') and (ah/a1Y)(X, YP') = g1(X, Y).

 In our notation this can be written as

 (4) fi = 7t'(h) and 7t' o @(h) = gj.

 Denote H(Z, Y) = Ai o p o 7t(h). By Lemma 3.1(e) and (f),

 Ai o p(f1) = 7it'(Ai o p o 7t(h)) =7i'- (H)

 and

 71 ? a(H) = a -I 0 a o A4 o p o 7t(h) = 4,o p(gj).

 In particular @(H) # 0, since Ai o p(g1) # 0, i.e., H is separable in Y,. Thus A> is
 separable in Y at level 1 - 1.

 The last assertion of (b) immediately follows from the definitions of p and

 '21,-9N //

 Thus condition (d) of Lemma 1.1 has been verified, which completes the proof of
 Theorem 1.2.
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