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Introduction

The Inverse Galois Problem asks whether every finite group is realizable over Q.

Although this has been shown to be true for many finite groups, including the symmetric

and alternating groups (Hilbert), we are still very far from the solution of the problem.

One could ask, more generally, what is the structure of the absolute Galois group of Q.

Here we do not even have a plausible conjecture.

However, we do know the structure of the absolute Galois group of certain dis-

tinguished algebraic extensions of Q, or, more generally, of a countable Hilbertian

field K. We fix a separable closure Ks and an algebraic closure K̃ of K and let

Gal(K) = Gal(Ks/K) be the absolute Galois group of K. Our goal is to explore the

absolute Galois groups of large algebraic extensions of K having interesting diophantine

or arithmetical properties.

Our study is motivated by two earlier results. By the free generators theorem

Gal(Ks(σ)) is, for almost all σ ∈ Gal(K)e, the free profinite group F̂e on e generators

(Jarden [FrJ, Thm. 18.5.6]). On the other hand, if K is a global field and S1 is a finite

set of primes of K, then the absolute Galois group Gal(Ktot,S1) of the maximal S1-adic

extension of K is a free product of local groups (Pop [Pop4, Thm. 3]). In this work

we simultaneously generalize both results and prove that Gal(Ks(σ) ∩ Ktot,S1) is, for

almost all σ ∈ Gal(K)e, the free product of F̂e and a free product of local groups.

Here is a detailed account of our result.

The main theorem.

For each e-tuple σ = (σ1, . . . , σe) ∈ Gal(K)e we denote the fixed field in Ks

(resp. K̃) of σ1, . . . , σe by Ks(σ) (or K̃(σ) if char(K) = 0). We know that for almost

all σ ∈ Gal(K)e the field Ks(σ) is PAC [FrJ, Thm. 18.6.1] and Gal(Ks(σ)) ∼= F̂e

[FrJ, Thm. 18.5.6]. Here “almost all” is meant in the sense of the Haar measure of

Gal(K)e and we say that a field M is PAC if every absolutely irreducible variety V

defined over M has an M -rational point. The PAC property of the field Ks(σ) implies

that if w is a nontrivial valuation of Ks(σ), then the Henselian closure of Ks(σ) at w

is Ks [FrJ, Cor. 11.5.5].

To bring valuations into the game we consider a finite set S1 of absolute values
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of K. For each v ∈ S1 let K̂v be a completion of K at v. Then K̂v is C, R, a finite

extension of Qp, or a finite extension of Fp((t)) for some prime number p. The latter

case does not occur if char(K) = 0. The case where the completion is C is uninteresting

in each of the following results, so we assume K̂v 6= C for each v ∈ S1. Assume all of

the K̂v’s are contained in a common field. For each v ∈ S1 set Kv = K̃ ∩ K̂v. Then Kv

is a real closure of K at v or a Henselian closure of K at v.

First consider the field

M ′ = Ks(σ) ∩
⋂
v∈S1

Kρv
v

where (σ,ρ) ∈ Gal(K)e+|S1| are taken at random. Then

Gal(M ′) ∼= F̂e ∗
∏
∗

v∈S1

Gal(Kρv
v )

where
∏
∗ and ∗ denote free products in the sense explained after the Main Theorem.

(See [Gey, Thm. 4.1] for e = 0 and [Jar2, Thm. 21.3] in the general case.)

Next we assume that char(K) = 0 and that the absolute values in S1 are inde-

pendent and consider the maximal totally S1-adic extension of K:

Ktot,S1 =
⋂
v∈S1

⋂
ρ∈Gal(K)

Kρ
v .

Finally we “dig deeper” to reach the field Ktot,S1(σ) = K̃(σ)∩Ktot,S1 . Then for almost

all σ the field Ktot,S1(σ) is pseudo-S1-closed (Proposition 12.3). This means that

every absolutely irreducible variety V defined over Ktot,S1(σ) with a simple Kρ
v -rational

point for all v and ρ has a Ktot,S1(σ)-rational point. It follows that Gal(Ktot,S1(σ)) is

relatively projective with respect to the set {Gal(Kρ
v ) | v ∈ S1, ρ ∈ Gal(K)} [HJPb,

Proposition 4.1]. Thus, each finite embedding problem for Gal(Ktot,S1(σ)) which has

a local weak solution for each subgroup Gal(Kρ
v ) has a global weak solution. This is a

basic ingredient in the proof of the main result of this work:

Main Theorem: Let K be a countable Hilbertian field of characteristic 0, e ≥ 0 an

integer, and S1 a finite set of independent absolute values of K. Then for almost all
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σ ∈ Gal(K)e and for each v ∈ S1 there exists a closed subset Rv of Gal(K) such that

(1) Gal(Ktot,S1(σ)) = Gal(K̃(σ)) ∗
∏
∗

v∈S1

∏
∗

ρ∈Rv

Gal(Kρ
v ),

and Rv is a system of representatives of Gal(Ktot,S1(σ))\Gal(K), and {Kρ
v | ρ ∈ Rv} is

a closed system of representatives of the Gal(Ktot,S1(σ))-orbits of {Kρ
v | ρ ∈ Gal(K)}.

Here we use the notation H\G with G a profinite group and H a closed subgroup

for the space {Hg | g ∈ G} of all right cosets of G modulo H. The inner free product in

(1) is meant here in the sense of Haran-Melnikov ([Har], [Mel]): First, the intersection

of distinct factors is trivial, secondly, each continuous function

ϕ0:
⋃
v∈S1

⋃
ρ∈Rv

Gal(Kρ
v )→ B

into a profinite group B whose restriction to each of the groups Gal(Kρ
v ) is a homomor-

phism uniquely extends to a continuous homomorphism ϕ:
∏
∗ v∈S1

∏
∗ ρ∈Rv Gal(Kρ

v )→ B.

Sketch of proof.

The proof of the main theorem applies a blend of local and global properties of

the field M = Ktot,S1(σ) and its absolute Galois group. In addition to the local fields

Kv, v ∈ S1, we consider also K0 = K̃(σ) as a local field of M and write S0 = {0} and

S = S0 ·∪ S1. The common feature of the groups Gal(Kv), v ∈ S1, and Gal(K0) is that

they are all finitely generated. Beyond that they are of a different nature. Here are the

main properties of the fields Kv, v ∈ S1, that enter in the proof of the main theorem:

(2a) The groups Gal(Kv), v ∈ S1, can be recognized group theoretically (up to conjuga-

tion and inclusion) by “big quotients” in each free product of the form F̂ ∗
∏
∗ ni=1Gi,

where F̂ is a free finitely generated profinite group and each Gi is isomorphic to

Gal(Kv) for some v ∈ S1 (Data 7.1).

(2b) If Kv is algebraically closed in a field F and Gal(F ) ∼= Gal(Kv), then Kv is an

elementary subfield of F (a combination of results of Efrat-Koenigsmann-Pop and

Ax-Kochen-Ershov-Prestel-Roquette).

(2c) For each v ∈ S1 the space of Gal(M)-orbits of Gv = {Gal(Kρ
v ) | ρ ∈ Gal(K)} is

isomorphic to the Cantor middle third set, in particular it has no isolated points.
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The main properties of K0 used in the proof are the following:

(3a) Gal(K0) is a finitely generated free profinite group.

(3b) K0 is pseudo algebraically closed over each set H ∩A where H is a Hilbert subset

of Kr and A is a nonempty S1-adically open subset of Kr (Definition 9.3).

In addition to the relative projectivity of the group Gal(M) drawn from the PS1C

property of M , we also apply the following consequence of being PS1C:

(4) Each finite split embedding problem over M can be regularly solved over M(t),

where t is transcendental over M .

We keep track of the local groups of Gal(M) by considering the “group pile”

G = (Gal(M),Gal(M,v))v∈S , where Gal(M, 0) is the Gal(M)-orbit of Gal(K0) and

Gal(M,v) is the Gal(K)-orbit of Gal(Kv). Finite group piles, A = (A,Av)v∈S , are

modeled after finite quotients of G (Section 3). The key step in the proof of the main

theorem is proving that each “self-generated” “rigid” finite embedding problem

(5) (ϕ: G→ A, α: B→ A)

of group piles which splits group theoretically is solvable. Without loss A = Gal(N/M)

is a Galois group over M . Using (4) and (2b) we find a finite Galois extension P

of M(t) which solves the group theoretic problem attached to (5) and such that the

local structure of Gal(P/M(t)) associated with S1 is isomorphic to that of B. Using a

theorem of Efrat, we are able to choose B0 ∈ B0 such that α(B0) = ϕ(Gal(K0)) and B

is generated by B0 and all of the groups belonging to B1. Let P0 be the fixed field in P

of the subgroup of Gal(P/M(t)) corresponding to B0. Then, we may assume that B =

Gal(P/M(t)). An application of Hilbertianity, (2a), (3b), and the rigidity assumption

(Section 4) gives a homomorphism γ: Gal(M) → Gal(P/M(t)) which commutes with

restrictions such that γ(Gal(K0)) = Gal(P/P0) and γ(Gal(M,v)) = Bv for each v ∈ S1.

By assumption, the local groups generate Gal(P/M(t)), so γ is surjective (Proposition

11.1).

We note that the use of property (3) and the Hilbertianity of K follows [FHV]

which proves the main theorem in the special case where e = 0 and all of the Kv with

v ∈ S1 are real closed fields.

4



Now, for each v ∈ S1 we choose a homeomorphic image Tv of the Cantor middle

third set and construct a free product GT = F̂e∗
∏
v∈S1

∏
t∈Tv GT,t with GT,t ∼= Gal(Kv)

(Proposition 11.1). We prove that each finite self-generated embedding problem for

group piles associated with GT is solvable (Proposition 5.3(h)). The same holds for

Gal(M) (Proposition 11.1). It follows by an Iwasawa like argument (Proposition 6.3),

that Gal(M) ∼= Gal(GT ). Consequently, Gal(M) is a free product of its local groups.

Positive characteristic.

The proof of the main theorem we have just described does not work in positive

characteristic p. Here the completions of the local fields Kv are finite extensions of

Fp((t)), so the groups Gal(Kv) are not finitely generated. Another problem is that no

analog for the Ax-Kochen-Ershov theorem is known in characteristic p.

The special case of the main theorem where e = 0 was proved by the third author

in all characteristics in a unified way [Pop4]. The unified proof is indirect. In order to

prove that Gal(Ktot,S1) is a product of local groups one chooses a Galois extension N of

K in Ktot,S1 which is PS1C and properly contained in Ktot,S1 . For example∗ one may

choose N to be the maximal Galois extension Ktot,S1 [σ] of K in Ktot,S1(σ), where σ is

an element of Gal(K)e chosen at random. Let N ′ be a finite proper extension of N in

Ktot,S1 . Then N ′ is Hilbertian (by a theorem of Weissauer) and PS1C [GeJ, Thm. A].

Under these assumptions [Pop4] proves that Gal(N ′) is isomorphic to the free product

of F̂ω and a free product of local groups. Moreover, it proves that the closed normal

subgroup generated by the second factor is the group Gal(Ktot,S1) and is isomorphic to

the first factor.

The fields Ktot,S1 [σ].

Another question left open in this work is the structure of the Galois group of the

field Ktot,S1 [σ], where σ is taken at random in Gal(K)e. We wish to prove that the

structure of that group is given by an analog of (1) in which Gal(K̃(σ)) is replaced by

Gal(Ks[σ]). See Remark 12.5 for more details.

* Our argument at this point differs somewhat from the one given in [Pop4].
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1. Automorphisms of Finitely Generated Profinite Groups

Let Γ be a finitely generated profinite group and A a finite quotient of Γ. We construct

a big quotient B of Γ in a uniform way such that each automorphism of A which lifts

to an automorphism of B lifts to an automorphism of Γ.

To that end we consider a positive integer n and observe that Γ has only finitely

many distinct open subgroups of index≤ n [FrJ, Lemma 16.10.2]. Their intersection Γ(n)

is an open characteristic subgroup of Γ and Γ(n) = Γ/Γ(n) is a finite group. Furthermore,

Γ = Γ(1) ≥ Γ(2) ≥ Γ(3) ≥ . . . and
⋂∞
n=1 Γ(n) = 1.

Lemma 1.1: Let Γ be a finitely generated profinite group and n a positive integer.

Consider an open normal subgroup N of Γ with N ≤ Γ(n). Then:

(a) (Γ/N)(n) = Γ(n)/N .

(b) Let N ′ be another open normal subgroup of Γ such that Γ/N ∼= Γ/N ′. Then

N ′ ≤ Γ(n).

(c) Assume that Γ is a closed subgroup of a profinite group G and let K be an open

normal subgroup of G such that Γ ∩K ≤ Γ(n). Then (ΓK/K)(n) = Γ(n)K/K.

Proof of (a): Let Cn(Γ, N) be the set of all open subgroups M of Γ with N ≤ M and

(Γ : M) ≤ n. The map M 7→ M/N is a bijection of Cn(Γ, N) onto Cn(Γ/N, 1) that

commutes with intersections. By definition, Γ(n) (resp. (Γ/N)(n)) is the intersection of

all the groups in Cn(Γ, 1) (resp. Cn(Γ/N, 1)). By assumption, Cn(Γ, 1) = Cn(Γ,Γ(n)) =

Cn(Γ, N). Therefore, Γ(n)/N = (Γ/N)(n).

Proof of (b): By definition, Cn(Γ, N ′) ⊆ Cn(Γ,Γ(n)). By the proof of (a) and by

assumption, |Cn(Γ, N ′)| = |Cn(Γ/N ′, 1)| = |Cn(Γ/N, 1)| = |Cn(Γ, N)| = |Cn(Γ,Γ(n))|.

Hence, Cn(Γ, N ′) = Cn(Γ,Γ(n)), so N ′ ⊆
⋂
M∈Cn(Γ,N ′)M =

⋂
M∈Cn(Γ,Γ(n))

M = Γ(n).

Proof of (c): By (a), with N = Γ∩K = Γ(n)∩K, we have (Γ/Γ∩K)(n) = Γ(n)/(Γ∩K).

The isomorphism Γ/Γ ∩K → ΓK/K maps the left hand side onto (ΓK/K)(n) and the

right hand side onto Γ(n)K/K. Hence (ΓK/K)(n) = Γ(n)K/K.

Lemma 1.2: Let Γ be a finitely generated profinite group. Then for every m ∈ N there

is an n ≥ m such that every automorphism of Γ(m) which lifts to an automorphism of

Γ(n) lifts to an automorphism of Γ.
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Proof: For each n ≥ m there are natural maps Aut(Γ) → Aut(Γ(n)) → Aut(Γ(m)) of

finite groups. Let Bn be the image of Aut(Γ(n)) in Aut(Γ(m)). Then Aut(Γ(m)) = Bm ≥

Bm+1 ≥ Bm+2 ≥ · · · and
⋂∞
k=mBk is the image of Aut(Γ). Indeed, since

⋂∞
k=1 Γ(k) = 1,

we have Γ = lim←−Γ(k). If α ∈
⋂∞
k=mBk, then for each k ≥ m the inverse image of α in

Aut(Γ(k)) is a nonempty finite set. The inverse limit of these images is nonempty [FrJ,

Cor. 1.1.4]. Each sequence in the inverse limit gives rise to a lifting of α to an element

of Aut(Γ). Since Bm is finite, there is an n ≥ m such that Bn = Bn+1 = Bn+2 = · · ·,

hence Bn is the image of Aut(Γ).

We will use the following reformulation of Lemma 1.2:

Lemma 1.3: Let Γ and ∆ be finitely generated isomorphic profinite groups. Then for

each m ∈ N there is an n ≥ m with the following property: Let N ≤ K be open normal

subgroups of Γ and M ≤ L open normal subgroups of ∆ such that

(a) N ≤ Γ(n) or M ≤ ∆(n); and

(b) Γ(m) ≤ K or ∆(m) ≤ L.

Then every isomorphism Γ/K → ∆/L that can be lifted to an isomorphism Γ/N →

∆/M lifts to an isomorphism Γ→ ∆.

Proof: Each isomorphism Γ ∼= ∆ maps Γ(m) and Γ(n), respectively, onto ∆(m) and

∆(n). Thus, we may assume that ∆ = Γ. For m ∈ N we choose n ≥ m as in Lemma

1.2. Let K,L,M,N be groups satisfying (a) and (b) as in the Lemma. We may assume

that there is an isomorphism Γ/K ∼= Γ/L and an isomorphism α: Γ/N → Γ/M which

maps K/N onto L/M . Hence, (Γ/N : K/N) = (Γ/M : L/M).

Under these assumptions we may strengthen (a) and (b) to

(a’) N ≤ Γ(n) and M ≤ Γ(n); and

(b’) Γ(m) ≤ K and Γ(m) ≤ L.

Indeed, the isomorphism Γ/N ∼= Γ/M and Lemma 1.1(b) imply that N ≤ Γ(n) if

and only if M ≤ Γ(n). This proves (a’). In particular, N ≤ Γ(m) and M ≤ Γ(m).

The existence of α implies that (Γ/N)(m) ≤ K/N if and only if (Γ/M)(m) ≤ L/M .

By Lemma 1.1(a), Γ(m)/N ≤ K/N if and only if Γ(m)/M ≤ L/M , that is, Γ(m) ≤ K if

and only if Γ(m) ≤ L. This proves (b’).
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Now let θ: Γ/N → Γ/M be an isomorphism which induces an isomorphism

θ′: Γ/K → Γ/L. Thus we have the following commutative diagram

Γ // Γ/N

θ

��

η // Γ/Γ(n)
//

θ(n)

��

Γ/Γ(m)
//

θ(m)

��

Γ/K

θ′

��
Γ // Γ/M //η′ // Γ/Γ(n)

// Γ/Γ(m)
// Γ/L

in which the horizontal maps are the quotient maps (and θ(n) and θ(m) are constructed

below).

By Lemma 1.1(a), Ker(η) = Γ(n)/N = (Γ/N)(n); similarly Ker(η′) = (Γ/M)(n).

Therefore θ induces an automorphism θ(n) of Γ(n) = Γ/Γ(n) making the above diagram

commutative. The automorphism θ(m) of Γ(m) = Γ/Γ(m) is constructed similarly.

By Lemma 1.2, θ(m), hence also θ′, lifts to an automorphism of Γ.

2. Topologies

Let G be a profinite group. The set Subgr(G) of all closed subsets of G has two natural

topologies. A basis for the first topology consists of all subsets U(G1, N) = {H ∈

Subgr(G) | HN = G1N}, where G1 ∈ Subgr(G) and N is an open normal subgroup of

G. This topology is referred to in [HJPa] and [HJPb] as the strict topology. If G is

finite, the strict topology of Subgr(G) coincides with its discrete topology. In the general

case, Subgr(G) = lim←−Subgr(G/N), where N ranges over all open normal subgroups of

G. Thus, Subgr(G) is a profinite space under the strict topology. In particular, a subset

of Subgr(G) is strictly closed if and only if it is strictly compact.

In addition to the strict topology, Subgr(G) admits a weaker topology, called the

étale topology, which is in general not Hausdorff. A basis for the étale topology

consists of all the subsets Subgr(M) with M open in G. Thus, each étale open (closed)

subset of Subgr(G) is strictly open (closed), and each strictly closed subset of Subgr(G)

is strictly compact, hence étale compact.

We mainly use the strict topology, so we usually drop the reference to it.
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Lemma 2.1: Let G be a profinite group and G a closed subset of Subgr(G). Suppose

there are no inclusions between distinct groups in G. Then the étale topology of G

coincides with its strict topology.

Proof: Since the strict topology of Subgr(G) is finer than its étale topology, it suffices

to prove for each G1 ∈ G that each basic strictly open neighborhood N1 of G1 in G

contains an étale open neighborhood of G1. In fact, N1 = {H ∈ G | HN = G1N} for

some an open normal subgroup N of G. Let M be the set of all open subgroups M of

G with G1 ≤M ≤ G1N . It suffices to find M ∈M such that Subgr(M) ⊆ N1.

Assume that such M does not exists. Then, for each M ∈M

HM = {H ∈ G | H ≤M, HN 6= G1N} 6= ∅.

The set HM is the intersection of G with two strictly closed subsets

{H ∈ Subgr(G) | H ≤M} and {H ∈ Subgr(G) | HN 6= G1N}

of Subgr(G), so HM is strictly closed in G. For all M1, . . . ,Mn ∈M we have,

HM1∩···∩Mn
⊆ HM1 ∩ · · · ∩ HMn

and M1 ∩ · · · ∩Mn ∈ M. Hence HM1 ∩ · · · ∩ HMn 6= ∅. Since G is strictly closed, G

is strictly compact. Therefore, there exists H ∈
⋂
M∈MHM . In particular, H ∈ G,

HN 6= G1N , and H ≤ G1. By assumption, H = G1. This leads to the contradiction

G1N 6= G1N .

For a profinite group G and closed subgroup H1,H2 we consider the space of the

double cosets H1\G/H2 with its quotient topology.

Lemma 2.2: Let G be a profinite group, g ∈ G, and H1,H2 closed subgroups of G.

Then H1gH2 is an isolated point in the quotient space H1\G/H2 if and only if Hg
1H2

is open in G.

Proof: By the definition of the quotient topology, the point H1gH2 ∈ H1\G/H2 is

isolated if and only if its preimage H1gH2 in G is open. Since multiplication from the

left by g−1 is a homeomorphism of G, this is equivalent to Hg
1H2 being open in G.
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3. Group Piles

One of the main objects in [HJPa] and [HJPb] is a group structure. A group structure

is defined to be data (X,G,Gx)x∈S consisting of a profinite space X, a profinite group

G, and a closed subgroup Gx of G for each x ∈ X, satisfying certain conditions. Among

others, G acts continuously on X from the right such that Gxσ = Gσx for all σ ∈ G

and x ∈ X and the stabilizer of each x is contained in Gx. In this work we omit X,

retain the profinite group G and the collection G = {Gx | x ∈ X}, relax the conditions

imposed on the group structure, and call the structure obtained in this way a “group

pile”.

The group G acts continuously on Subgr(G) by conjugation from the right. A

G-domain of Subgr(G) is a subset of Subgr(G) closed under that action. In particular,

each conjugacy domain {Gg0 | g ∈ G} with a closed subgroup G0 of G is a closed G-

domain which we call a G-class.

We fix a finite set S containing 0 but not containing 1 and set S0 = {0} and

S1 = Sr{0}.

A group pile is a structure G = (G,Gv)v∈S consisting of a profinite group G, a

G-class G0 and a closed G-domain Gv of Subgr(G) for each v ∈ S1. We set G =
⋃
v∈S Gv,

G1 =
⋃
v∈S1

Gv, and assume that each H ∈ G is finitely generated.

We call G finite if G is finite. We say that G is self-generated if there exists

G0 ∈ G0 such that G = 〈G0,G1〉 = 〈G0, G1 | G1 ∈ G1〉. We call G separated if the Gv’s

are disjoint. Thus G =
⋃
· v∈S Gv is a partition into open-closed sets. An epimorphism

ϕ: G→ A = (A,A0,A1) of group piles is an epimorphism of profinite groups ϕ: G→ A

such that ϕ(Gv) = Av for each v ∈ S. It is an isomorphism, if ϕ: G → A is an

isomorphism of groups; equivalently, ϕ: G → A has an inverse. Each epimorphism

ϕ: G → A is determined, up to an isomorphism, by Ker(ϕ). If G is self-generated, so

is A. If A is separated, so is G.

We say that G is deficient if G0 consists of the trivial subgroup of G. In this

case we omit G0 from G and rewrite it also as (G,Gv)v∈S1 . Note that if ϕ: G → A is

an epimorphism of group piles and G is deficient, then so is A. Likewise, in this case,

each of the assumptions about G0 done in the forthcoming definitions and all statements
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about G0 hold trivially. We will mention that in the sequel only occasionally.

Let A = (A,Av)v∈S be a finite group pile and ϕ: G → A an epimorphism.

A decomposition of ϕ is a pair of epimorphisms ϕ̂: G → Â and ϕ̄: Â → A, where

Â = (Â, Âv)v∈S is a finite group pile and ϕ̄◦ϕ̂ = ϕ. The kernel of the decomposition

Ker(ϕ̂) is an open normal subgroup of G contained in Ker(ϕ). Conversely, for each open

normal subgroup K of G contained in Ker(ϕ) there is a decomposition of ϕ with kernel

K, unique up to an isomorphism. Namely, let Â = G/K and let ϕ̂: G → Â be the

quotient map G → G/K. Put Âv = ϕ̂(Gv) and Â = (Â, Âv)v∈S . Then the induced

epimorphism of groups ϕ̄: Â → A maps Âv onto Av for each v ∈ V , so it is an

epimorphism ϕ̄: Â→ A of group piles.

Lemma 3.1: Let G = (G,Gv)v∈S be a separated group pile. Suppose that for each

v ∈ S there is a finitely generated group Γv with Gv ∼= Γv for every Gv ∈ Gv.

(a) Let n ∈ N. Then there exists an open normal subgroup K of G such that, in the

notation of Section 1, H ∩K ≤ H(n) for every H ∈ G.

(b) There is an open normal subgroup K of G such that if ϕ: G→ A is an epimorphism

of group piles with Ker(ϕ) ≤ K, then A is separated.

Proof of (a): Consider H ∈ G and let v be the unique index with H ∈ Gv. Then

H ∼= Γv, so H is finitely generated. In addition, Gv is open in G. Therefore, there

is an open normal subgroup K of G such that H ∩ K ≤ H(n) and if H ′ ∈ G satisfies

H ′K = HK, then H ′ ∈ Gv, hence H ′ ∼= Γv ∼= H. The equality HK = H ′K implies

H/H ∩K ∼= H ′/H ′ ∩K. The isomorphism H ∼= H ′ implies (H : H(n)) = (H ′ : H ′
(n)).

Hence (
H ′ : H ′ ∩K

)
=

(
H : H ∩K

)
≥

(
H : H(n)

)
=

(
H ′ : H ′

(n)

)
.

By Lemma 1.1(b), H ′ ∩K ≤ H ′
(n).

Finally, since G is compact, we may choose K to be independent of H.

Proof of (b): By compactness each of the sets Gv is the finite union of sets of the form

{H ∈ Subgr(G) | HKk = Mk}, where Kk are open normal subgroups of G and Mk are

open subgroups of G. The intersection K of all of the Kk’s has the required property.

11



Indeed, let ϕ: G → A be an epimorphism with Ker(ϕ) ≤ K, let v, v′ ∈ S be

distinct, and let Gv ∈ Gv and Gv′ ∈ Gv′ . There is a k such that Gv′Kk = Mk. Since

Gv /∈ Gv′ , we have GvKk 6= Mk, so GvKk 6= Gv′Kk. Since Ker(ϕ) ≤ K ≤ Kk, this

implies GvKer(ϕ) 6= Gv′Ker(ϕ), so ϕ(Gv) 6= ϕ(Gv′). Thus, in the notation introduced

prior to the lemma, Âv is disjoint from Âv′ , which means that A is separated.

Lemma 3.2: Let G = (G,Gv)v∈S be a group pile. Suppose there are no inclusions

between distinct groups in G1 =
⋃
v∈S1

Gv. Let ϕ: G → A be an epimorphism onto a

finite group pile A. Then there is an open normal subgroup N of G with the following

property: Let (ϕ̂, ϕ̄) be a decomposition of ϕ with Ker(ϕ̂) ≤ N . If G1, G2 ∈ G1 and

ϕ̂(G1) ≤ ϕ̂(G2), then ϕ(G1) = ϕ(G2).

Proof: Let A1, A2 ∈ A1 = ϕ(G1) such that A1 6= A2. Consider the compact subsets

G(1) = {G1 ∈ G1 | ϕ(G1) = A1} and G(2) = {G2 ∈ G1 | ϕ(G2) = A2} of G1. Let

G1 ∈ G(1), G2 ∈ G(2). Then G1 6= G2, so G1 6≤ G2. Therefore there is an open normal

subgroup N = N(G1, G2) of G such that G1N 6≤ G2N . If G′1 ∈ G(i) satisfies G′1N =

G1N and G′2 ∈ G(i) satisfies G′2N = G2N , then G′1N 6≤ G′2N . By the compactness of

G(1) × G(2), there is an open normal subgroup N of G, such that G1N 6≤ G2N for all

G1 ∈ G(1), G2 ∈ G(2). This remains true if we replace N by any open normal subgroup

K of G contained in N . Thus, since A is finite, we may assume that N is good for all

A1 6= A2 in A. Consequently, if ϕ̂: G → Â is an epimorphism with Ker(ϕ̂) ≤ N , and

G1, G2 ∈ G1 satisfy ϕ(G1) 6= ϕ(G2), then ϕ̂(G1) 6≤ ϕ̂(G2).

4. Embedding Problems for Group Piles

We show how to dominate locally solvable embedding problems for groups piles with

rigid finite embedding problems having extra properties.

First we introduce an appropriate vocabulary. Let G = (G,Gv)v∈S and A =

(A,Av)v∈S be group piles. An epimorphism ϕ: G→ A is rigid if ϕ: G→ A is injective

on each G′ ∈ G.

An embedding problem for G is a pair of epimorphisms of group piles

(1) (ϕ: G→ A, α: B→ A)

12



which we eventually abbreviate as (ϕ, α). We say that (1) is rigid, if α is rigid, that is,

α: B → A is injective on each B′ ∈ B. We say that (1) is finite, if B is finite. We say

that (1) splits group theoretically if there exists a group homomorphism α′: A→ B

satisfying α◦α′ = idA. We say that (1) is self-generated, if G,A,B are self-generated.

Groups B′ ∈ B and G′ ∈ G are compatible for the embedding problem (1)

if there exists an epimorphism γ′: G′ → B′ such that α ◦ γ′ = ϕ|G′ ; in particular,

ϕ(G′) = α(B′). Note that if B′ and G′ are compatible and B′′ is conjugate to B′, then

there is a conjugate G′′ of G′ which is compatible with B′′. Indeed, if B′′ = (B′)b,

choose g ∈ G such that ϕ(g) = α(b). Then (G′)g is compatible with B′. Similarly, if

G′′ is conjugate to G′, then G′′ is compatible with some conjugate of B′.

We say that (1) is locally solvable if the following holds for each v ∈ S:

(2a) for every Bv ∈ Bv there exists a compatible Gv ∈ Gv,

(2b) for every Gv ∈ Gv there exists a compatible Bv ∈ Bv.

Note that it suffices to demand (2a) only for every Bv in a system of representa-

tives of the B-classes of Bv. Similarly it suffices to demand (2b) only for a system of

representatives of the G-classes of Gv.

If both G and B in (1) are deficient, then for (1) to be locally solvable it suffices

that (2) holds only for v ∈ S1.

A rigid embedding problem is always locally solvable. A solution of (1) is an

epimorphism γ: G→ B such that α ◦ γ = ϕ.

Let (1) be an embedding problem. Another embedding problem

(3) (ϕ̂: G→ Â, α̂: B̂→ Â)

is said to dominate (1) if there exists a commutative diagram

(4) G

ϕ̂

��
ϕ

��

B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A
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of epimorphisms of group piles. If γ̂: G→ B̂ is a solution of (3), then β ◦ γ̂ is a solution

of (1).

If B̂ is a subgroup of the fiber product B ×A Â [FrJ, Sec. 22.2], β and α̂ are the

restrictions of the projections on the corresponding components, and both B and G

are deficient, then so is Â. In this case, β(B̂0) = 1 and α̂(B̂0) = 1, so B̂0 = 1 for

each B̂0 ∈ B̂0. Therefore, B̂ is deficient. We will often use this observation without

mentioning it.

The following result replaces G in a locally solvable embedding problem (1) by a

finite group pile.

Lemma 4.1: Let (1) be a finite locally solvable embedding problem. Then there exists

an open normal subgroup N of G with the following property. Let G
ϕ̂−→ Â

ϕ̄−→ A

be a decomposition of ϕ with Ker(ϕ̂) ≤ N . Then (ϕ̄: Â → A, α: B → A) is a finite

locally solvable embedding problem.

Proof: Let v ∈ S and consider the family {(Bi, Gi) ∈ B × G | i ∈ Iv} of all compatible

pairs for (1) with Bi ∈ Bv and Gi ∈ Gv. For each i ∈ Iv choose an epimorphism

γi: Gi → Bi with α ◦ γi = ϕ|Gi . Then Ker(γi) is an open subgroup of Gi. Choose

an open normal subgroup Ni of G satisfying Ni ≤ Ker(ϕ) and Gi ∩ Ni ≤ Ker(γi).

Then G(i) = {G′ ∈ Gv | G′Ni = GiNi} is an open-closed neighborhood of Gi in Gv
and γi extends to an epimorphism δi: GiNi → Bi with kernel Ker(γi)Ni such that

α ◦ δi = ϕ|GiNi .

Since (1) is locally solvable, Bv = {Bi ∈ B | i ∈ Iv} and Gv = {Gi ∈ G | i ∈ Iv},

so Gv =
⋃
i∈Iv G

(i). Since Gv is compact, there is a finite subset Jv of Iv such that

Gv =
⋃
i∈Jv G

(i). Add more elements to Jv, if necessary, to get Bv = {Bi ∈ B | i ∈ Jv}

and put Nv =
⋂
i∈Jv Ni. Let N =

⋂
v∈S Nv. Then N is an open normal subgroup of G.

Now let v ∈ S and consider a decomposition G
ϕ̂−→ Â

ϕ̄−→ A of ϕ with Ker(ϕ̂) ≤

N . Let Â′ ∈ Âv. There are i ∈ Jv and G′ ∈ G(i) ⊆ Gv such that Â′ = ϕ̂(G′).

Let ϕ̂′: G′ → Â′ and δ′i: G
′ → B be the restrictions of ϕ̂ and δi from G and GiNi,

respectively, to G′. Since G′Ni = GiNi and Ker(ϕ̂) ≤ Ni ≤ Ker(δi), we have δ′i(G
′) =

δi(Gi) = Bi ∈ Bv and δ′i induces an epimorphism δ̄′: Â′ → Bi such that δ̄′ ◦ ϕ̂′ = δ′i.
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Hence, α ◦ δ̄′ ◦ ϕ̂′ = α ◦ δ′i = ϕ|G′ = ϕ̄ ◦ ϕ̂′. Since ϕ̂′: G′ → Â′ is an epimorphism,

α ◦ δ̄′ = ϕ̄|Â′ . Thus, (Bi, Â′) is a compatible pair.

Conversely, let B′ ∈ Bv. Then B′ = Bi for some i ∈ Jv. Set Âi = ϕ̂(Gi). Then

Âi ∈ Âv and (Bi, Âi) is a compatible pair.

The following construction will be used several times to produce dominating em-

bedding problems.

Lemma-Construction 4.2: Let (1) be a finite embedding problem and

G
ϕ̂−→ Â

ϕ̄−→ A

a decomposition of ϕ. Let Iv, v ∈ S, be disjoint sets such that I0 = {0}. For each

i ∈ Iv let (Bi, Âi) ∈ Bv × Âv be a compatible pair for the embedding problem (ϕ̄: Â→

A, α: B→ A) such that

(5) {Bbi | i ∈ Iv, b ∈ B} = Bv and {Ââi | i ∈ Iv, â ∈ Â} = Âv.

Set B̂ = B ×A Â with the coordinate projections α̂: B̂ → Â and β: B̂ → B. For

each i ∈ Iv let γi: Âi → Bi be an epimorphism such that α ◦ γi = ϕ̄|Âi . It defines a

homomorphism γ̂i: Âi → B̂ such that

(6) β ◦ γ̂i = γi and α̂ ◦ γ̂i = idÂi .

Let B̂i = γ̂i(Âi), B̂v = {B̂b̂i | i ∈ Iv, b̂ ∈ B̂}, and B̂ = (B̂, B̂v)v∈S . Then:

(a) B̂ is a group pile and (3) is a finite rigid embedding problem that dominates (1).

(b) Suppose {Âi | i ∈ Iv} is a set of representatives of the Â-classes of Âv. Let i ∈ Iv
and B̂′ ∈ B̂v. If α̂(B̂′) is conjugate in Â to Âi, then β(B̂′) is conjugate in B to Bi.

(c) If B and Â are deficient, then so is B̂.

Proof of (a): For each i ∈ Iv we have, β(B̂i) = β ◦ γ̂i(Âi) = γi(Âi) = Bi and

α̂(B̂i) = α ◦ γ̂i(Âi) = Âi (by (6)). Hence, by (5), β(B̂v) = Bv and α̂(B̂v) = Âv. Thus,

β: B̂ → B and α̂: B̂ → Â are epimorphisms. Let i ∈ I. Since α̂ ◦ γ̂i = idÂi , the

restriction of α̂ to B̂i is an isomorphism onto Âi. By conjugation, α̂ is injective on each
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group in B̂v. Since the latter consequence holds for each v ∈ S, the map α̂ is injective

on each group in B̂.

Proof of (b): There exist j ∈ Iv and b̂ ∈ B̂ such that B̂′ = B̂b̂j . Thus, α̂(B̂′) = Â
α̂(b̂)
j is

conjugate to Âj . On the other hand, by assumption, α̂(B̂′) is conjugate to Âi. Hence,

j = i, so β(B̂′) = B
β(b̂)
j is conjugate to Bj = Bi.

Recall that G is said to be G1-projective if for every finite embedding problem

(ϕ: G→ A, α: B → A) satisfying

(7) for each Γ ∈ G1 there exists a homomorphism γΓ: Γ→ B with α ◦ γΓ = ϕ|Γ,

there exists a homomorphism γ: G→ B such that α ◦ γ = ϕ [HJPb, Sec. 3].

The following result is a variant of [HJPb, Lemma 3.1].

Lemma 4.3: Let (1) be a finite locally solvable embedding problem. Then there exists

an open normal subgroup N of G with the following property: Let K be an open normal

subgroup of G contained in N . Then (1) can be dominated by a finite rigid embedding

problem (3) in which B̂ = B ×A Â and Ker(ϕ̂) = K. If G is G1-projective, then (3)

splits group theoretically.

Proof: Let N be an open normal subgroup of G as in Lemma 4.1. Consider an open

normal subgroup K of G contained in N . Decompose ϕ: G → A into (ϕ̂: G →

Â, ϕ̄: Â→ A) such that Ker(ϕ̂) = K. By Lemma 4.1, (ϕ̄, α) is a finite locally solvable

embedding problem. Then for each v ∈ S we may choose a set {(Bi, Âi) | i ∈ Iv} ⊆

Bv × Âv of compatible pairs such that I0 = {0}, the Iv are disjoint, and (5) holds.

Lemma-Construction 4.2(a) gives Diagram (4) with B̂ = B ×A Â such that (3) is rigid.

If G is G1-projective, there exists a homomorphism γ: G → B with α ◦ γ = ϕ.

We may assume N ≤ Ker(γ), so that Ker(ϕ̂) = K ≤ N ≤ Ker(γ). Then γ induces a

homomorphism γ̄: Â→ B with γ = γ̄ ◦ ϕ̂. Hence, α ◦ γ̄ ◦ ϕ̂ = α ◦ γ = ϕ = ϕ̄ ◦ ϕ̂. Since

ϕ̂ is surjective, α ◦ γ̄ = ϕ̄. The universal property of the cartesian square in (4) gives a

homomorphism γ̂: Â → B̂ such that β ◦ γ̂ = γ̄ and α̂ ◦ γ̂ = idÂ. Thus, α̂ splits group

theoretically.

Notation 4.4: Let G = (G,Gv)v∈S be a group pile. For each v ∈ S and each Gv ∈ Gv let

Ḡv be the conjugacy class of Gv in G. Let Ḡv = {Ḡv | Gv ∈ Gv} be the corresponding
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topological quotient space. We may identify Ḡv with a set of representatives of the

conjugacy classes in Gv.

Lemma 4.5: Let (1) be a finite locally solvable embedding problem for G = (G,Gv)v∈S .

Suppose Ḡv has no isolated points for each v ∈ S1. Then (1) can be dominated by a

finite rigid embedding problem (4) with B̂ = B×A Â such that the following statement

holds for each v ∈ S1:

(∗) For every Bv ∈ Bv there exists Âv ∈ Âv with α(Bv) = ϕ̄(Âv) such that if B̂′ ∈ B̂v
and α̂(B̂′) is conjugate to Âv, then β(B̂′) is conjugate to Bv.

Proof: By Lemma 4.1 there is a decomposition G
ϕ̂−→ Â

ϕ̄−→ A of ϕ where Â =

(Â, Âv)v∈S is finite and (ϕ̄, α) is a locally solvable embedding problem.

Let v ∈ S1 and let n be the number of conjugacy classes in Bv. For each B′ ∈ Bv
there is an Â′ ∈ Âv compatible with B′. The set {G′ ∈ Gv | ϕ̂(G′) = Â′} is non-

empty and open-closed in Gv. By assumption it contains infinitely many non-conjugate

subgroups of G. Therefore there is a decomposition G
ϕ∗1−→ A∗ ϕ∗2−→ Â of ϕ̂: G → Â

with A∗ = (A∗,A∗v)v∈S finite such that there are at least n non-conjugate groups in

A∗v mapped by ϕ∗2 onto Â′. Each of them is compatible with B′, with respect to the

embedding problem (ϕ̄ ◦ ϕ∗2, α). Hence, replacing ϕ̂: G → Â by ϕ∗1: G → Â∗ and

ϕ̄: Â→ A by ϕ̄ ◦ ϕ∗2: A∗ → A, we may assume that there are at least n non-conjugate

groups in Â compatible with B′. In fact, since B1 is finite, we may assume that the

latter statement holds for all B′ ∈ Bv and all v ∈ S1.

This allows us to choose for each v ∈ S1 a family of compatible pairs {(Bi, Âi) | i ∈

Iv} ⊆ Bv × Âv such that the set {Bi | i ∈ Iv} meets all of the B-classes of Bv and

{Âi | i ∈ Iv} is a system of representatives of the conjugacy classes of Âv. Indeed, for

v ∈ S1 let {Bi | i ∈ Jv} be a system of representatives of the B-classes of Bv. By the

preceding paragraph, |Jv| ≤ n, so we may choose for each i ∈ Jv a compatible Âi ∈ Â

such that the Âi’s, i ∈ Jv, are non-conjugate. Complete {Âi | i ∈ Jv} to a system

{Âi | i ∈ Iv} of representatives of the Â-classes of Âv and choose for each Âi ∈ Âv with

i ∈ Iv r Jv a compatible Bi ∈ Bv. Finally we may change the sets Iv, if necessary, to

assume that they are disjoint and do not contain 0.
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Lemma-Construction Lemma 4.2 gives the required dominating embedding prob-

lem (4). Indeed, we choose a compatible pair (B0, Â0) ∈ B0×Â0 and set B̂ = (B̂, B̂v)v∈S
and {B̂i | i ∈ Iv} for each v ∈ S as in Lemma 4.2. Then (1) is dominated by a finite

rigid embedding problem (4).

Now consider v ∈ S. For each Bv ∈ Bv there exist i ∈ Iv and b ∈ B with Bv = Bbi .

Since the pair (Bi, Âi) is compatible, α(Bi) = ϕ̄(Âi). By (6), α̂(B̂i) = α̂(γ̂i(Âi)) = Âi.

Choose â ∈ Â with α(b) = ϕ̄(â) and set Âv = Ââi . Then α(Bv) = ϕ̄(Âv). If for some

B̂′ ∈ B̂v the group α̂(B̂′) is conjugate to Âv, then α̂(B̂′) is conjugate to Âi. Therefore,

by Lemma 4.2(b), β(B̂′) is conjugate to Bi, hence to Bv, as is required by (*).

Remark 4.6: In Lemma 4.5 let (4) satisfy statement (∗). Let

(7) (ϕ∗: G→ A∗, α∗: B∗ → A∗)

be another finite locally solvable embedding problem which dominates (3) such that

B∗ = B̂×ÂA∗. Then (7) dominates (1) and satisfies statement (∗) of Lemma 4.5. This

allows us to replace (3) by an embedding problem with additional properties.

5. Free Products

We follow Melnikov-Haran and define a free product of profinite groups indexed by a

profinite space. A special free product will be shown to have all necessary properties

entering in the definition of a Cantor group pile in the next section.

The basic notion underlying the free product of profinite groups is that of a sheaf

of profinite groups [Mel, (1.13)]. It is a triple (X, τ, T ) of profinite spaces X,T with

a surjective continuous map τ : X → T such that XT,t = τ−1(t) is a profinite group for

each t ∈ T and the map (x, y) 7→ x−1y from {(x, y) ∈ X ×X | τ(x) = τ(y)} into X is

continuous.

The simplest sheaves of profinite groups are the constant sheaves [Mel, (1.13)]:

Let Γ be a profinite group and let T be a profinite space. Consider the triple (Γ ×

T,pr, T ), where pr: Γ × T → T is the projection on the second coordinate. For each

t ∈ T the fiber pr−1(t) = Γ× {t} is a profinite group isomorphic to Γ by (γ, t) 7→ γ.
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DATA 5.1: We retain the finite set S from Section 3 and its partition S = S0 ·∪S1 with

S0 = {0} and 1 /∈ S. For each v ∈ S let Γv be a finitely generated profinite group and

Tv a profinite space such that T0 = {0}. Suppose Γ0 is profinite free, Γv is nontrivial

for each v ∈ S1, and the Tv’s, v ∈ S, are disjoint. Thus, T1 =
⋃
· v∈S1

Tv is a profinite

space and T = T0 ·∪ T1 =
⋃
· v∈S Tv are partitions of T into open-closed subsets.

We combine the constant sheaves (Γv × Tv,pr, Tv) to a semi-constant sheaf:

Set XT =
⋃
· v∈S(Γv × Tv) and let pr: XT → T be the unique map which extends the

projection maps pr: Γv×Tv → Tv. Then XT = (XT ,pr, T ) is a sheaf of profinite groups

with XT,t = Γv × {t} for v ∈ S and t ∈ Tv.

Let GT =
∏
∗ T XT be the free product of XT [Mel, (1.14)]. Thus, GT is a profinite

group together with a continuous map ω: XT → GT with the following properties:

(1a) The restriction of ω to each fiber XT,t is an injective homomorphism XT,t → GT

[Mel, (1.15)].

(1b) Given a profinite group B and a continuous map β: XT → B, whose restriction to

each fiber XT,t is a homomorphism, there is a unique homomorphism γ: GT → B

such that γ ◦ ω = β.

For each t ∈ T put GT,t = ω(XT,t). Then GT,t ∼= Γv for each t ∈ Tv and each

v ∈ S. By [Mel, (1.16), (1.17)], GT =
∏
∗ t∈T GT,t is the (inner) free product of the groups

GT,t, t ∈ T . This means that the map ω̄: T → Subgr(GT ) defined by ω̄(t) = GT,t is

étale continuous and every continuous map from
⋃
t∈T GT,t into a profinite group H,

whose restriction to each GT,t is a homomorphism GT,t → H, admits a unique extension

to a homomorphism GT → H. By [Mel, (4.9)],

(2) GT,t and GT,t′ are non-conjugate if t, t′ ∈ T are distinct.

The partition T =
⋃
· v∈S Tv into open-closed sets yields a free decomposition

GT =
∏
∗ v∈S

∏
∗ t∈T GT,t [Mel, (1.7)]. Since T0 = {0}, we get

(3) GT = GT,0 ∗
∏
∗

v∈S1

∏
∗

t∈Tv

GT,t.

For each v ∈ S let G′T,v = {GT,t | t ∈ Tv}, GT,v = {GgT,t | t ∈ Tv, g ∈ GT },

GT,1 =
⋃
v∈S1

GT,v, and GT =
⋃
v∈S GT,v.
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The following result of Efrat is an analog of a lemma of Gaschütz [FrJ, Lemma

17.7.2]. We will have two opportunities to use this result.

Lemma 5.2 ([Efr, Main Theorem]): Let α: B → A be an epimorphism of finite groups,

A1, . . . , An subgroups of A, and B1, . . . , Bn subgroups of B. Suppose A = 〈A1, . . . , An〉,

B = 〈B1, . . . , Bn〉, and α(Bi) is a conjugate of Ai for i = 1, . . . , n. Then there exist

b1, . . . , bn ∈ B such that B = 〈Bb11 , . . . , B
bn
n 〉 and α(Bbii ) = Ai for i = 1, . . . , n.

Proposition 5.3: The structure GT = (GT ,GT,v)v∈S is a group pile. It satisfies:

(a) The map ω̄: T → Subgr(GT ) given by t 7→ GT,t is strictly continuous (and not only

étale continuous).

(b) The map T ×GT → Subgr(GT ) given by (t, g) 7→ GgT,t is strictly continuous.

(c) GT = 〈GT,0,G′T,v | v ∈ S1〉; in particular GT is self-generated.

(d) Suppose T = lim←−
j∈J

T (j) and T (j) =
⋃
· v∈S T

(j)
v , where each T

(j)
v is open-closed in

T (j), T
(j)
0 = {0}, and the maps T → T (j) map Tv into T

(j)
v for all v ∈ S and j ∈ J .

Then GT = lim←−
j∈J

GT (j) . Moreover, for each j ∈ J , if t ∈ T and t(j) is its image in

T (j), then the induced map GT,t → GT (j),t(j) is an isomorphism.

(e) If T has a countable basis for its topology, then GT is countably generated.

(f) GT =
⋃
· v∈S GT,v, is a partition into open-closed subsets of GT ; moreover, for every

v ∈ S and H ∈ GT,v we have H ∼= Γv.

(g) For each v ∈ S1, the set G′T,v is a closed system of representatives of the GT -classes

of GT,v and the space ḠT,v of the GT -classes of the groups in GT,v is homeomorphic

to Tv.

(h) If T1 has no isolated points, then every finite self-generated locally solvable embed-

ding problem for GT is solvable.

(i) GT is GT,1-projective.

Proof: First we note that for each v ∈ S the subset GT,v of Subgr(GT ) is closed.

Indeed, by (b) proven below, (t, g) 7→ GgT,t is a continuous map of profinite spaces

Tv ×GT → Subgr(GT ). As such it is a closed map, hence its image GT,v is closed.
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Proof of (a): Let t ∈ T , say, t ∈ Tv ⊆ T with v ∈ S, and let N be an open normal

subgroup of GT . The composed map ωN : XT → GT /N of ω: XT → GT with the

quotient map GT → GT /N is continuous. Since GT /N is discrete, for each (γ, t) ∈

XT,t = Γv ×{t} there are open-closed neighborhoods U of γ in Γv and V of t in Tv ⊆ T

such that ωN (U × V ) = {ωN (γ, t)}. By the compactness of Xt we may assume that

V does not depend on γ. Then, for all t′ ∈ V , we have ωN (XT,t′) = ωN (XT,t). By

definition, ω̄(t) = ω(XT,t). Hence, ω̄(t′)N = ω̄(t)N . Consequently, w̄: T → Subgr(GT )

is continuous.

Proof of (b): This follows from (a).

Proof of (c): See [Mel, Lemma 1.15].

Proof of (d): The sheaf XT = (XT ,pr, T ) is the inverse limit of the sheaves XT (j) =

(XT (j) ,pr, T (j)), where the maps XT → XT (j) are induced from the maps Γv × Tv →

Γv × T (j)
v ; therefore they map the fibers of XT → T isomorphically onto the fibers of

XT (j) → T (j). We have GT (j) =
∏
∗ T (j) XT (j) . Then GT = lim←−

i

GT (j) [Mel, (2.4)].

As for the last assertion, we have t ∈ Tv for some v ∈ S. Then t(j) ∈ T (j)
v . Both

XT,t and XT (j),t(j) are isomorphic copies of Γv (by (1a)) and the map GT,t → GT (j),t(j)

is induced by the identity map of Γv. Hence it is an isomorphism.

Proof of (e): If T is finite, then by (c), GT is generated by finitely many finitely

generated profinite groups, so it is finitely generated.

In the general case we may write T as the inverse limit of a sequence of finite

sets T (j) as in (d). By (d) and the preceding paragraph, GT is the inverse limit of a

sequence of finitely generated profinite groups, hence is countably generated.

Proof of (f): Since a continuous map of profinite spaces is closed, by (b), the sets G

and GT,v are closed in Subgr(GT ). By [Mel, (1.17)], GT is the free product of the groups

{GT,t}t∈T . Hence, by (2), the sets GT,v are disjoint. Therefore, the sets GT,v are open

in GT as well.

Let t ∈ Tv and g ∈ GT . Then XT,t
∼= Γv. By (1a), GT,t ∼= XT,t. Hence

GgT,t
∼= GT,t ∼= XT,t

∼= Γv.
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Proof of (g): The map ω̄ defined in (a) maps the profinite space Tv continuously

onto the closed subset G′T,v of GT,v. By (2), ω̄ is injective, so it is a homeomorphism.

Moreover, by (2), G′T,v meets exactly once each conjugacy class in GT,v. Hence, G′T,v is a

closed set of representatives of the conjugacy classes of GT,v. Since G′T,v is homeomorphic

to ḠT,v, it is also homomorphic to Tv.

Proof of (h): Let

(4) (ϕ: GT → A, α: B→ A),

be a finite self-generated locally solvable embedding problem with A = (A,Av)v∈S and

B = (B,Bv)v∈S . We break the proof that (4) is solvable into several parts.

Part A: Making (4) rigid. By (c), GT = 〈GT,0,GT,v〉v∈S1 . Hence, A = 〈A0,Av〉v∈S1 ,

where A0 = ϕ(GT,0). Since B is self-generated, there exists B∗
0 ∈ B0 such that B =

〈B∗
0 ,Bv〉v∈S1 . Next note that α(B∗

0) belongs to A0, so α(B∗
0) is conjugate in A to A0.

Also, α(Bv) = Av for each v ∈ S1. Hence, by Lemma 5.2, there exists B0 ∈ B0 such that

B = 〈B0,Bv〉v∈S1 and α(B0) = A0. Since (4) is locally solvable, there exist a g ∈ GT and

an epimorphism ε0: G
g
T,0 → B0 such that α ◦ ε0 = ϕ|GgT,0 . In particular, rank(GT,0) =

rank(GgT,0) ≥ rank(B0). Since GT,0 ∼= Γ0 and Γ0 is free, we may apply Gaschütz’

lemma [FrJ, 17.7.2], to find an epimorphism δ0: GT,0 → B0 such that α ◦ δ0 = ϕ|GT,0 .

By Lemma 4.1, there is a decomposition GT
ϕ̂−→ Â

ϕ̄−→ A such that Ker(ϕ̂) ≤ Ker(δ0)

and (ϕ̄: Â → A, α: B → A) is a finite locally solvable embedding problem. In

particular, with Â0 = ϕ̂(GT,0), the map δ0 defines an epimorphism γ0: Â0 → B0 such

that α ◦ γ0 = ϕ̄|Â0
. Thus, (B0, Â0) is a compatible pair.

For each v ∈ S1 we choose a finite set Iv and compatible pairs (Bi, Âi) ∈ Bv× Âv,

i ∈ Iv, such that Condition (5) of Lemma 4.2 is satisfied, the Iv’s are disjoint, and

I0 = {0}. By that lemma, there is a commutative diagram

(5) G

ϕ̂

��
ϕ

��

B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A
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of group piles such that B̂ is finite, α̂ is a rigid epimorphism, and β is an epimorphism.

Unfortunately, B̂ need not be self-generated. Nevertheless, by Lemma 4.2, there

exists a homomorphism γ̂0: Â0 → B̂ such that β ◦ γ̂0 = γ0 and α̂ ◦ γ̂0 = idÂ0
. Let

B′
0 = γ̂0(Â0), B′ = 〈B′

0, B̂v〉v∈S1 , B′0 = {(B′
0)
b′ | b′ ∈ B′}, B′v = B̂v for each v ∈ S1,

B′ = (B′,B′v)v∈S , β′ = β|B′ , and α′ = α̂|B′ . Then B′ is a self-generated finite group

pile. Moreover, since B = 〈B0,Bv〉v∈S1 , and β′(B′
0) = β′(γ̂0(Â0)) = γ0(Â0) = B0, the

morphism β′: B′ → B is an epimorphism. Similarly, α′: B′ → Â is an epimorphism.

Moreover, α′ is rigid, because α̂ is rigid. In particular,

(6) (ϕ̂: GT → Â, α′: B′ → Â)

is locally solvable. Every solution of (6) yields a solution of (4). Consequently, we may

assume without loss that (4) is rigid.

Part B: Selection of subgroups. For each v ∈ S1 consider again the closed subset G′T,v
of GT,v and the subset A′v = ϕ(G′T,v) of Av. Since GT,v = (G′T,v)G, we have Av = (A′v)A.

Moreover, with A0 = ϕ(G0) we get, by (c), that A = 〈A0,A′v | v ∈ S1〉. Next we choose

B0 ∈ B0 and subsets B′v ⊆ Bv, v ∈ S1, such that

(7) B = 〈B0,B′v | v ∈ S1〉 and B′v meets every B-class in Bv for each v ∈ S1

(e.g. B′v = Bv). Then α(B′v) ⊆ α(Bv) = Av = (A′v)A. Therefore, we may find disjoint

finite sets Jv, v ∈ S1, not containing 0 and for each v ∈ S1 label the elements of A′v as

Av,j and the elements of B′v as Bv,j , j ∈ Jv, where the Aj ’s need not be distinct, the

Bj ’s need not be distinct, but α(Bv,j) is a conjugate of Av,j in A, j ∈ Jv. In addition,

we put J0 = {0}, B0,0 = B0, A0,0 = A0, and note that α(B0,0) is conjugate to A0,0. By

(7) and by Lemma 5.2, we may replace the Bj,v’s by appropriate conjugate subgroups

in B such that after the replacement

(7’) B = 〈B0,0,B′v | v ∈ S1〉, B0,0 ∈ B0, B′v meets every conjugacy class in Bv, and

α(Bv,j) = Av,j for all j ∈ Jv and v ∈ S.

Part C: Partition of T . By (a), for each v ∈ S1, the map t 7→ ϕ(GT,t) from Tv to Av
is continuous. Hence, each of the subsets Tv,j = {t ∈ Tv | ϕ(GT,t) = Av,j} of Tv is open-

closed. Moreover, Tv,j 6= ∅, because ϕ: GT → A is surjective. However, Tv,j = Tv,j′ for
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distinct j, j′ ∈ Jv if Av,j = Av,j′ . Nevertheless, since Tv has no isolated points, we may

partition each Tv,j such that they become disjoint and get a partition Tv =
⋃
· j∈Jv Tv,j

into open-closed subsets such that ϕ(GT,t) = Av,j for each t ∈ Tv,j and each j ∈ Jv. In

addition, we set T0,0 = T0 = {0}. Then ϕ(GT,t) = Av,j for t ∈ Tv,j , j ∈ Jv, and v ∈ S.

Let α′v,j be the inverse of the isomorphism α: Bv,j → Av,j .

Part D: Solution of (4). For each v ∈ S and j ∈ Jv let Xv,j = pr−1(Tv,j). Then,

XT =
⋃
· v∈S

⋃
· j∈Jv Xv,j is a partition of X into open-closed subsets. If x ∈ Xv,j , then

t = pr(x) ∈ Tv,j , ω(x) ∈ GT,t, and ϕ(ω(x)) ∈ Av,j , so that α′v,j(ϕ(ω(x))) is well defined.

We may therefore define a map β: XT → B by β|Xv,j = α′v,j ◦ ϕ ◦ ω|Xv,j . It satisfies

(8) α ◦ β|Xv,j = α ◦ α′v,j ◦ ϕ ◦ ω|Xv,j = ϕ ◦ ω|Xv,j

for v ∈ S and j ∈ Jv. By (1b), β defines a homomorphism γ: GT → B such that

γ◦ω = β. By (8), (α◦γ)◦ω = α◦β = ϕ◦ω. Therefore, by the uniqueness property (1b),

α ◦ γ = ϕ. Further, for each t ∈ Tv,j we have XT,t ⊆ Xv,j , so γ(GT,t) = γ(ω(XT,t)) =

β(XT,t) = α′v,j ◦ ϕ ◦ ω(XT,t) = α′v,j ◦ ϕ(GT,t) = α′v,j(Av,j) = Bv,j . It follows from (7’)

that γ(G) = B. In addition, γ(GT,0) = B0 and γ(GT,v) = γ((G′T,v)G) = (B′v)B = Bv for

each v ∈ S1. Consequently, γ: G → B is an epimorphism solving embedding problem

(4).

Proof of (i): Let α: B → A be an epimorphism of finite groups and ϕ: GT → A be

an epimorphism. Suppose for each H ∈ GT,1 there exists a homomorphism γH : H → B

such that α ◦ γH = ϕ|H . We have to produce a homomorphism γ: GT → B such that

α ◦ γ = ϕ.

To that end we write T as the inverse limit of finite spaces lim←−
j∈J

T (j). By (d),

ϕ factors through GT (j) for some j ∈ J . Moreover, the map GT → GT (j) is injective

on each H ∈ GT . By assumption, GT,0 is isomorphic to the free finitely generated

profinite group Γ0. Hence, GT (j),0 is a free finitely generated profinite group and each

H(j) ∈ GT (j),1 satisfies the condition of local solvability. We may therefore assume that T

is finite and GT = GT,0∗
∏
∗ t∈T1

GT,t is the free product of finitely many profinite groups,

with GT,0 free. By [FrJ, Cor. 22.4.5], GT,0 is projective, so there exists γ0: GT,0 → B

24



such that α ◦ γ0 = ϕ|GT,0 . By assumption, for each t ∈ T1 there is a group Bt ∈ B

and an epimorphism γt: GT,t → Bt such that α ◦ γt = ϕ|GT,t . These maps extend to a

homomorphism γ: GT → B such that α ◦ γ = ϕ, as claimed.

6. Iwasawa criterion for Group Piles

Iwasawa has characterized the free profinite group F̂ω of countable rank as a profinite

group of countable rank for which every finite embedding problem is solvable. Using

the language of piles and the same method of proof, we characterize the free product

of groups of finitely many isomorphism types over Cantor sets by essentially the same

condition, namely solvability of finite embedding problems, more precisely by Condition

(1) below.

Let (S, S0, S1,Γv, Tv)v∈S be a data as in Data 5.1.

Definition 6.1: Let G = (G,Gv)v∈S be a group pile. We say that G is a Cantor group

pile over (Γv)v∈S if it satisfies the following conditions:

(1a) rank(G) ≤ ℵ0.

(1b) For each v ∈ S1, the space Ḡv of the G-classes of Gv has no isolated points.

(1c) G =
⋃
· v∈S Gv, where, for each v ∈ S, Gv is an open-closed subset of G and H ∼= Γv

for every H ∈ Gv.

(1d) G is self-generated and every finite locally solvable self-generated embedding prob-

lem for G is solvable.

The name “Cantor group pile” is justified by Conditions (1a) and (1b). By [HaJ1,

Lemma 1.2], they are equivalent to the spaces Ḡv, v ∈ S1, being homeomorphic to the

Cantor middle third set, which we refer to as the Cantor space. Thus, the following

result is a special case of Proposition 5.3.

Corollary 6.2: For each v ∈ S1 let Tv be a homeomorphic copy of the Cantor space.

Then GT = (GT ,GT,v)v∈S is a Cantor group pile over (Γv)v∈S .

Having constructed a Cantor group pile over (Γv)v∈S we now prove its uniqueness.

The proof is modeled after the proof of [FrJ, Lemma 24.4.7].
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Proposition 6.3: Let G = (G,Gv)v∈S and G′ = (G′,G′v)v∈S be Cantor group piles

over (Γv)v∈S . Then G ∼= G′.

Proof: Choose descending sequences G = K1 ≥ K2 ≥ · · · and G′ = K ′
1 ≥ K ′

2 ≥ · · · of

open normal subgroups of G and G′, respectively, with
⋂∞
n=1Kn = 1 and

⋂∞
n=1K

′
n = 1.

Inductively define descending sequences L1 ≥ L2 ≥ · · · and L′1 ≥ L′2 ≥ · · · of open

normal subgroups of G and G′, respectively, and isomorphisms θn: G/Ln → G′/L′n, for

n = 1, 2, . . . satisfying the following conditions, for every n ≥ 1:

(3a) Ln ≤ Kn.

(3b) L′n ≤ K ′
n.

(3c) If n ≥ 2, then the following diagram, in which the horizontal arrows are the

quotient maps (and hence λn ◦ πn = πn−1 and λ′n ◦ π′n = π′n−1), is commutative:

(4) G
πn // G/Ln

θn

��

λn // G/Ln−1

θn−1

��
G′

π′n // G′/L′n
λ′n // G′/L′n−1

(3d) The following condition holds for each v ∈ S: for each H ∈ Gv there exists H ′ ∈ G′v
and for each H ′ ∈ G′v there exists H ∈ Gv with an isomorphism γ0: H → H ′ such

that θn ◦ πn|H = π′n ◦ γ0.

Then G = lim←−
n

G/Ln and G′ = lim←−
n

G′/L′n, and the isomorphisms θ1, θ2, θ3, . . .

define an isomorphism θ: G → G′. (This follows already from (3a)-(3c); we need (3d)

only for the induction step.)

For n = 1 let L1 = G, L′1 = G′, and set θ1 to be the trivial map. Then (3a) and

(3b) hold trivially, (3c) is vacuous, and (3d) holds by (1c).

Now let n ≥ 2 and suppose (3) holds for n − 1. In particular, Ln−1, L′n−1, and

the isomorphism θn−1: G/Ln−1 → G′/L′n−1 have already been constructed and

(3’d) the following condition holds for each v ∈ S: for each H ∈ Gv there exists H ′ ∈ G′v
and for each H ′ ∈ G′v there exists H ∈ Gv with an isomorphism γ0: H → H ′ such

that θn−1 ◦ πn−1|H = π′n−1 ◦ γ0.

Choose an open normal subgroup L′n of G′ such that L′n ≤ K ′
n ∩L′n−1. This gives (3b).

Let m = (G′ : L′n). Then, for each H ′ ∈ G′, we have (H ′ : H ′∩L′n) = (H ′L′n : L′n) ≤ m,
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so, in the notation of Section 1, H ′
(m) ≤ H

′∩L′n ≤ L′n. By (1c), each H ′ is isomorphic to

one of the groups Γv, so H ′ is finitely generated (Data 5.1). Hence, by Lemma 1.2, there

is an r ≥ m such that, for every H ′ ∈ G′, every automorphism of (H ′)(m) which lifts to

an automorphism of (H ′)(r) can be lifted to an automorphism of H ′. By Lemma 3.1(a)

there is an open normal subgroup L̂′ of G′ such that H ′ ∩ L̂′ ≤ H ′
(r) for every H ′ ∈ G′.

We may assume that L̂′ ≤ L′n. This gives the following diagram in which all horizontal

maps are quotient maps.

(5) G
πn−1 // G/Ln−1

θn−1

��
G′ π′ // G′/L̂′

λ′ // G′/L′n
λ′n // G′/L′n−1

In particular, λ′ ◦ π′ = π′n and λ′n ◦ λ′ ◦ π′ = π′n−1.

By (3’d),

(θn−1 ◦ πn−1: G→ G′/L′n−1, λ
′
n ◦ λ′: G′/L̂′ → G′/L′n−1)

is a finite locally solvable embedding problem. Hence, by (1d), there exists an epimor-

phism τ : G→ G′/L̂′ such that λ′n ◦ λ′ ◦ τ = θn−1 ◦ πn−1.

Let L̂ be the kernel of τ : G→ G′/L̂′ and let Ln be the kernel of λ′◦τ : G→ G′/L′n.

Then τ, λ′ ◦ τ induce isomorphisms θ̂: G/L̂→ G′/L̂′ and θn: G/Ln → G′/L′n such that

the following diagram commutes.

(5′) G
π //

τ

!!DD
DD

DD
DD

D G/L̂
λ //

θ̂
��

G/Ln
λn //

θn

��

G/Ln−1

θn−1

��
G′ π′ // G′/L̂′

λ′ // G′/L′n
λ′n // G′/L′n−1

This gives (3c).

Now we verify (3d). Since τ(Gv) = π′(G′v), the following condition holds for each

v ∈ S: for each H ∈ Gv there is an H ′ ∈ G′v and for each H ′ ∈ G′v there is H ∈ Gv with

θ̂
(
(π(H)

)
= π′(H ′). For such groups θ̂ induces an isomorphism H/H ∩ L̂ ∼= H ′/H ′∩ L̂′.

27



Thus we have the following diagram

(6) H
π // H/H ∩ L̂ //

θ̂

��

H/H ∩ Ln //

θn

��

H/H ∩ Ln−1

θn−1

��
H ′ π

′
// H ′/H ′ ∩ L̂′ // H ′/H ′ ∩ L′n // H ′/H ′ ∩ L′n−1

in which the horizontal maps are the quotient maps and θ̂, θn, θn−1 are the restrictions

of these maps defined above to the images of H.

We have H ′ ∩ L̂′ ≤ H ′
(r) ≤ H ′

(m) ≤ H ′ ∩ L′n. Hence, by Corollary 1.3, θn lifts to

an isomorphism H → H ′.

If (3a) holds, then we are done. If not, we replace Ln−1, L′n−1, and θn−1 by

L′n, Ln, and θ−1
n . Reversing the roles of G and G′ in the above construction, we may

construct an open normal subgroup Mn of G in Ln ∩ Kn, an open normal subgroup

M ′
n of G′ in L′n (hence in K ′

n) and an isomorphism µn: G′/M ′
n → G/Mn such that the

following diagram (in which the horizontal arrows are the quotient maps) commutes

G/Mn
// G/Ln

θn

��
G′/M ′

n

µn

OO

// G′/L′n

and where (3d) holds with respect to the quotient maps G′ → G′/M ′
n and G→ G/Mn

and to µn replacing θn. Finally, we replace Ln, L′n and θn by Mn, M ′
n, and µ−1

n ,

respectively to obtain all conditions of (3).

This finishes the induction.

Proposition 6.4: Let (S, S0, S1,Γv, Tv)v∈S be as in DATA 5.1, let G = (G,Gv)v∈S be

a Cantor group pile over (Γv)v∈S , and let G0 ∈ G0. Suppose Tv is a homeomorphic copy

of the Cantor space, v ∈ S. Then:

(a) G is isomorphic to the free product of the semi-constant sheaf X = (X,pr, T ), where

X =
⋃
· v∈S Γv×Tv, T =

⋃
· v∈S Tv, and pr is the projection on the second coordinate.

(b) G has a presentation as an inner free product

G = G0 ∗
∏
∗

v∈S1

∏
∗

t∈Tv

Gt
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such that for each v ∈ S1 the set {Gt | t ∈ Tv} is a closed system of representatives

of the G-classes of Gv.

Proof of (a): By Corollary 6.2, GT is a Cantor group pile. By assumption, so is G.

Hence, by Proposition 6.3, there is an isomorphism θ: GT → G of group piles. By

construction, GT is the free product of the sheaf X, hence so is G.

Proof of (b): By (a), θ(GT,0) = Gg0 for some g ∈ G. Let θ′ = ιg−1 ◦θ be the composition

of θ with conjugation by g−1. Then θ′: GT → G is an isomorphism of group piles

satisfying θ′(GT,0) = G0. Replacing θ by θ′, we may assume that θ(GT,0) = G0. Now

let Gt = θ(GT,t) for each t ∈ T1.

By (3) of Section 5, GT = GT,0 ∗
∏
∗ v∈S1

∏
∗ t∈Tv GT,t, so G = G0 ∗

∏
∗ v∈S1

∏
∗ t∈Tv Gt.

Moreover, for each v ∈ S1, {GT,t | t ∈ Tv} is a closed system of representatives of the

GT -classes of GT,v (Proposition 5.3(g)). Since θ(GT,v) = Gv, the set {Gt | t ∈ Tv} is a

closed system of representatives of the G-classes of Gv.

7. Big Quotients

Omitting the spaces Tv from Data 5.1, we demand that the set {Γv | v ∈ S1} has

a “system of big quotients”. Big quotients enter in an essential way in the proof of

Proposition 7.5 which is one of the key steps in the proof of our main result.

Data 7.1: We continue to consider the finite set S = S0 ·∪S1 with S0 = {0} and 1 /∈ S.

For each v ∈ S let Γv be a finitely generated profinite group. Put C1 = {Γv | v ∈ S1}.

A finite quotient Γ̄v of Γv is said to be big if it satisfies the following condition:

(1) Let F̂ be a finitely generated free profinite group and J a finite set. For each j ∈ J

let ∆j ∈ C1. Consider the free profinite product B∗ = F̂ ∗
∏
∗ j∈J ∆j . Let ∆ be a

closed subgroup of B∗ with epimorphisms Γv
γ−→ ∆→ Γ̄v. Then ∆ is conjugate in

B∗ to a closed subgroup of a certain ∆j and γ is an isomorphism.

The definition of “big quotients” depends on C1. The latter set will be always

clear from the context.

Note that if Γ̄′ is a finite quotient of Γv and Γ̄v is a quotient of Γ̄′, then also Γ̄′ is

a big quotient of Γv.
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We assume that

(2a) Γ0 is a finitely generated free profinite group and that

(2b) each Γv with v ∈ S1 has a big quotient Γ̄v.

Lemma 7.2: Let B = (B,Bv)v∈S be a finite group pile. Suppose each group in Bv
is a quotient of Γv. Then there exists a finite group pile B′ = (B′,B′v)v∈S and an

epimorphism β: B′ → B such that the following holds for each v ∈ S:

(a) For every homomorphism ψ: Γv → B with ψ(Γv) ∈ Bv there is a homomorphism

ψ′: Γv → B′ with ψ′(Γv) ∈ B′v and β ◦ ψ′ = ψ.

(b) Suppose v ∈ S1. If a subgroup C ′ of B′ is a quotient of Γv and β(C ′) is a big

quotient of Γv, then β(C ′) is a subgroup of some group in B1.

Moreover, if B is deficient, then B′ can be chosen to be deficient.

Proof: We divide the proof into three parts.

Part A: Free product. Choose a homomorphism ψ0: Γ0 → B such that ψ0(Γ0) ∈ B0,

write Γ0 also as Γ(ψ0), and let Ψ0 = {ψ0}. For each v ∈ S1 let Ψv be the set of all

homomorphisms ψ: Γv → B such that ψ(Γv) ∈ B1. For each ψ ∈ Ψv let Γ(ψ) be an

identical copy of Γv. Then ψ is a homomorphism of Γ(ψ) into B whose image lies in

B1. Since Γv is finitely generated and B is finite, the set Ψv is finite. We consider the

various Ψv as disjoint and set Ψ =
⋃
· v∈S Ψv. Finally consider a finitely generated free

profinite group F̂ with rank(F̂ ) ≥ rank(B) and let ζ: F̂ → B be an epimorphism.

Now consider the free product B(∞) = F̂ ∗
∏
∗ v∈S

∏
∗ ψ∈Ψv

Γ(ψ) and let

γ: B(∞) → B be the epimorphism whose restriction to F̂ is ζ, and to each Γ(ψ) is ψ.

Choose a descending sequence Ker(γ) = N (0) ≥ N (1) ≥ N (2) ≥ · · · of open normal sub-

groups of B(∞) whose intersection is 1. For each j ≥ 0 put B(j) = B(∞)/N (j). (We are

not using here B(j) in the sense of Section 1.) Then let γ(j): B(∞) → B(j), β(j): B(j) →

B, and γj+1,j : B(j+1) → B(j) be the quotient maps. Then γ(j) = γj+1,j ◦ γ(j+1) and

β ◦ γ(j) = γ. Since γ is an epimorphism, so is each β(j). We may identify B with B(0)

and γ with γ(0).

Part B: Construction of B′ and Proof of (b). We choose B′ to be B(j) with j suf-

ficiently large. To that end we consider v ∈ S1 and a subgroup C of B which is a big
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quotient of Γv but contained in no group belonging to B1. Assume, toward contradic-

tion, that for each j there is a subgroup C(j) of B(j) which is a quotient of Γv such that

β(j)(C(j)) = C. Since for each j the group B(j) has only finitely many subgroups, a

compactness argument allows us to choose the C(j)’s such that γj+1,j(C(j+1)) = C(j)

for all j. The inverse image of the C(j)’s is a closed subgroup C(∞) of B(∞) satisfying

γ(j)(C(∞)) = C(j) for each j. In particular, γ(C(∞)) = C. Since Γv is finitely gen-

erated, another compactness argument gives a compatible sequence of epimorphisms

δ(j): Γv → C(j). That sequence defines an epimorphism δ: Γ → C(∞). Note that

B(∞) = (F̂ ∗ Γ(0)) ∗
∏
∗ v∈S1

∏
∗ ψ∈Ψv

Γ(ψ) and F̂ ∗ Γ(0) is a finitely generated free profi-

nite group. By the defining properties of C1 (Data 7.1), C(∞) is conjugate to a closed

subgroup of Γ(ψ) for some ψ ∈ Ψv and v ∈ S1. Then C = γ(C(∞)) is conjugate to

a subgroup of γ(Γ(ψ)) = ψ(Γ(ψ)) ∈ B1. Since B1 is closed under conjugation, C is

contained in a group in B1, a contradiction.

The contradiction proves that there exists a positive integer j such that (b) holds

for B′ = B(j) and β = β(j).

Part C: Proof of (a). For each v ∈ S let B′v be the conjugacy domain of Subgr(B′)

generated by the groups γ(j)(Γ(ψ)) with ψ ∈ Ψv. If B is deficient, we choose B′0 to be

the conjugacy class consisting of the trivial group.

Let ψ: Γ0 → B be a homomorphism with ψ(Γ0) ∈ B0. Then with B0 = γ(Γ(ψ0))

and B′
0 = γ(j)(Γ(ψ0)) (or B0 = B′

0 = 1 if B is deficient), we have ψ(Γ0) = Bb0 for some

b ∈ B. Choose b′ ∈ B′ such that β(b′) = b. Then, B′
0 ∈ B′0, rank((B′

0)
b′) = rank(B′

0) ≤

rank(Γ0), and β((B′
0)
b′) = Bb0 = ψ(Γ0). By assumption, Γ0 is a finitely generated free

profinite group. Therefore, by Gaschütz, there exists an epimorphism ψ′: Γ0 → (B′
0)
b′

such that β ◦ ψ′ = ψ [FrJ, Prop. 17.7.3]. This settles the case v = 0.

Now consider v ∈ S1 and let ψ: Γv → B be a homomorphism with ψ(Γv) ∈ Bv.

Then ψ ∈ Ψv and Γv = Γ(ψ). Set ψ′ = γ(j)|Γ(ψ) . Then ψ′(Γv) ∈ B′v and β ◦ ψ′ = ψ, as

desired.

Remark 7.3: Non-improvable. It is impossible to deduce in Lemma 7.2(b) that β(C ′)

is a subgroup of some group in Bv because, for example, Γv can be isomorphic to
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a subgroup of Γv′ for distinct v, v′ ∈ S1. We overcome this difficulty in Part F of

the proof of Proposition 7.5 by considering separated rigid finite embedding problems.

Lemma 7.4: Let G = (G,Gv)v∈S be a separated group pile. Suppose each group in

Gv is isomorphic to Γv, v ∈ S1. Then there exists an open normal subgroup K of G

with the following property: If ϕ: G→ A is an epimorphism onto a finite group A with

Ker(ϕ) ≤ K, then A = (A,ϕ(Gv))v∈S is separated and ϕ(H) is a big quotient of Γv for

every H ∈ Gv and each v ∈ S1.

Proof: There is an n such that, in the notation of Section 1, Γ(n)
v is a big quotient of

Γv for each v ∈ S1. Thus, H(n) is a big quotient of H for each H ∈ G1. Note that

the groups in G0 are conjugate to each other, hence isomorphic. Lemma 3.1 gives an

open normal subgroup K of G such that G/K is separated and K ∩H ≤ H(n) for each

H ∈ G1. Consider an epimorphism ϕ: G → A with A finite and Ker(ϕ) ≤ K. Let

H ∈ G1. Then H → H(n) factors through ϕ: H → ϕ(H), hence ϕ(H) is a big quotient

of H.

The following proposition is an essential step toward a solution of a finite locally

solvable embedding problem (3) for a group pile G. We cover the deficient group pile

associated with G by a deficient group pile H and solve the corresponding embedding

problem (4) for H assuming among others that the group theoretic embedding problem

for the underlying profinite groups is solvable.

Proposition 7.5: Let G = (G,Gv)v∈S be a separated deficient group pile, H =

(H,Hv)v∈S a deficient group pile, and λ: H→ G a rigid epimorphism. Suppose:

(a) Each group in Gv is isomorphic to Γv, v ∈ S1.

(b) There are no inclusions between distinct groups in G1.

(c) G is G1-projective.

(d) The space Ḡ1 of the G-orbits of G1 has no isolated points.

(e) For every finite split embedding problem (ϕ: G → A, α: B → A) of profinite

groups there exists a group epimorphism δ: H → B such that α ◦ δ = ϕ ◦ λ and

λ(Ker(δ)) = Ker(ϕ).
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Then for every finite locally solvable embedding problem

(3) (ϕ: G→ A, α: B→ A)

of deficient group piles there exists an epimorphism δ: H → B of deficient group piles

such that α ◦ δ = ϕ ◦ λ and λ(Ker(δ)) = Ker(ϕ).

Proof: Let (3) be a finite locally solvable embedding problem of deficient group piles.

We want to solve the embedding problem

(4) (ϕ ◦ λ: H→ A, α: B→ A).

Let us call a group epimorphism δ: H → B which satisfies α◦δ = ϕ◦λ and λ(Ker(δ)) =

Ker(ϕ) a group theoretic regular solution of (4). It will be a regular solution if

δ(Hv) = Bv for each v ∈ S1.

Part A: Domination principle. If

(5) G

ϕ̂

��
ϕ

��

B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A

is a commutative diagram of epimorphisms of deficient group piles with B̂ = B ×A Â,

then

(6) (ϕ̂ ◦ λ: H→ Â, α̂: B̂→ Â)

is a finite embedding problem dominating (4). If δ̂ is a (group theoretic) regular solution

of (6), then δ = β ◦ δ̂ is a (group theoretic) regular solution to (4).

Indeed, suppose that α̂ ◦ δ̂ = ϕ̂ ◦ λ and λ(Ker(δ̂)) = Ker(ϕ̂). We prove that

λ(Ker(δ)) = Ker(ϕ). If g ∈ λ(Ker(δ)), then g = λ(h) with h ∈ Ker(δ). Hence,

ϕ(g) = ϕ(λ(h)) = α(δ(h)) = 1. Conversely, suppose that g ∈ Ker(ϕ). Choose h ∈ H
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with λ(h) = g and set b̂ = δ̂(h). Then α(β(b̂)) = ϕ(λ(h)) = ϕ(g) = 1. By [FrJ, Lemma

22.2.4] we may write b̂ = b̂1b̂2 with β(b̂1) = 1 and α̂(b̂2) = 1. Choose h1 ∈ H with

δ̂(h1) = b̂1 and set g1 = λ(h1). Then ϕ̂(g−1
1 g) = ϕ̂(λ(h−1

1 h)) = α̂(δ̂(h−1
1 h)) = α̂(b̂−1

1 b̂) =

α̂(b̂2) = 1. Since λ(Ker(δ̂)) = Ker(ϕ̂), there exists h2 ∈ Ker(δ̂) with g−1
1 g = λ(h2).

Thus, g = λ(h1h2) and δ(h1h2) = β(δ̂(h1))β(δ̂(h2)) = β(b̂1)β(1) = 1. Consequently,

g ∈ λ(Ker(δ)), as claimed.

Since fiber products over α̂: B̂ → Â are fiber products over α: B → A, we may

iterate the same construction several times.

Similarly, if β: B′ → B is an epimorphism of profinite groups, δ′: H → B′ is a

homomorphism satisfying α ◦ β ◦ δ′ = ϕ ◦ λ, and δ = β ◦ δ′, then λ(Ker(δ′)) = Ker(ϕ)

implies λ(Ker(δ)) = Ker(ϕ).

Part B: Without loss A is separated, ϕ(Gv) is a big quotient of Γv for each Gv ∈ Gv
and each v ∈ S1, and α is rigid. Indeed, by Lemma 7.4 (here we use Assumption

(a)) and Lemma 4.3 there is a commutative diagram (5) of deficient group piles such

that Â is separated, ϕ̂(Gv) is a big quotient of Γv for each Gv ∈ Gv and each v ∈ S1,

B̂ = B ×A Â, and α̂ is rigid. By Part A, a regular solution δ̂: H → B̂ of (6) gives a

regular solution β ◦ δ̂: H→ B of (4).

Part C: For every locally embedding problem (3) of deficient group piles, embedding

problem (4) has a group theoretic regular solution. In fact, Lemma 4.3 gives a commu-

tative diagram (5) in which α̂ splits (here we use Assumption (c)). Assumption (e) gives

a group theoretic regular solution δ̂ to (6). By Part A, δ = β ◦ δ̂ is a group theoretic

regular solution of (4).

Part D: Embedding problem (4) has a group theoretic regular solution δ: H → B

such that for each H1 ∈ H1 there is a B1 ∈ B1 with δ(H1) ≤ B1. Indeed, by Lemma

7.2 there exists an epimorphism β: B′ → B of deficient group piles such that (a) and

(b) of that lemma hold. Let Gv ∈ Gv for some v ∈ S1. Then there exists Bv ∈ Bv
and an epimorphism ψ: Gv → Bv such that α ◦ ψ = ϕ|Gv (because (3) is locally

solvable). By (a) of Lemma 7.2, ψ lifts to an epimorphism ψ′: Gv → B′
v for some

B′
v ∈ B′v with β(B′

v) = Bv. Thus Gv is compatible with B′
v. Therefore B′′v = {B′

v ∈
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B′v | B′
v is compatible with some Gv ∈ Gv} is a B′-domain that satisfies β(B′′v ) = Bv. If

necessary, replace B′v by B′′v to make (ϕ, α ◦β) a locally solvable embedding problem for

G.

Now consider H1 ∈ H1. Put G1 = λ(H1), B′
1 = δ′(H1), and B1 = β(B′

1). Then

B1 = δ(H1) and α(B1) = ϕ(G1). Since λ is rigid, its restriction to H1 is an isomorphism

H1 → G1. Therefore B′
1 ≤ B′ is a quotient of G1 ∈ G1. By Part B, ϕ(G1) is a big

quotient of Γv for the unique v ∈ S1 with G1 ∈ Gv. By Lemma 7.2(b), B1 is a subgroup

of some group in B1, as claimed.

Part E: Embedding problem (4) has a group theoretic regular solution δ: H → B such

that δ(H1) ⊆ B1. By Lemma 3.2 and Lemma 4.3, there is a commutative diagram (5)

with B̂ = B ×A Â in which α̂ is rigid such that

(7) if Â1, Â2 ∈ Â1 and Â1 ≤ Â2, then ϕ̄(Â1) = ϕ̄(Â2)

(here we use Assumption (b)). By Part D, the embedding problem

(8) (ϕ̂ ◦ λ: H→ Â, α̂: B̂→ Â)

has a group theoretic regular solution δ̂: H → B̂ such that for each H1 ∈ H1 there is

B̂1 ∈ B̂1 with δ̂(H1) ≤ B̂1. Fix such H1, B̂1. Then

α̂(δ̂(H1)) ≤ α̂(B̂1) and β(δ̂(H1)) ≤ β(B̂1).

But α̂((δ̂(H1)) = ϕ̂(λ(H1)) ∈ Â1 and α̂(B̂1) ∈ Â1. Hence, by (7), ϕ̄
(
α̂(δ̂(H1))

)
=

ϕ̄
(
α̂(B̂1)

)
, that is, α

(
β(δ̂(H1))

)
= α

(
β(B̂1)

)
. Since α is rigid, hence injective on β(B̂1) ∈

B1, this gives δ(H1) = β(δ̂(H1)) = β(B̂1) ∈ B1. Consequently, δ = β ◦ δ̂ has the required

property.

Part F: Embedding problem (4) has a regular solution. By (d) and by Lemma 4.5

there is a commutative diagram (5) with B̂ = B ×A Â in which α̂ is rigid such that

(9) for every v ∈ S1 and Bv ∈ Bv there exists Âv ∈ Âv with α(Bv) = ϕ̄(Âv) such that

if B̂′ ∈ B̂v and α̂(B̂′) is conjugate to Âv, then β(B̂′) is conjugate to Bv.

By Part E, (8) has a group theoretic regular solution δ̂: H → B̂ such that δ̂(H1) ⊆ B̂1.

We show that the group theoretic regular solution δ = β ◦ δ̂ of (4) satisfies δ(Hv) = Bv
for each v ∈ S1. This will prove that δ is a regular solution of (4).
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The inclusion δ̂(H1) ⊆ B̂1 implies that δ(H1) ⊆ B1. Let v ∈ S1 and Hv ∈ Hv.

Then there exists v′ ∈ S1 such that δ(Hv) ∈ Bv′ , so α(δ(Hv)) ∈ Av′ . On the other hand,

since ϕ ◦ λ: H → A is an epimorphism of group piles, α(δ(Hv)) = ϕ(λ(Hv)) ∈ Av.

Therefore Av ∩ Av′ 6= ∅. But, by Part B, A is separated, so v = v′. Consequently,

δ(Hv) ⊆ Bv.

Conversely, let Bv ∈ Bv. Let Âv ∈ Âv be as in (9). Then, there is an Hv ∈ Hv
such that ϕ̂ ◦ λ(Hv) = Âv. Since δ̂(H1) ⊆ B̂1, we have δ̂(Hv) ∈ B̂v′ for some v′ ∈ S1.

Thus, α̂(δ̂(Hv)) ∈ Âv′ and ϕ̂(λ(Hv)) ∈ Âv. Since α̂ ◦ δ̂ = λ ◦ ϕ̂, we get Âv ∩ Âv′ 6= ∅.

Since A is separated, so is Â. Therefore, v = v′. Finally, since δ̂(Hv) = Âv, Condition

(9) gives a b ∈ B with δ(Hv) = β(δ̂(Hv)) = Bbv. Let h ∈ H with δ(h) = b−1. Then

Hh
v ∈ Hv and δ(Hh

v ) = Bv.

It follows that δ: H → B is the desired epimorphism.

Remark 7.6: Galois theoretic interpretation of regularity. Let N/M be a finite Galois

extension and let t be transcendental over M . Set G = Gal(M), A = Gal(N/M), and

H = Gal(M(t)). Let ϕ: G→ A and λ: H → G be the restriction maps. Suppose δ is a

group theoretic solution of (4), that is δ: H → B is an epimorphism and α ◦ δ = ϕ ◦ λ.

Let P be the fixed field of Ker(δ) in M̃(t). Then the condition λ(Ker(δ)) = Ker(ϕ) for

the regularity of δ is equivalent to P ∩ M̃ = N . If char(M) = 0, the latter condition is

equivalent to “P is regular over N”.

8. P-adically Closed Fields

Ordered fields and p-adically valued fields have common features. For example, both

have closures and the theory of these closures is model complete. In this section we

present a unified vocabulary for both types of fields and survey their basic properties.

Let (K, v) be an ordered field or a valued field. We call (K, v) P-adic if

(1) either (K, v) is an ordered field

(2) or (K, v) is a valued field and there exists a prime number p such that

(2a) the residue field of (K, v) is finite, say, with pf elements (we call p the residue

characteristic),

36



(2b) there is a π ∈ K× with a smallest positive value v(π) in v(K×) (we call π a

prime element of (K, v)),

(2c) and there is a positive integer e with v(p) = ev(π) (we call e the ramification

index of (K, v)).

We refer to Case (1) as the real case and to Case (2) with p the residue characteristic

as the p-adic case. The type of (K, v) is (0, 1, 1) in the real case and (p, e, f) in the

p-adic case. In both cases we call ef the rank of (K, v).

Let (K, v) and (K ′, v′) be P-adic fields. We say that (K ′, v′) is an extension of

(K, v) if K ⊆ K ′, v = v′|K , and in Case (2) they have the same residue characteristic.

Let (p, e, f) and (p′, e′, f ′) be the types of (K, v) and (K ′, v′), respectively. Then p = p′,

e|e′, and f |f ′. Hence, (K ′, v′) and (K, v) are of the same type if and only if they are of

the same rank.

We say that (K, v) is P-adically closed if (K, v) is a P-adic field which admits no

finite proper P-adic extensions of the same type. In the real case (K, v) is real closed,

hence is elementarily equivalent to (R,≤), where ≤ is the standard ordering of the R

[Pre, Cor. 5.3]. In particular, an element x ∈ K is nonnegative if and only if it is a

square. In the p-adic case K is elementarily equivalent to a finite extension of Qp [HJPb,

Prop. 8.2(j)] and v is the unique valuation of K such that (K, v) is P-adically closed

[HJPb, Prop. 8.2(c)]. Occasionally, we denote v also by vK .

A P-adic closure of (K, v) is an algebraic extension (K̄, v̄) of (K, v) which is

maximal P-adic of the same type, in particular (K̄, v̄) is P-adically closed. Zorn’s

lemma guarantees the existence of (K̄, v̄). In the real case (K̄, v̄) is unique up to a

K-isomorphism [Pre, Thm. 3.10]. This is not necessarily so in the p-adic case [PrR,

Thm. 3.2]; however, (K̄, v̄) is Henselian [PrR, Thm. 3.1], so each Henselian closure

(Kv, v) of (K, v) is K-embeddable in (K̄, v̄).

Each P-adic closure of (K, v) is also called a P-adic closure of K.

By (1) and (2), char(K) = 0. Let Kabs = K ∩ Q̃ be the algebraic part of K.

Lemma 8.1: Let (K, v) be a Henselian P-adic valued field. Then (Kabs, v) is a Henselian

P-adic field of the same type as (K, v). Moreover, let K̄ be a P-adic closure of K at v.
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Then K̄abs = Kabs. In particular, Kabs is P-adically closed.

Proof: By [PrR, Lemma 3.5(i)], (K, v) and (Kabs, v) have the same residue field. By

[PrR, Lemma 3.5(ii)], Kabs contains a prime element of (K, v). Hence, by (2c), the

ramification indices of (K, v) and (Kabs, v) are the same. It follows that (K, v) and

(Kabs, v) have the same type.

Now consider a P-adic closure (K̄, v̄) of (K, v). Then, (K̄, v̄) has the same type

as (K, v), say (p, e, f). By the first part of the lemma, this is also the type of (K̄abs, v).

Thus, Qp,abs ⊆ Kabs ⊆ K̄abs and [Kabs : Qp,abs] = ef = [K̄abs : Qp,abs]. Therefore,

Kabs = K̄abs.

Lemma 8.2: Let (K, v) be a P-adic field and (E, vE), (F, vF ) two P-adic closures of

(K, v). Then (E, vE) and (F, vF ) are elementarily equivalent as ordered fields in the

real case and as valued fields in the p-adic case.

Proof: By Tarski, all real closed fields are elementarily equivalent as ordered fields

[Pre, Cor. 5.3]. Suppose (K, v) is p-adic. Replace (K, v) by a Henselian closure and

(E, vE), (F, vF ) by conjugate valued fields over K, if necessary, to assume that (K, v)

is Henselian. By Lemma 8.1, Eabs = Kabs = Fabs and (Kabs, v) is P-adically closed. It

follows from [PrR, Thm. 5.1] that (E, vE) ≡ (Kabs, v) ≡ (F, vF ).

Let F/K be a field extension. A K-rational place of F is a place ϕ of F with

residue field K such that ϕ(a) = a for each a ∈ K.

Lemma 8.3: Let (K, v) be a P-adic field, (K̄, v̄) a P-adic closure of (K, v), F an exten-

sion of K, and ϕ a K-rational place of F . Then F has a P-adic closure (F̄ , w̄) extending

(K̄, v̄) and ϕ extends to a K̄-rational place of F̄ .

Proof: By [FrJ, Lemma 2.6.9(b)], F is a regular extension of K. Hence, ϕ extends to

a K̄-rational place ϕ of FK̄ [FrJ, Lemma 2.5.5].

Proposition 7.4(c) of [HJPa] gives an algebraic extension F̄ of FK̄ and ϕ extends

to a K̄-rational place ϕ̄ such that res: Gal(F̄ ) → Gal(K̄) is an isomorphism. In the

real case Gal(F̄ ) is of the same order of Gal(K̄), that is 2. Hence, F̄ is real closed.

Denote the unique ordering of F̄ by w̄. Then (F̄ , w̄) extends (K̄, v̄). In the p-adic case,

38



F̄ is P-adically closed and F̄abs = K̄abs [Pop1, Thm. E11]. Denote the unique P-adic

valuation of F̄ by w̄. Then (F̄ , w̄) has the same type as (K̄, v̄) (Lemma 8.1), so (F̄ , w̄)

extends (K̄, v̄).

Lemma 8.4: Let K be a subfield of a P-adically closed field Ē. Then:

(a) Ē ∩ K̃ is the unique algebraic extension K̄ of K contained in Ē which is P-adically

closed of the same type as Ē.

(b) In the real case let v and w be the unique orderings of K̄ and Ē; in the p-adic

case let v and w be the unique P-adic valuations of K̄ and Ē. Then (K̄, v) is an

elementary submodel of (Ē, w).

(c) Gal(Ē) is a nontrivial finitely generated group and the map res: Gal(Ē)→ Gal(K̄)

is an isomorphism.

Proof of (a) and (b): Assertion (a) is [Pre, Lemma 3.13] in the real case and [PrR,

Thm. 3.4] in the p-adic case. Assertion (b) follows from [Pre, Thm. 5.1] in the real case

and from [PrR, Thm. 5.1] in the P-adic case.

Proof of (c): In the real case Gal(Ē) ∼= Gal(K̄) ∼= Z/2Z. In the p-adic case Gal(Ē)

is infinite, e.g. because it has a finite residue field. Nevertheless Gal(Ē) is finitely

generated [HJPb, Prop. 8.2(k)]. Hence, by (b), Gal(Ē) ∼= Gal(K̄) [FrJ, Prop. 20.4.6].

Since res: Gal(Ē)→ Gal(K̄) is surjective, it is an isomorphism [FrJ, Prop. 16.10.6(b)].

Each P-adic field (K, v) carries a natural v-adic topology. If v is an ordering <,

then a basic v-open neighborhood of an element a of K is {x ∈ K | −ε < x − a < ε},

where ε ∈ K and ε > 0. In the p-adic case, a basic v-open neighborhood of a is

{x ∈ K | v(x− a) > v(c)}, where c ∈ K×.

Lemma 8.5: Let K be a field, t an indeterminate, F a finite Galois extension of E =

K(t), and (Ē, v) a P-adically closed field containing E. Suppose K is v-dense in K̄ =

Ē ∩ K̃. Then K has a nonempty v-open subset A satisfying the following condition:

(3) For each a ∈ A the K-specialization t → a extends to a place ϕ of F with residue

field F ′ such that K̄ ∩ F ′ is the residue field of Ē ∩ F .
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Proof: Put F0 = Ē∩F . List the intermediate fields of F/F0 as F0, F1, . . . , Fm−1, Fm =

F . For each i between 0 and m let zi be a primitive element for Fi/E which is integral

over K[t] and let hi ∈ K[T,Z] be a polynomial satisfying hi(t, Z) = irr(zi,K(t)). Let

H = {a ∈ A1 |
∏m
i=0 discr(hi(a, Z)) 6= 0}. This is a Zariski K-open subset of A1 and

t ∈ H(E). For each a ∈ H(K) and for each place ϕ of F extending the K-specialization

t→ a the extension F/E is unramified at ϕ and the residue field of F is a finite Galois

extension of K. Moreover,

(4) if E1 is an intermediate field of F/E and E′1 is its residue field under ϕ, then

E′1(ϕ(zi)) is the residue field of E1(zi) = E1Fi at ϕ, for i = 0, 1, . . . ,m. In particular,

F ′i = K(ϕ(zi)) is the residue field of Fi at ϕ, i = 0, 1, . . . ,m [FrJ, Remark 6.1.6].

Since F0 = Ē ∩ F ,

(5) h0(t, Z) has a root in Ē, while h1(t, Z), . . . , hm(t, Z) have no roots in Ē.

Indeed if hi(t, Z) had a root z′i in Ē, then z′i ∈ F0, so deg(hi(t, Z)) = [E(z′i) : E] ≤

[F0 : E] < [Fi : E] = deg(hi(t, Z)), which is a contradiction. By Lemma 8.4, K̄ is a

P-adically closed field and (K̄, v|K̄) is an elementary submodel of (Ē, v). Hence, by (5)

there exists a ∈ H(K̄) such that

(6) h0(a, Z) has a root in K̄, while h1(a, Z), . . . , hm(a, Z) have no root in K̄.

By the theorem about the continuity of roots of polynomials [Jar2, Prop. 16.7 and

Prop. 12.3] there is a v-open neighborhood Ā of a in K̄ such that (6) holds for each

a ∈ Ā. Since K is v-dense in K̄, there is a nonempty v-open set A ⊆ K contained in Ā.

Without loss A ⊆ H(K).

Consider a ∈ A. The K-specialization t → a extends to a place ϕ of F . Let F ′

be its residue field and let F ′i be the residue field of Fi under ϕ, for i = 0, 1, . . . ,m.

Then F ′0, F
′
1, . . . , F

′
m are intermediate fields of F ′/F ′0. Moreover, every intermediate

field of F ′/F ′0 is of this form. Indeed, let E1 be the decomposition field of F/E at

ϕ. Then {E1F0, . . . , E1Fm} is the set of all intermediate fields of F/E1F0. By (4),

{F ′0 = K(ϕ(z0)), . . . , F ′m = K(ϕ(zm))} is the set of their residue fields. This proves our

claim.

Since ϕ(zi) is a root of hi(a, Z), we may assume by (6) that F ′0 ⊆ K̄ and F ′i 6⊆ K̄

40



for i = 1, . . . ,m. Consequently, F ′0 = K̄ ∩ F ′.

9. S1-adic Hilbertianity

The P-adic closures of a field K extending a given basic P-adic field build a topological

space. Given a Hilbertian field equipped with a finite set of independent “classical”

P-adic fields and a set of irreducible polynomials over K with algebraically independent

parameters t1, . . . , tr, we specialize the parameters to elements of K and extend this

specialization to a place which maps the P-adic space over K(t) onto the P-adic space

over K.

Consider a P-adic field (K, v) and a field extension E of K. Let AlgExt(E, v) be

the set of all P-adically closed algebraic extensions of E whose unique P-adic valuation

or ordering extends v and is of the same type as v. It is a topological subspace of the

profinite space AlgExt(E) of all algebraic extensions of E with the strict topology. A

basic open neighborhood of a field Ē ∈ AlgExt(E) is the set {E′ ∈ AlgExt(E) | E′∩F =

Ē∩F} where F is a finite Galois extension of E [HJPa, Section 6]. Galois correspondence

maps AlgExt(E) homeomorphically onto Subgr(E) with respect to the strict topologies.

In particular, it maps AlgExt(E, v) onto

Gal(E, v) = {Gal(Ē) | Ē ∈ AlgExt(E, v)}.

The absolute Galois group Gal(E) acts continuously on AlgExt(E) and AlgExt(E, v)

(from the right). Let AlgExt(E, v)/Gal(E) be the quotient space under this action.

Likewise, Gal(K) acts on Gal(E, v) by conjugation from the right.

For a Galois extension F/E let

AlgExt(F/E, v) = {Ē ∩ F | Ē ∈ AlgExt(E, v)}

Gal(F/E, v) = {Gal(F/Ē ∩ F ) | Ē ∈ AlgExt(E, v)}.

Then Gal(F/E) acts on both AlgExt(F/E, v) and Gal(F/E, v) from the right. Also, the

restriction to F maps AlgExt(E, v) onto AlgExt(F/E, v) and Gal(E, v) onto Gal(F/E, v).

Definition 9.1: We call a P-adic field (K, v) classical in each of the following cases:
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(1a) v is an ordering and (K, v) embeds into (R, <), where < is the usual ordering of

R.

(1b) v is a p-adic valuation and (K, v) embeds into (F,w) where F is a finite extension

of Qp and w is the extension of the p-adic valuation of Qp to F .

In both cases the P-adic closure (K̄, v̄) of (K, v) is uniquely determined up to

a K-isomorphism. In addition, there is a unique (up to equivalence) absolute value

on K which induces the v-adic topology on K. In the real case this is part of the

Artin-Schreier theory [Lan, p. 455, Thm. 2.9]. In the p-adic case, v is discrete and the

statement follows from [PrR, Thm. 3.2]. Moreover, in this case (K̄, v̄) is a Henselian

closure of (K, v). In both cases K is v-dense in K̄, so Lemma 8.5 applies.

Definition 9.2: Let S1 be a finite set of independent classical P-adic orderings and

valuations of K. Thus, the v-topologies of K for distinct v ∈ S1 are distinct. Equiv-

alently, by the weak approximation theorem, the orderings in S1 are distinct and the

valuations in S1 are inequivalent.

The family of all intersections of basic v-open sets, with v ∈ S1, forms a basis

for the S1-topology of K. Each S1-open set has the form
⋂
v∈S1

Uv, where Uv =

{x ∈ K | −εv < x − av < εv} with εv, av ∈ K and εv > 0 if v is an ordering < and

Uv = {x ∈ K | v(x− av) > v(cv)} with av ∈ K and cv ∈ K× if v is a p-adic valuation.

Definition 9.3: Let M be a field and O a subset of Mr. Following [JaR1, Def. 1.1], we

say that M is PAC over O if for every absolutely irreducible variety V of dimension

r ≥ 0 and for each dominating separable rational map ϕ: V → Ar defined over M there

exists a ∈ V (M) such that ϕ(a) ∈ O.

The next result generalizes the characterization of “PAC over O” given in [JaR1,

Lemma 1.3] from a subring of M to an arbitrary subset O of Mr.

Lemma 9.4: Let M be a field and let O be a subset of Mr. Then the following condition

is necessary and sufficient for M to be PAC over O:

(2) Let f ∈M [T1, . . . , Tr, X] be an absolutely irreducible polynomial with ∂f
∂X 6= 0 and

let 0 6= g ∈M [T1, . . . , Tr]. Then there exists a ∈ O and b ∈M such that f(a, b) = 0
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and g(a) 6= 0.

Proof: Necessity of (2) is obvious. To prove that (2) is sufficient, we consider an

absolutely irreducible variety V and a dominating separable rational map ϕ: V → Ar

defined over M . Let x be a generic point of V over M and t = ϕ(x). Then t is a

separating transcendence basis for M(x)/M [Lan, p. 363]. Choose a primitive element

y forM(x)/M(t) which is integral overM [t] and let f ∈M [T, Y ] be a monic polynomial

in Y such that f(t, Y ) = irr(M(t), y). Then f is absolutely irreducible [FrJ, Cor. 10.2.2]

and ∂f
∂Y 6= 0. Denote the hypersurface in Ar+1 which the equation f(T, Y ) = 0 defines

over M by W . Let π: W → Ar be the projection on the first r coordinates. The map

(t, y) 7→ x defines a birational map θ: W → V over M such that ϕ ◦ θ = π. Find a

nonzero polynomial g ∈ M [T], an M -open subset V0 of V and an M -open subset W0

of W such that ϕ|V0 : V0 → Ar is a morphism, θ|W0 : W0 → V0 is an isomorphism, and

W0 = π−1(Ar rV (g)). By (2) there exists a ∈ O and b ∈ M such that f(a, b) = 0

and g(a) 6= 0. Let c = θ(a, b). Then (a, b) ∈ W0(M), c ∈ V (M), and ϕ(c) = a ∈ O.

Consequently, M is PAC over O.

The following result (except for Condition (3a), which is new) is an analog of

[FHV, Lemma 3].

Lemma 9.5: Let K be a Hilbertian field [FrJ, Sec. 12.1], S1 a finite set of independent

classical P-adic orderings and valuations of K, and K0 a separable algebraic extension

of K. Let L be a finite Galois extension of K, t an indeterminate, and F a finite

Galois extension of K(t) which is regular over L, and F0 an extension of K(t) in F . Set

L0 = K0 ∩ L. Suppose

(3a) K0 is PAC over each subset H ∩A, where H is a Hilbert subset of Kr and A is a

nonempty S1-open subset of Kr,

(3b) F0 ∩ L = L0, and F0L = F .

Then there exists an epimorphism γ: Gal(K) → Gal(F/K(t)) such that resF/L ◦

γ = resK̃/L, γ(Gal(K0)) = Gal(F/F0), and for each v ∈ S1 we have γ(Gal(K, v)) =

Gal(F/K(t), v).
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Proof: By abuse of notation, we abbreviate a place of fields ψ: M → N ∪ {∞} to

ψ: M → N and write ψ(M) for the residue field of M under ψ.

Part A: Hilbertianity. There is a Hilbert subset H of K with the following property:

For each a ∈ H each extension of the specialization t 7→ a to an L-place ϕa: F → K̃

with residue field Fa induces an isomorphism γa: Gal(Fa/K)→ Gal(F/K(t)) such that

ϕa(γa(σ)(x)) = σ(ϕa(x)) for each x ∈ F with ϕa(x) 6= ∞ and each σ ∈ Gal(Fa/K);

in particular resF/L ◦ γa = resFa/L [FrJ, Lemma 13.1.1]. Put γ = γa ◦ resK̃/Fa . Then

resF/L ◦γ = resK̃/L. Thus, it suffices to choose a ∈ H such that γa(Gal(Fa/Fa∩K0)) =

Gal(F/F0) and γa(Gal(Fa/K, v)) = Gal(F/K(t), v) for each v ∈ S1.

Let E be a field between K(t) and F . Denote the residue field of E under ϕa

by Ea. Then γa(Gal(Fa/Ea)) = Gal(F/E). Therefore the map E 7→ Ea is a bijection

between the lattices of intermediate fields of F/K(t) and of Fa/K. Then it suffices to

choose a ∈ H such that

(4a) F0,a = K0 ∩ Fa, and

(4b) E ∈ AlgExt(F/K(t), v)⇔ Ea ∈ AlgExt(Fa/K, v) for each v ∈ S1.

Indeed, in that case γ(Gal(K0)) = γa(Gal(Fa/K0 ∩ Fa)) = γa(Gal((Fa/F0,a)) =

Gal(F/F0) and γ(Gal(K, v)) = γa(Gal(Fa/K, v)) = Gal(F/K(t), v) for each v ∈ S1.

Part B: Lifting. Suppose Ea ∈ AlgExt(Fa/K, v). Then there is a P-adic closure

(K̄, v̄) of (K, v) such that K̄ ∩Fa = Ea. By Lemma 8.3, there is a P-adic closure (Ē, w̄)

of E which extends (K̄, v̄) such that the restriction E → Ea of ϕa to E extends to a

place ϕ̄a: Ē → K̄. Then

Ea = ϕa(E) ⊆ ϕa(Ē ∩ F ) ⊆ ϕa(Ē) ∩ ϕa(F ) = K̄ ∩ Fa = Ea.

Therefore, ϕa(E) = ϕa(Ē ∩ F ). By the bijection in Part A, E = Ē ∩ F . In addition,

Ē ∈ AlgExt(K(t), v), so E ∈ AlgExt(F/K(t), v).

Part C: Open neighborhoods. Suppose E ∈ AlgExt(F/K(t), v). Then, there is a

P-adic closure Ē ∈ AlgExt(K(t), v) of E such that Ē ∩ F = E. Extend v to a P-adic

ordering or valuation of Ē and let K̄ = Ē ∩ K̃. Then K̄ ∈ AlgExt(K, v). By Definition

9.1, K is v-dense in K̄.
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By Lemma 8.5, K has a v-open subset Av such that for each a ∈ Av the K-

specialization t→ a extends to a place ϕa of F with residue field Fa such that K̄ ∩ Fa
is the residue field Ea of E. Hence, if a ∈ Av, then Ea ∈ AlgExt(Fa/K, v).

Part D: Conclusion. By assumption, the orderings and valuations in S are classical

and independent. Hence, by [Gey, Lemma 3.4], H ∩
⋂
v∈S Av 6= ∅. By assumption,

F0 ∩ L = L0, F0L = F , and F/L is regular. Choose a primitive element x for F0/L0(t)

which is integral over L0[t] and let f ∈ L0[T,X] be a monic polynomial in X such

that f(t,X) = irr(x, L0(t)). Then f ∈ K0[T,X] and f is absolutely irreducible [FrJ,

Cor. 10.2.2(b)]. Moreover, discr(f(t,X)) 6= 0, so we may make H smaller, if necessary,

such that for each a ∈ H each extension of the specialization t → a to an L-place

ϕa: F → K̃, we have discr(f(a,X)) 6= 0, hence ϕa(F0) = L0(ϕa(x)).

By (3a), we may choose a ∈ H ∩
⋂
v∈S Av and b ∈ K0 such that f(a, b) = 0. Now

we extend the specialization t→ a to an L-place ϕa: F → K̃ such that ϕa(x) = b. Let

Fa = ϕa(F ) and F0,a = ϕa(F0). Then F0,a = L0(b) ⊆ K0, so [F : F0] ≥ [Fa : F0,a] ≥

[Fa : K0∩Fa] ≥ [L : L0] = [F : F0]. It follows that all of the latter inequalities are in fact

equalities and K0 ∩ Fa = F0,a. By Part A, this implies that γ(Gal(K0)) = Gal(F/F0),

so (4a) holds. Finally, (4b) follows from Parts B and C.

10. Totally S1-adic Extensions

Starting from a countable Hilbertian field K, a set S1 of classical P-adic orderings

and valuations of K, and a distinguished algebraic extension K0 of K, we consider the

maximal totally S1-adic extension Ktot,S1 of K and the field

M = K0 ∩Ktot,S1 = K0 ∩
⋂
v∈S1

⋂
σ∈Gal(K)

Kσ
v

and note that M ⊆ Kv for each v ∈ S1. Proposition 10.5 gives a weak solution to an

embedding problem over M with local data. The proof of that proposition reduces the

problem over M to an embedding problem over a finite extension K ′ of K and then

uses Lemma 9.5 to solve the reduced problem.
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Setup 10.1: For the rest of this section and the next one we fix a countable Hilbertian

field K of characteristic 0, an algebraic closure K̃ of K, a field extension K0 of K in

K̃, and a finite set S1 of independent classical P-adic orderings and valuations of K; in

particular 0, 1 /∈ S1. Set S0 = {0} and S = S0 ∪ S1.

For an extension E of K let

AlgExt(E,S1) =
⋃
v∈S1

AlgExt(E, v) and Gal(E,S1) =
⋃
v∈S1

Gal(E, v).

For a Galois extension F of E let

AlgExt(F/E, S1) =
⋃
v∈S1

AlgExt(F/E, v) and Gal(F/E, S1) =
⋃
v∈S1

Gal(F/E, v).

The maximal totally S1-adic extension of K is the intersection of all

K̄ ∈ AlgExt(K,S1). We denote it by Ktot,S1 . It is a Galois extension of K, because

each AlgExt(K, v) is closed under the conjugation by elements of Gal(K). For each

v ∈ S1 we choose a real closure of K at v if v is an ordering or a Henselian closure Kv

of K at v if v is a valuation.

We also set M = K0 ∩ Ktot,S1 , Gal(M,S0) = {Gal(K0)τ | τ ∈ Gal(M)},

Gal(M,S) = Gal(M,S0) ∪ Gal(M,S1), and make the following assumptions on K0 and

M :

(1a) K0 is PAC over each set H ∩ A, where H is a Hilbertian subset of Kr and A is a

nonempty open S1-adic subset of Kr.

(1b) Gal(K0) is a finitely generated free profinite group.

(1c) M is PS1C. This means that every absolutely irreducible variety V which is defined

overM and has a simpleKv-rational point for each v ∈ S1 has anM -rational point.

(1d) [M : K] =∞.

Corollary 10.2: The field M is ample. That is, every absolutely irreducible curve C

defined over M with a simple M -rational point has infinitely many M -rational points.

Proof: Let p be a simple M -rational point on C. Consider q1, . . . ,qn ∈ C(M). Then

C ′ = C r{q1, . . . ,qn} is also an absolutely irreducible curve defined over M . Let now
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v ∈ S1. Then p ∈ Csimp(Kv). Hence, C(Kv) is infinite, because Kv is either real closed

or Henselian [GPR, Thm. 9.2]. Hence, C ′simp(Kv) 6= ∅. Applying the PS1C property of

M to C ′, we conclude that C(M) has an additional point qn+1.

Lemma 10.3: The following statements hold for M and for each v ∈ S1:

(a) AlgExt(M,v) = AlgExt(K, v) = {Kσ
v | σ ∈ Gal(K)}.

(b) Kσ
v = Kv if and only if σ ∈ Gal(Kv).

(c) K0 /∈ AlgExt(M,S1) and the sets AlgExt(M,v), v ∈ S1, are disjoint. Moreover,

there are no inclusions among distinct fields belonging to AlgExt(M,S1).

(d) Let E be a field extension of K. Then AlgExt(E, v) is closed in AlgExt(E).

(e) The topological space AlgExt(M,v)/Gal(M) has no isolated points.

(f) Every finite split embedding problem over M is regularly solvable over M(t).

That is, let N/M be a finite Galois extension, B a finite group, α: B → Gal(N/M)

an epimorphism admitting a group theoretic section, λ: Gal(M(t)) → Gal(M) the

restriction map, and ϕ: Gal(M(t))→ Gal(N/M) an epimorphism. Then there exists

an epimorphism δ: Gal(M(t)) → Gal(N/M) such that α ◦ δ = ϕ and λ(Ker(δ)) =

Ker(ϕ). Equivalently (Remark 7.6), the fixed field F of Ker(δ) in M̃(t) is regular

over N .

Proof of (a): As indicated in Definition 9.1, the set AlgExt(K, v) of the P-adic clo-

sures of (K, v) coincides with the set of Henselian closures of K at v in K̃. Thus

AlgExt(K, v) = {Kσ
v | σ ∈ Gal(K)}. By definition, AlgExt(M,v) = AlgExt(K, v).

Proof of (b): Suppose Kσ
v = Kv. Then σ|Kv belongs to Aut(Kv/K). By [Lan, p. 455,

Thm. 2.9] for real closed fields and [Jar2, Prop. 14.5] for Henselian closures, Aut(Kv/K)

is trivial, so σ ∈ Gal(Kv).

Proof of (c): By (1a), K0 is PAC. As such, K0 is neither real closed [FrJ, Thm. 11.5.1]

nor does K0 have a valuation with a finite residue field [FrJ, p. 217, Exercise 7(b)].

Thus, K0 /∈ AlgExt(K,S1).

Next note that, by Lemma 8.4, no field in AlgExt(K,S1) is algebraically closed.

Consider distinct fields K ′,K ′′ ∈ AlgExt(K,S1). Assume that K ′ ⊂ K ′′. Since the

absolute Galois group of a real closed field is of order 2 while the absolute Galois group
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of a p-adically closed field is torsion free [HJPb, Lemma 8.3], neither K ′ nor K ′′ are

real closed.

If K ′ ∈ AlgExt(K, v′) and K ′′ ∈ AlgExt(K, v′′) for some v′, v′′ ∈ S1 with v′ 6= v′′,

then K ′′ is Henselian with respect to v′′ and to an extension of v′. Since, v′ and v′′

are independent and K ′′ is not separably closed (Lemma 8.4(c)), this contradicts [Jar2,

Lemma 13.2].

If K ′,K ′′ ∈ AlgExt(K, v) for some v ∈ S1, then K ′ and K ′′ are conjugate over K,

so K ′′ cannot properly contain K ′ [FrJ, Lemma 20.6.2].

Proof of (d): Let Ē ∈ AlgExt(E) and put K̄ = Ē ∩ K̃. If Ē ∈ AlgExt(E, v), then,

by Lemma 8.4, K̄ ∈ AlgExt(K, v) and Ē ≡ K̄. By (a), K̄ is isomorphic to Kv. Hence,

Ē ≡ Kv. Conversely, if K̄ ∈ AlgExt(K, v) and Ē ≡ Kv, then Ē is P-adically closed of

the same type as Kv. In the p-adic case this follows from [HJPb, Proposition 8.2(h)]. In

the real case Ē is real closed and our conclusion follows. Therefore, Ē ∈ AlgExt(E, v).

It follows that AlgExt(E, v) is the intersection of A1 = {Ē ∈ AlgExt(E) | Ē ∩ K̃ ∈

AlgExt(K, v)} and A2 = {Ē ∈ AlgExt(E) | Ē ≡ Kv}.

By (a), AlgExt(K, v) is closed in AlgExt(K). Since the restriction AlgExt(E)→

AlgExt(K) is continuous, A1 is closed in AlgExt(E). By [HJPb, Lemma 10.1], also A2

is closed in AlgExt(E). Consequently, AlgExt(E, v) is closed in AlgExt(E).

Proof of (e): The map Gal(K) → AlgExt(K) given by σ 7→ Kσ
v is a continuous

map of profinite spaces. By (a), its image is AlgExt(M,v). By (b), Kσ1
v = Kσ2

v with

σ1, σ2 ∈ Gal(K) if and only if σ2 ∈ Gal(Kv)σ1. Therefore Gal(K)→ AlgExt(K) induces

a homeomorphism Gal(Kv)\Gal(K)→ AlgExt(M,v). This map is compatible with the

action of Gal(M) on both spaces (on Gal(Kv)\Gal(K) by multiplication from the right)

and hence induces a homeomorphism of quotient spaces Gal(Kv)\Gal(K)/Gal(M) →

AlgExt(M,v)/Gal(M). Thus, by Lemma 2.2, it suffices to show that Gal(Kσ
v )Gal(M)

is an open subset of Gal(K) for no σ ∈ Gal(K). But M ⊆ Kσ
v and [M : K] = ∞

(Condition (1d)), hence Gal(Kσ
v )Gal(M) = Gal(M) is not open.

Proof of (f): By (1c), M is PS1C. Hence, by Corollary 10.2, M is ample. Therefore,

every finite split embedding problem over M is regularly solvable over M(t) ([Pop4,
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Main Theorem A] or [HaJ3, Thm. C]).

We rewrite the results of Lemma 10.3 in group theoretic terms. To this end we

add the following notation to Setup 10.1:

C1 = {Gal(Kv) | v ∈ S1}

Gal(M, 0) = {Gal(K0)σ | σ ∈ Gal(M)}

Gal(M,v) = {Gal(Kv)σ | σ ∈ Gal(K)}, v ∈ S1

Gal(M,S1) =
⋃
v∈S1

Gal(M,v)

Gal(M,S) =
⋃
v∈S
Gal(M,v)

Gal(M,S) = (Gal(M),Gal(M,v))v∈S

Proposition 10.4: In the above notation, the following holds:

(a) Each group in C1 has a big quotient with respect to C1.

(b) There are no inclusions between distinct groups in Gal(M,S1).

(c) Gal(M,S) =
⋃
· v∈S Gal(M,v) and for each v ∈ S, Gal(M,v) is open-closed in

Gal(M,S) and each group in Gal(M,v) is isomorphic to Gal(Kv).

(d) Gal(M) is Gal(M,S1)-projective.

(e) For each v ∈ S1 the space Gal(M,v)/Gal(M) has no isolated points.

(f) Gal(M,S) is a self-generated group pile.

Proof of (a): By [HJPb, Prop. 8.2(j),(m) and Remark 8.4], each Gal(Kv) with v ∈ S

is isomorphic to Gal(R) or to Gal(F), where F is a finite extension of Qp for some

prime number p (note that our definition of P-adically closed fields has been extended

to include R). Hence, by [HJPb, Lemma 9.4], each group in C1 has a big quotient with

respect to C1.

Proof of (b): By Lemma 10.3(c), there are no inclusions among distinct elements of

AlgExt(M,S1), so there are no inclusions among distinct elements of Gal(M,S1).

Proof of (c): By definition, Gal(M, 0) is a closed Gal(M)-class. For each v ∈ S1,

AlgExt(M,v) is closed in AlgExt(M) (Lemma 10.3(d)), so Gal(M,v) is closed in Gal(M)

and in particular in Gal(M,S). By 10.3(c), Gal(K0) /∈ Gal(M,S1), so Gal(M, 0) is
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disjoint from Gal(M,S1). By (b), the sets Gal(M,v), v ∈ S1, are disjoint. Therefore,

Gal(M,S) =
⋃
· v∈S Gal(M,v) is a partition into open closed sets. Finally, each group in

Gal(M, 0) is by definition isomorphic to Gal(K0), and for v ∈ S1 each group in Gal(M,v)

is isomorphic to Gal(Kv) (Lemma 10.3(a)).

Proof of (d): By Assumption (1c), M is PS1C. By (c) and the second paragraph of

Section 2, Gal(M,S1) is étale compact. It follows from [HJPb, Prop. 4.1] that Gal(M) is

Gal(M,S1)-projective.

Proof of (e): Let v ∈ S1. By Lemma 10.3(e), AlgExt(M,v)/Gal(M) has no isolated

points. Hence, Gal(M,v)/Gal(M) has no isolated points.

Proof of (f): By definition, Gal(M,S0) is a Gal(M)-class in Subgr(Gal(M)). By (c),

Gal(M,v) is a closed Gal(M)-domain in Subgr(Gal(M)), v ∈ S1. Hence, Gal(M,S)

is a group pile. By Lemma 10.3(b), Gal(M) = 〈Gal(K0),Gal(M,S1)〉. Consequently,

Gal(M) is self-generated.

Proposition 10.5: In the above notation, let N be a finite Galois extension of M , t

an indeterminate, P a finite Galois extension of M(t) which is regular over N , and P0 a

subfield of P which contains M(t). Set N0 = K0∩N and suppose that P0∩N = N0 and

P0N = P . Then there exists a homomorphism γ: Gal(M) → Gal(P/M(t)) such that

resP/N ◦ γ = resM̃/N , γ(Gal(K0)) = Gal(P/P0), and γ(Gal(M,v)) = Gal(P/M(t), v) for

each v ∈ S1.

Proof: The proof naturally breaks up into three parts.

Part A: Replacing K by a finite extension. Let K ′ be a finite extension of K con-

tained in M . For each v ∈ S1 we have Gal(P/M(t), v) =
⋃
v′∈Val(K′,v) Gal(P/M(t), v′)

and Gal(N/M, v) =
⋃
v′∈Val(K′,v) Gal(N/M, v′), where Val(K ′, v) is the set of all exten-

sions of v to K ′ of the same type as v. Therefore we may replace K by K ′ and S1 by

S′1 =
⋃
v∈S Val(K ′, v). Now we choose a suitable K ′.

Let c ∈ N with N = M(c) and let f(X) = irr(c,M) ∈ M [X]. Choose a finite

extension K ′ of K contained in M , such that f ∈ K ′[X] and f splits over K ′(c) into

linear factors. Put L = K ′(c) and L0 = N0 ∩L. Then L/K ′ is a finite Galois extension
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such that ML = N , M ∩ L = K ′, and L0 = K0 ∩ N ∩ L = K0 ∩ L. In addition,

N0L = N0(c) = N , hence [N : N0] = [L : L0].

Now choose z ∈ P integral over M [t] such that P = M(t, z) and let g(t,X) =

irr(z,M(t)) ∈ M [t,X]. Let p ∈ K[T,X] and q ∈ K[T ] such that q 6= 0 and c = p(t,z)
q(t) .

Put F = K ′(t, z). If K ′ is sufficiently large, then it contains the coefficients of g, p, and

q, and g(t,X) splits over F into linear factors. In this case F is a finite Galois extension

of K ′(t) containing L such that M(t)F = P and M(t) ∩ F = K ′(t).

By the first paragraph of this part we may assume that K ′ = K. This gives a

diagram of fields

M(t)

uuu
u

N(t)

www
w

P

��
��

K(t) L(t) F

M

sss
sss

N

ttt
ttt

K L

in which ML = N , M ∩L = K, M(t)F = P , and M(t)∩F = K(t). Thus, M(t) and F

are linearly disjoint over K(t). Since M(t)L(t) = N(t), it follows that N(t) is linearly

disjoint from F over L(t). Hence, N is linearly disjoint from F over L. Since NF = P

and P is linearly disjoint from K̃ over N (because P/N is regular), F is linearly disjoint

from K̃ over L. This means that F/L is regular.

Next let F0 = P0 ∩ F and observe that F0 ∩ L = P0 ∩ F ∩ L = P0 ∩ N ∩ L =

N0 ∩ L = L0. Since [P : P0] = [N : N0] = [L : L0] and [P : P0] ≥ [F0 : F ] ≥ [L : L0], we

have [F : F0] = [L : L0], so F0L = F . This gives commutative diagrams of fields and of

Galois groups in which each of the restriction maps is an isomorphism:

M(t)

uuu
u

P0

}}
}}

P

��
��

K(t) F0 F

M

ttt
ttt

N0

{{{
{

N

��
��

K L0 L

Gal(P/P0) //

��

Gal(N/N0)

��
Gal(F/F0) // Gal(L/L0)

In addition, we have the following commutative diagrams of restrictions of Galois
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groups and sets of subgroups for each v ∈ S1.

(2) Gal(P/M(t))

resP/F

��

resP/N// Gal(N/M)

resN/L

��
Gal(F/K(t))

resF/L// Gal(L/K)

Gal(P/M(t), v)

resP/F

��

resP/N// Gal(N/M, v)

resN/L

��
Gal(F/K(t), v)

resF/L// Gal(L/K, v)

Part B: We prove that the vertical maps in diagram (2) are bijections. By Part A,

the vertical maps in the diagram on the left are isomorphisms. The vertical maps in

the diagram on the right are induced by them, hence they are injective. We show

they are surjective. Every field in AlgExt(F/K(t), v) has the form Ē ∩ F for some

Ē ∈ AlgExt(K(t), v). Then, Ē ∩ K̃ ∈ AlgExt(K, v). By assumption, M ⊆ Ē ∩ K̃ and

K(t) ⊆ Ē, so M(t) ⊆ Ē. Therefore Ē∩P ∈ AlgExt(P/M(t), v) and (Ē∩P )∩F = Ē∩F ,

as claimed. Similarly resN/L is surjective.

Part C: Homomorphism. By Lemma 9.5, there exists an epimorphism γ1: Gal(K)→

Gal(F/K(t)) such that resF/L ◦ γ1 = resK̃/L, γ1(Gal(K0)) = Gal(F/F0), and

γ1((Gal(K, v)) = Gal(F/K(t), v) for each v ∈ S1.

Let γ2 = res−1
P/F ◦ γ1: Gal(K)→ Gal(P/M(t)). Set γ to be the restriction of γ2 to

Gal(M). By the commutativity of (2) and by Claim B we have resP/N ◦ γ = resM̃/N ,

γ(Gal(K0)) = Gal(P/P0), and γ(Gal(M,v) = γ2(Gal(K, v)) = Gal(P/M(t), v) for each

v ∈ S1. This completes the proof of the proposition.

11. Free Product of Local Groups

The group theoretic and field theoretic information gathered up to now gives a free

product theorem: Gal(M) is a free product of local subgroups.

The homomorphism γ: Gal(M) → Gal(P/M(t)) of Proposition 10.5 need not be

surjective. We fix this drawback by assuming in the next result that Gal(P/M(t)) =

〈Gal(P/P0),Gal(P/M(t))〉v∈S1 .

For an extension E of K and a finite Galois extension F of E let Gal(F/E, S) =⋃
v∈S Gal(F/E, v).
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Proposition 11.1: Every finite locally solvable self-generated embedding problem of

group piles

(1) (ϕ: Gal(M,S)→ A, α: B→ A),

is solvable.

Proof: Let A0 = ϕ(Gal(K0)). Then A0 is the A-class generated by A0 and A =

〈A0,A1〉 (by Proposition 10.4(f)). By assumption, there exists B0 ∈ B0 such that

B = 〈B0,B1〉. In particular, α(B0) is conjugate to A0. Applying Lemma 5.2, we may

replace B0 by a conjugate subgroup, if necessary, to assume that α(B0) = A0.

Now we may assume that A = (Gal(N/M),Gal(N/M, v))v∈S , where N is a finite

Galois extension of M , Gal(N/M, 0) = {Gal(N/N0)σ | σ ∈ Gal(N/M)} with N0 =

K0 ∩N , and ϕ is the restriction map resM̃/N .

Next we replace B by a group pile of Galois groups overM(t) with t transcendental

over M . To this end we consider the deficient group piles

H = (Gal(M(t)),Gal(M(t), v))v∈S1 ,

G = (Gal(M),Gal(M,v))v∈S1 ,

where G is obtained from Gal(M,S) by replacing Gal(M, 0) by the class of the trivial

group. Let λ: H → G be the restriction map. By Lemma 8.4(d), λ is rigid. Let

A′ = (Gal(N/M),Gal(N/M, v))v∈S1 and B′ = (B,Bv)v∈S1 be the deficient group piles

associated with A and B. Then

(2) (ϕ: G→ A′, α: B′ → A′)

is a finite locally solvable embedding problem of deficient group piles. Proposition

10.4 implies that G is a separated deficient group pile satisfying Conditions (a)-(d) of

Proposition 7.5. Proposition 10.3(f) settles Condition (e) of Proposition 7.5.

Thus, Proposition 7.5 gives an epimorphism of deficient group files δ: H→ B′ such

that α ◦ δ = ϕ ◦ λ and λ(Ker(δ)) = Ker(ϕ). Let P be the fixed field in M̃(t) of Ker(δ).

Then P is a finite Galois extension of M(t) regular over N (Remark 7.6) and res
M̃(t)/P
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maps H onto the deficient group pile P′ = (Gal(P/M(t)),Gal(P/M(t), v))v∈S1 . More-

over, there is an isomorphism δ̄: P′ → B′ of deficient group piles such that δ =

δ̄ ◦ res
M̃(t)/P

. Then α ◦ δ̄ = resP/N . Let P0 be the fixed field of δ̄−1(B0) in P , and

Gal(P/M(t), 0) = {Gal(P/P0)σ | σ ∈ Gal(P/M(t))}. Then

P = (Gal(P/M(t)),Gal(M/P (t), v))v∈S

is a finite group pile and δ̄: P→ B is an isomorphism of group piles such that α ◦ δ̄ =

resP/N . Replacing B by P via δ̄ we may assume that B = Gal(P/M(t)), Bv =

Gal(P/M(t), v) for each v ∈ S, and δ = res
M̃(t)/P

. Then α is the restriction resP/N ,

P0 ∩N = N0, and

(3) Gal(P/M(t)) = 〈Gal(P/P0),Gal(P/M(t), v)〉v∈S1

By Proposition 10.5, there is a homomorphism γ: Gal(M) → Gal(P/M(t)) of

profinite groups such that α ◦ γ = ϕ, γ(Gal(K0)) = Gal(P/P0), and γ((Gal(M,v)) =

Gal(P/M(t), v) for each v ∈ S1. By (3), γ is an epimorphism of group piles. Conse-

quently, (1) has a solution.

Proposition 11.2: In the setup of 10.1 there exists for each v ∈ S1 a closed subset Rv

of Gal(K) such that

Gal(M) = Gal(K0) ∗
∏
∗

v∈S1

∏
∗

ρ∈Rv

Gal(Kρ
v ).

Moreover, for each v ∈ S1, Rv is a system of representatives of Gal(K)/Gal(M) and

{Gal(Kv)ρ | ρ ∈ Rv} is a closed system of representatives for the Gal(M)-orbits of

Gal(M,v).

Proof: By Condition (1b) of Section 10, Gal(K0) is a finitely generated free profinite

group. By Lemma 8.4(c), Gal(Kv) is a finitely generated nontrivial group. Thus, the

groups in Gal(K, v), v ∈ S, satisfy the conditions of Data 5.1.

We prove that Gal(M,S) = (Gal(M),Gal(M,v)))v∈S is a Cantor group pile over

(Gal(Kv))v∈S . In other words, we verify Condition (1) of Definition 6.1 for Gal(M,S).
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Condition (1a) holds because M is a countable field. Condition (1b) follows

from Lemma 10.4(e). Lemma 10.4(c) implies Condition (1c), that is Gal(M,S) =⋃
· v∈S Gal(M,v), where Gal(M,v) is open-closed in Gal(M,S) and each group in

Gal(M,v) is isomorphic to Gal(Kv). By Proposition 10.4(f), Gal(M,S) is self-generated.

Finally, Proposition 11.1 completes the proof of (1d).

It follows from Proposition 6.4 that Gal(M) = Gal(K0) ∗
∏
∗ v∈S1

∏
∗ t∈Tv Gt, where

Tv is a Cantor space and Tv = {Gt | t ∈ Tv} is a closed system of representatives of the

Gal(M)-classes of Gal(M,v).

For each v ∈ S1 let s: Gal(K) → Gal(M,v) be the map defined by s(ρ) = Kρ
v . It

is continuous and surjective. Moreover, Gal(M) acts on Gal(K) by multiplication from

the right and on Gal(M,v) by upper right conjugation and s respects this action. Since

K is countable, Gal(K) has a countable basis for its topology. Hence, s has a continuous

section s′: Gal(M,v)→ Gal(K) [Har, Lemma 8.1]. Thus, Rv = s′(Tv) is a closed system

of representatives of Gal(K)/Gal(M) and {Gal(Kρ
v ) | ρ ∈ Rv} = Tv is a closed system

of representatives of the Gal(M)-orbits of Gal(M,v). Note that the map t 7→ Gt of Tv

onto Tv is a continuous bijection of profinite spaces, hence it is an homeomorphism. It

follows that the map t→ s′(Gt) of Tv is a homeomorphism satisfying Gt = Gal(Ks′(Gt)
v ).

Consequently, Gal(M) = Gal(K0) ∗
∏
∗ v∈S1

∏
∗ ρ∈Rv Gal(Kρ

v ).

12. Large Fields Chosen at Random

As in Setup 10.1 let K be a countable Hilbertian field of characteristic 0 and S =

{0} ·∪ S1, whree S1 is a finite set independent classical P-adic valuations and orderings.

In addition, let e ≥ 0 an integer. We prove below that for almost all σ ∈ Gal(K)e, the

field K0 = K̃(σ) satisfies Condition (1) of Section 10. Applying Proposition 11.2, we

get a presentation of Gal(Ktot,S1(σ)) as a free product of local groups.

Lemma 12.1: Let K be a countable Hilbertian field, S1 a finite set of independent

orderings and valuations, and e ≥ 0 an integer. Then for almost all σ ∈ Gal(K)e the

field Ks(σ) is PAC over each set H ∩A, where H is a Hilbert subset of Kr and A is a

nonempty open S1-adic subset of Kr.
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Proof: Let L be a finite separable extension of K, f ∈ L[T1, . . . , Tr, X] an absolutely

irreducible polynomial, g ∈ L[T1, . . . , Tr] a nonzero polynomial, A a nonempty S1-open

subset of Kr, and H a separable Hilbert subset of Kr. Set

C(L, f, g, A,H) = {σ ∈ Gal(L)e | there exist a ∈ H ∩A and b ∈ Ks(σ)

such that f(a, b) = 0 and g(a) 6= 0}

and let µL be the normalized Haar measure of Gal(L)e.

Claim: µL(C(L, f, g, A,H)) = 1. To prove the claim, we construct by induction a

linearly disjoint sequence of separable extensions L1, L2, L3, . . . of L such that for each

i, [Li : L] = degX(f) and there exist a ∈ H ∩ A and b ∈ Ks(σ) with f(a, b) = 0 and

g(a) 6= 0. Suppose we have already constructed L1, . . . , Ln with that property and let

L′ = L1 · · ·Ln. Since f is absolutely irreducible, the set H ′ of all a ∈ (L′)r such that

f(a, X) is irreducible and separable over L′ and g(a′) 6= 0 is a separable Hilbert subset

of (L′)r. By [FrJ, Cor. 12.2.3], H ∩H ′ contains a separable Hilbert subset HK of Kr.

By [Jar2, Prop. 19.8], we may choose a ∈ HK ∩A such that g(a) 6= 0. Let b ∈ Ks with

f(a, b) = 0 and set Ln+1 = K(b). Then Ln+1 is linearly disjoint from L′ over K, hence

L1, . . . , Ln+1 are disjoint over K. This completes the induction.

By [FrJ, Lemma 18.5.3], for almost all σ ∈ Gal(L)e the field Ls(σ) contains at

least one of the fields Li. Hence µL(C(L, f, g, A,H)) = 1, as asserted.

Since K is countable, there are only countably many L, f, g,H as above. For each

valuation or ordering v of K the set of v-open discs is countable and forms a basis for

the v-topology of K. Hence, the set of all rectangles of v-open discs with v ∈ S1 is

countable and forms a basis AL for the S1-topology of Kr. It follows that the set

C = Gal(K)e r
⋃

L,f,g,A,H

(
Gal(L)e rC(L, f, g, A,H)

)
where L, f, g,H are as above and A ranges over AL has measure 1 in Gal(K)e. Each

σ ∈ C has the desired property.

Given a field K and σ1, . . . , σe ∈ Gal(K), we denote the maximal Galois extension

of K in Ks(σ) by Ks[σ].
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Lemma 12.2: Let K be a countable Hilbertian field, S1 a finite set of independent

classical P-adic valuations and orderings, and e ≥ 0. Then, for almost all σ ∈ Gal(K)e

each field M lying between Ktot,S1 [σ] and Ktot,S1 is PS1C.

Proof: By [GeJ, Theorem A], for almost all σ ∈ Gal(K)e the field L = Ktot,S1 [σ]

is PS1C. In the notation of [Jar1, Section 7], this means that L is PKC, where K =

AlgExt(K,S1). By Lemma 10.3(d), AlgExt(K,S1) is closed in AlgExt(K). If a field M

lies between Ks[σ] and Ktot,S1 , then MK̄ = K̄ for each K̄ ∈ AlgExt(L, S1). Hence, by

[Jar1, Lemma 7.4], M is PS1C.

Proposition 12.3: Let K be a countable Hilbertian field of characteristic 0, e ≥ 0

an integer, and S1 a finite set of independent classical P-adic valuations and orderings.

Then for almost all σ ∈ Gal(K)e the fields K0 = K̃(σ) and M = Ktot,S1(σ) satisfy

Condition (1) of Section 10.

Proof of (1a) of Section 10: This is a special case of Lemma 12.1.

Proof of (1b) of Section 10: By [FrJ, Thm. 18.5.6], Gal(K̃(σ)) ∼= F̂e for almost all

σ ∈ Gal(K)e.

Proof of (1c) of Section 10: This is a special case of Lemma 12.2.

Proof of (1d) of Section 10: Let n be a positive integer and consider the general polyno-

mial

f(T, X) = Xn + T1X
n−1 + · · · + Tn of degree n. Its Galois group over K(T) is

isomorphic to Sn [Lan, p. 272, Example 4]. By [FrJ, Lemma 13.1.1], there exists a

separable Hilbert subset H of Kn such that for each a ∈ H, the polynomial f(a, X)

is Galois over K with Galois group isomorphic to Sn. Consider also the polynomial

g(X) =
∏n
i=1(X − i) = Xn + c1X

n−1 + · · · + cn with c1, . . . , cn ∈ Z. The theorem

about the continuity of roots [Jar2, Prop. 12.3] gives an S1-adic open neighborhood A

of c ∈ Kn such that for each v ∈ S1 and each a ∈ A the polynomial f(a, X) totally

splits in Kv. It follows that f(a, X) totally splits in Ktot,S1 .

By (1a) of Section 10 (which we have already proved), for almost all σ ∈ Gal(K)e

there exist a ∈ H ∩ A and b ∈ K0 = K̃(σ) such that f(a, b) = 0. By the choice of A
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and H, the field K(b) is Galois over K with Galois group Sn and K(b) ⊆ Ktot,S1 , so

K(b) ⊆M = Ktot,S1(σ).

The compositum of all K(b) with n ranges over all positive integers is an infinite

Galois extension of K in M .

Proposition 12.3 allows us now to apply Proposition 11.2 to K̃(σ) for almost all

σ ∈ Gal(K)e and to achieve the main result of this work.

Theorem 12.4: Let K be a countable Hilbertian field of characteristic 0, e ≥ 0 an

integer, and S1 a finite set of independent classical P-adic valuations and orderings of

K. Then, for almost all σ ∈ Gal(K)e there exists for each v ∈ S1 a closed subset Rv of

Gal(K) such that

Gal(Ktot,S1(σ)) = Gal(K̃(σ)) ∗
∏
∗

v∈S1

∏
∗

ρ∈Rv

Gal(Kρ
v ).

Moreover, Rv is a system of representatives of Gal(K)/Gal(Ktot,S1(σ)) and {Kρ
v | ρ ∈

Rv} is a closed system of representatives for the Gal(Ktot,S1(σ))-orbits of AlgExt(K, v).

Remark 12.5: The fields Ktot,S1 [σ]. Given K, S1, and e ≥ 1 as in Theorem 12.4, we

would like to prove the following analog of Theorem 12.4:

For almost all σ ∈ Gal(K)e and for each v ∈ S1 there exists a closed subsets Rv

of Gal(K) such that

(2) Gal(Ktot,S1 [σ]) = Gal(K̃[σ]) ∗
∏
∗

v∈S1

∏
∗

ρ∈Rv

Gal(Kρ
v ).

We know that for almost all σ ∈ Gal(K)e the field K̃[σ] is PAC and Gal(K̃[σ]) ∼= F̂ω

[Jar3, Lemma 2.7]. However, since K̃[σ] is Galois over K, and not algebraically closed,

it is not PAC over K, at least if K is finitely generated over Q (the case where K is a

number field is proved in [Jar4, Main Theorem], the general case is [BSJ, Thm. B]). In

particular, K̃[σ] does not satisfy Condition (1a) of Section 10, so a major argument in

Part D of the proof of Lemma 9.5 does not work in the new case. Consequently, the

proof of Theorem 12.4 cannot be adapted to a proof of (2) and one has to come up with

another strategy.
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