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Abstract

We consider a graph with n vertices, and p < n pebbles of m colors. A pebble move
consists of transferring a pebble from its current host vertex to an adjacent unoccupied
vertex. The problem is to move the pebbles to a given new color arrangement.

We study the feasibility version of the problem - does a given instance have a
solution? We use an algorithm of [6] for the problem where each pebble has a distinct
color to give a linear time algorithm for the feasibility decision problem on a general
graph.

1 Introduction

We consider the following pebble motion problem, which we call the m COLORS PEBBLE
MOTION PROBLEM (m-PM). Let G be a graph with n vertices and p < n pebbles of m
colors. Each vertex is either colored in one of the colors, or not colored. Each vertex
can host at most one pebble. A pebble move consists of transferring a pebble from its
current host vertex to an adjacent unoccupied vertex. The problem is to move the
pebbles to a prespecified new arrangement.

We also consider a more general version. In this version, which we call T-m-pPwMm,
some of the vertices are transshipment vertices which cannot host pebbles. A pebble
can move from a neighbor of a transshipment vertex to another unoccupied neighbor,
but without stopping at the transshipment vertex. A transshipment vertex with its
neighbors are equivalent (in respect to the pebble movement possibilities) to a clique
consisting of the neighbors of the transshipment vertex.

We use an algorithm of [6] for the problem where each pebble has a distinct color
on a tree, and the T-m-PM to give an algorithm for the feasibility decision problem on
a general graph.

Two major variants of pebble motion problems have been considered in the litera-
ture. In the PERMUTATION PEBBLE MOTION (PPM) every pebble is distinct (m = p).
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In the other variant, there are two types of pebbles. Pebbles of the first type, often
called robots, are required to move to given terminal vertices, whereas the pebbles of
the other type do not have terminals and serve as obstacles for the first set. The latter
problem is sometimes called the ROBOT MOTION PROBLEM.

Two questions are asked regarding these problems: The feasibility question- is there
a feasible solution for a specific instance? The optimality question- given that a feasible
solution exists, find one with a minimum number of moves.

There are applications of pebble motion on graphs in several areas. Most of the
research considers problems where every robot is unique ([6],[8],[19],[23]), and some
also study the case where all robots are identical ([8],[12]). We generalize these models
and extend the study assuming the objects to be identical within classes, and each
class is distinct.

In the next section we review some related literature. Section 3 contains definitions
and notation. In Section 4 we describe known results on which we base our study, and
in Section 5 we highlight our new results.

We show that the feasibility of m-PM on a tree can be decided in linear time. In
Section 6 we apply the analysis of PPM on a tree made by Auletta et al. [6], to a tree
with transshipment vertices. In Section 7 we apply this result to T-m-PM on a tree.
In Section 8 we address m-PM on vertex-connected graphs. Our approach to solve the
feasibility question, is to transform the problem to a T-m-PM problem on a tree.

2 Literature on pebble motion

Some puzzles can be modeled as pebble motion problems. A nice example is KNIGHTS
EXCHANGE [24]. Here, several knights of two colors are located on a fragment of
a chessboard. The goal is to interchange their positions using legal knight moves.
Modeling the game on a graph, makes the puzzle easier. See Figure 1 where the graph
is a tree and the feasibility question can be decided according to the analysis is Section
7. Here the initial location of one class of pebbles is the set of terminals of the other
class.
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Figure 1: Knight Exchange game modeled as a 2-PM on a tree. It is required to exchange
the black pebbles with the gray pebbles.

Christofides and Colloff [7] derive an algorithm for a version of PPM. The items
are rearranged by a ‘vehicle’, and the cost of moving an item between two locations
may be different from the cost of moving the unloaded vehicle between the same pair
of points. There is also a temporary auxiliary storage space of limited capacity, and
the goal is to perform the task at minimum cost.



PPM generalizes Sam Loyd’s famous ”15-Puzzle” [21]- a PPM on a 4 X 4 lattice with
15 pebbles. Archer [4] shows that the feasible instances of the 15-puzzle are those with
arrangement which is an even permutation of the standard arrangement. He uses nine
simple permutations along a Hamiltonian path to generate the alternating group Ais.
This method is applicable to any graph containing a Hamiltonian path. The only full
description of an n x n-puzzle is for n = 3. Reinefeld [26] shows a complete description
of the 8-puzzle.

Wilson [27] generalizes the 15-puzzle and proves a feasibility criterion for PPM on
2-vertex-connected graphs where the number of pebbles is p = n — 1. Kornhauser et
al. [19] follow Wilson’s work and show that feasibility for PPM on general graphs can
be decided in polynomial time. If the instance is feasible then their algorithm pro-
duces a feasible sequence of moves. They prove that the number of moves is O(n?)
with a matching lower bound. They decompose the instance to subgraphs where each
subgraph is 1-transitive, i.e., each pebble can move to any part of the subgraph. The
instance on the original graph is feasible if and only if the instance induced on ev-
ery subgraph, is feasible. They check the feasibility of each 1-transitive subgraph by
pruning vertices and pebbles that have no effect on the feasibility. This is done by
identifying intermediate vertices, that can be removed with the pebbles they host and
thus reducing the size of the problem. This solution can be performed in O(n?) time.

Auletta, Monti, Parente, and Persiano [6] present a linear time algorithm for PPM
feasibility on trees. They reduce the problem to a problem of swapping two pebbles at
a time, then they divide the tree into equivalence classes - in each class all the pebbles
can be swapped. We give more details on their work in Section 4.

Papadimitriou, Raghavan, Sudan, and Tamaki [23] prove a simple feasibility crite-
rion for the ROBOTS MOTION PROBLEM. On a biconnected graph, it is sufficient to have
two holes in order to move the robot to any vertex on the graph. On a tree, a necessary
condition is to have [ 4+ 3 holes where [ is the number of vertices on the longest path
with vertices of degree 2, the robot needs to pass. A necessary and sufficient condition
is that the robot will be able to reach the nearest vertex with degree greater than 2.

Calinescu, Dumitrescu, and Pach [8] consider an optimality versions of PPM and
1-PM in which moving a pebble along an arbitrary long path is considered a single
move. They prove hardness of these versions and provide bounds and an approximation
algorithm.

Several optimality problems have been studied, and most of them are hard. Goldre-
ich [14] proves that computing the shortest plan for an n x n lattice PPM with (n? — 1)
pebbles, a generalization of the ”15-puzzle”, is NP-hard. This is later extended by
Ratner and Warmuth [25] to grid graphs. Papadimitriou et al. [23] show that finding
the shortest plan for the ROBOT MOTION PROBLEM is NP-hard.

There are several techniques to solve the 15-puzzle and its generalizations. Parberry
[22] gives an algorithm for the (n? — 1)-puzzle, which uses 5n® moves at the most. The
algorithm first orders the first row and the first column in place, then moves to solve
the (n—1) x (n—1) grid. The last 3 x 3 grid is solved by brute force. Hayes [15] adapts
Parberry’s scheme and obtains a better result for the worst case analysis.

There are some bounds on the number of steps needed for solution. Kornhauser et
al. [19] show an upper and lower bound of ©(n?) on the number of moves required for
a solution of PPM on a general graph. Auletta et al. [6] give a bound of O(p?(n — p))
on the number of moves on a tree, where p is the number of pebbles, and a sequence



of swaps of two pebbles is used to solve the instance. Papadimitriou et al. [23] give a
polynomial time algorithm for the optimal solution of the robot motion on trees. Their
algorithm solves O(n%) min-cost-flow problems. They also give a 7-approximation
algorithm that solves O(n) min-cost-flow problems. Auletta et al. [5] improve these
results to O(n®) for solving the robot problem on trees.

In a graph pebbling model (Milans and Clark [20]), a u — v pebble move consists
of removing two pebbles from u and adding one pebble to v. The pebbles are of the
same color and the vertices have no hosting limit. The pebbling number w(G) is the
minimum k such that for all arrangements of k£ pebbles and for any target vertex ¢,
there is a sequence of moves which places a pebble on .

An application that uses a pebbling model is described by Jacobs, Rader, Kuhn
and Thorpe [18]. They model the strength of the connection within the protein based
on the 3-D Pebble Game [17], where the pebbles represent the degrees of freedom.

3 Preliminaries

Let G = (V, E) be a connected undirected graph with vertex set V', |V| = n, and edge
set E. For a subgraph H denote its vertex set by V(H), and its edge set by E(H).
Let f be a function acting on a set of vertices. As a convention, we denote f(v) =

f{w}).

Definition 3.1 There is a set of colored pebbles placed on V so that each v € V hosts
at most one pebble. Color arrangement! A = (So(A), S1(A),...,Sn(A)) is a partition
of the vertices in V" according to the color of the pebble they host, at a certain moment.
S¢(A) is the set of vertices which host pebbles of color ¢ in the color arrangement A. In
particular, So(A) is the set of unoccupied vertices or holes. Clearly, |J.,S:(4) = V.
We omit the A’ in S.(A) when it is clear from the context. A(®) denotes the initial
color arrangement of the pebbles. Denote s. = |S.| and let s = (sg,81,...,8m) be
the vector indicating the number of pebbles of each color. Where sq is the number of
unoccupied vertices.

Definition 3.2 A pebble mowve is a transfer of a pebble from its current location to
an adjacent hole. Let e = (u,v) € E. Given a color arrangement A, a u — v move is
feasible if u € S, for some ¢ > 0, and v € Sy. A plan, denoted by f, is a sequence of
feasible moves. T'(f, A) denotes the color arrangement achieved by executing f on the
color arrangement A.

Definition 3.3 In an instance, I, of the m-COLORS PEBBLE MOTION PROBLEM (m-
PM) we are given a graph G(I), an initial color arrangement A(©)(I) of pebbles of m
colors, and a final required color arrangement A™) = (Sy(A®), S1(AM), ... S, (AM)).
It requires to compute a plan f, for which T(f, A©®)) = A®. I is denoted by I =
(G(I), A9 (I), A®¥)(I)). When I is clear from the context we omit it and write I =
(G, A0 AM),

We also present the problem on a graph with transshipment vertices - vertices that
cannot host pebbles. We define PPM and m-PM on this kind of graph in Section 6.

!This is called configuration in [6].



Let f,g be two plans. Denote by gf the plan created by executing g after f,
T(gf,A) = T(g,T(f,A)). A plan f has a reverse plan, f !, in which the sequence of
moves is executed backwards, T'(ff !, A) = T(Z, A) = A, where T is the identity plan.
We denote by f* a plan f executed k times, f=% = (f~1)k, 0 =17.

Without loss of generality, we consider simple graphs: a pebble move u — v requires
an edge e = (u,v) and a hole on v, parallel edges and loops do not affect the feasibility.
A u — v pebble move can be seen as a v — u hole move. In a connected graph the
holes can be moved to any set of vertices.

Let I = (G, A® AM) where A©) is an initial color arrangement with pebbles on
vertices in Ty. We can compose an equivalent problem I’ = (G, A’ (0), A®)) where A’ ©
is an arrangement for which all the holes are only on vertices of Ty. Since the holes
can be moved freely, we can define g to be a plan for which T'(g, A(®) = A’ © We
claim that I is feasible if an only if I; is feasible. If I is feasible, there is a plan f that
solves it, hence fg~! solves I'. If I is feasible, there is a plan, f’, that solves it, hence
f'g solves I. Therefore we consider only plans for which the initial color arrangement
A and final color arrangement T(f, A(O)) have the same set of holes, as stated in
Observation 3.4:

Observation 3.4 We can assume without loss of generality that SO(A(O)) =Tp.

Let A = (So0,51,...,S5m) be a color arrangement. Let v € S; and u € Sj, © # j,
0 < i,7. Suppose there is a plan f such that T'(f, A) = (So,S1,...,(S; \ {v}) U
{u},...,(S;\{u}) U{v},...,Sm). Then u and v are equivalent with respect to A, f
is called a color swap, and we say that f swaps the colors on u and v.

The equivalence property is transitive. Let f, g be two plans, if u is equivalent to v
by f, and v is equivalent to w by g, then w is equivalent to w by fgf or gfg.

The equivalence property is symmetric since every plan f has a reverse plan f 1,
and it is also reflexive by an identity plan (e.g. an empty plan). Since the equivalence
property is reflexive, symmetric and transitive, it induces a decomposition of V' into
equivalence classes.

Definition 3.5 A cyclic pebble swap on {uy,...,ux} is a plan f that swaps the pebbles
located on a set of distinct vertices {u1,...,ur} C V\Sp, in a cyclic order: the pebble
located on u; moves to u;4+1, ¢ = 1,...,k — 1, and the pebble on uj moves to u;. A
cyclic pebble swap does not change the other pebble locations on the graph. When
k = 2 we simply refer to it as a pebble swap.

A simple example emphasizes the difference between 2-PM and PPM:

Example 3.6 Let G = (V, E) be a cycle with four vertices V' = {v1, v2,v3,v4}, assume
So = {vs4}, S1 = {v1}, and Sy = {vy,v3}, as in Figure 3. There is no (vy,v3) pebble
swap, but there is a (v, v3) color swap: execution of a cyclic pebble swap on (v1,vs3,v2)
result in Sop = {vs}, S1 = {vs}, and Sy = {v9,v1}

4 Known results

Auletta et al. [6] study PPM on a tree. They show that feasibility can be decided in
linear time by partitioning V(G) into equivalence classes. Any pair of pebbles located
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Figure 2: A cyclic pebble swap on (vq, v2,v3) is a (v1, v2) color swap.

in the same equivalence class can be swapped. Pebbles from different equivalence
classes cannot be swapped. Hence, the partition to equivalence classes is sufficient for
deciding the feasibility of the instance I. They show that this condition is necessary
- if there is a solution, there is a solution using swaps. An interesting observation is
that the graph induced by an equivalence class may be disconnected. See Figure 3 for
example: the pebbles on u and on v can be swapped, but the pebble on w cannot be
swapped with neither the pebble on u nor the pebble on v. Thus u and v are in the
same equivalence class while w is in another equivalence class.

O
O
u W v
@©—@—©
Figure 3: The graph induced by an equivalence class may be disconnected - v and v are in
the same equivalence class, different from the one w belongs to.

5 New results

We generalize the result of [6] on a tree by allowing transshipment vertices. Our
motivation is to use it for solving m-PM on general graphs.

Next we show that when G is a tree, the results of T-PPM can be used for T-m-PM
and show that the feasibility of T-m-PM on a tree is decidable in linear time.

When we consider general graphs, we reduce the problem to T-m-PM and use the
former results to show that the feasibility of m-PM on a connected general graph is
decidable in linear time. This result is valid also when m = p and thus give a linear
time decision algorithm for PPM on a general graph. This problem was described as an
open problem in [6].

6 T-PPM on a tree

We modify the algorithm given in [6] to work on a tree G with transshipment vertices.
The work of [6] is brought almost as is, we follow their theorem and lemmas, and
modify the proofs of some of the lemmas.



6.1 Notation and definitions

Definition 6.1 A transshipment vertex is a vertex that cannot host a pebble, other
vertices are called regular vertices. Define V(G) = Vpr(G) U Vr(G), where Vr(G) is the
set of transshipment vertices and V(G) is the set of regular vertices. We omit G when
it is clear from the context.

A color arrangement includes only vertices of Vg, w € Vp = w ¢ S, Ve, 0 <c<m. In
particular w € Vr is not a hole even though it does not host a pebble.

Definition 6.2 For each u,v € V denote by P,, the unique path between u and v.
P,, includes all edges and vertices on the path, excluding v and v, and we define
P, = {(u,v)} when (u,v) € E(G).

We say that the path between v and w is clear when it is either empty and/or
contain transshipment vertices, i.e. and V(Py,) =0 or V(Py,) C V. Let u,v € Vg, a
u — v move is feasible if u hosts a pebble (u ¢ Sp), v is unoccupied (v € Sp), and Py,
is clear. v € Vg appears in the figures as a circle and w € Vp appears in the figures as
a square. See Figure 4 for an example.

Definition 6.3 Define T-PPM to be a PPM on a graph with transshipment vertices.
Define T-m-PPM to be a m-PPM on a graph with transshipment vertices. In both cases,
VR takes the role of V' in the original problem.

Assumption 6.4 Without loss of generality the following hold in T-PPM:
e There are no two adjacent transshipment vertices.

e Any transshipment vertex has a degree greater than 2.

There is no loss of generality in the first item of Assumption 6.4 since two adjacent
transshipment vertices can be merged into a single transshipment vertex. This merge
will not affect the pebble motion since the movement between two transshipment ver-
tices is always feasible. It will also not affect the number of holes in the graph since
the transshipment vertices are not holes. Finally, since the graph is a tree it will not
affect the movement possibilities between other pebbles, and the resulting graph is still
a tree.

There is no loss of generality in the second item of Assumption 6.4 since a trans-
shipment vertex with a degree 2 or less can be removed from the graph (with the
necessary changes to keep the graph connected), without affecting the movement of
pebbles. Removing it does not change the number of holes and since the degree is 2 or
less, it does not change the feasible moves between its adjacent vertices.

Definition 6.5 For each v € V denote by deg(v) the number of edges connected to v.

Definition 6.6 We root the tree G at a vertex that hosts a pebble, call this vertex
root. For each vertex u we denote by F'(u) the forest obtained from G by removing u
and the edges connected to it. For a vertex v in a forest F' denote by tree(F,v) the
tree of F' containing v, and by R(F,v) the remaining forest F'\tree(F,v).



Definition 6.7 Let u € Vi be a regular vertex adjacent to v € V. Define dist(u,v) =
0.5 if v € Vp and dist(u,v) = 1 if v € Vg. For a,b € V define the distance dist(a,b)
as the sum of dist(u,v) over the edges (u,v) of the induced path P, in G. We call a
vertex with degree greater than 2 a branch.

Definition 6.8 For a given v € Vi \ Sy and tree Q € F(v). Denote by holes(Q)) =
|So N V(Q)| the number of holes in Q. @ is full if holes(Q)) = 0. Define seen(v, Q) as
the set of occupied vertices in Vi(Q) for which there is a clear path from v

seen(v, Q) = {u € Vr(Q)\ So | @ € F(v), V(Pou) € So} -

Define seen(v) as the set of occupied vertices in Vg(G) for which there is a clear path
from v

seen(v) = U seen(v, @),
QEF(v)

in particular v ¢ seen(v). See Figure 4 for an example.

777777777777777 seen(v,tree(F(v),x))

Figure 4: seen(v)

The values of seen(v, @), holes(Q), for each vertex v € Vi \ Sy and for each subtree
Q@ € F(v) are computed in O(n) time during a preprocessing phase (see more details
in the proof of Theorem 6.16).

6.2 The algorithm

In this section we present the algorithm MARK (see Figure 12) which on an instance
I=(G, A0 A(*)) of T-PPM, partitions the vertices of Vg \ Sp into equivalence classes
(recall the definition in section 3).

Lemma 6.9 Consider u,v € Vg, a,b € Vg(Pyy,) U{u,v}. Let Ay, be an arrangement
where
VR(PUU) U {U,U} \ {(I, b} C So, a,b §é So

Let Ay, be the arrangement obtained from Agqp by moving the pebbles from a and b to
u and v. Then, for any selection of a and b, u and v are equivalent with respect to Ay
if and only if a and b are equivalent with respect to Agyp.



Proof: Assume a is closer to u. Assume a and b are equivalent, it means that the
pebbles they host can be swapped. Since the pebbles can move freely on P,,, they
can be moved to any other pair of vertices, which means that any pair of vertices on
Vr(Pyuw) U {u,v} is equivalent with respect to the new arrangement. Since a and b can
be also u and v, this proves both sides of the claim. [

The following lemma identifies the conditions sufficient for two vertices to be not
equivalent. A similar lemma was proved in [6] for PPM, we show the same logic holds
also for T-PPM.

Lemma 6.10 Consider u,v € Vg \ Sy, and suppose (u,v) € E(G) or that every w €
Py, has degree 2 and VR(Pu) € So. Let Fy = R(F(u),v) and Fy = R(F(v),u).
Suppose that for all branch vertices wy € Fy

holes(Fy) < |dist(u,wy)] + 1,
and that for all branch vertices wo € Fy
holes(Fy) < |dist(v,wa)] + 1.

Then u and v are not equivalent.

Figure 5: u and v are not equivalent

Proof: Call the original instance I, see Figure 5 as an example. Create a new instance
I, by replacing each transshipment vertex with a hole. We claim that the conditions
of the lemma hold for vertices u and v in I if and only if they hold for them also in
I'. Suppose there exists a transshipment branch vertex w; € Fy and holes(F}) = z <
|dist(u, w1)|+1 = y+1. Replace wy with a hole, and call it w}. Now holes(F}) = z+1
and in the new graph dist(u,w}) + 1 = (y+ 1) + 1. Since |dist(u, w})| = dist(u, w}),
holes(F}) < dist(u,w}) + 1 if and only if holes(F;) < |dist(u,w;) |+ 1. This argument
holds also for wy € F5.

By Corollary 3 in [6] holes(F;) < dist(u,w}) + 1, i = 1,2, implies that u and v are
not equivalent in I’. Since a hole can be used as a transshipment vertex and more, it
is clear that if there is no possible (u,v) swap in I’, then there cannot be a (u,v) swap
in I. Thus u and v are not equivalent also in I. [

The following lemma gives a necessary and sufficient condition for the equivalence
of a vertex v € Vg \ Sp and a vertex u € seen(v).

9



Lemma 6.11 Consider u,v € Vg \ So, and suppose (u,v) € E(G) or that Vi(Pu,) C
So. Then u and v are equivalent if an only if at least one of the following conditions
15 met:

1. There exists a branch w € Py, such that:
min {holes(tree(F(w),u)), holes(tree(F(w),v))} >0

or

holes(R(F(w),u) N R(F(w),v)) >0

(see Figure 6)

Figure 6: Lemma 6.11, condition 1. F} = R(F(w),u) N R(F(w),v)

2. There exists a branch vertex w such that u € Py, and
holes(tree(F(u),w)) > |dist(w,u)]| + 2

(see Figure 7)

Figure 7: Lemma 6.11, condition 2. dist(w,u) = 13, holes(tree(F(u),w)) =3 > |11] 4 2

3. As in 2. with the roles of u and v interchanged.

4. deg(u) > 2, at least two trees of F(u) are not full, and at least two holes are
outside of tree(F(u),v) (see Figure 8)

Figure 8: Lemma 6.11, condition 4.

5. Asin 4. with the roles of u and v interchanged.
Proof: The sufficiency can be proved by constructing a (u,v) swap for each of the

cases described in these conditions. The necessity is proved by showing that in each
possible arrangement, if none of the conditions hold, then u and v are not equivalent.
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1. First consider the case where P, does not contain a branch vertex (thus condition
1 does not hold).

(a) Suppose that u and v are not branch vertices (thus conditions 4 and 5 do
not hold). Now F'(u) consists of two trees A; and Ay, and similarly, F(v)
consists of two trees By and By. Assume v € A; and u € By (A2 and By
may be empty). See example in Figure 9. Since conditions 2 and 3 are not

Figure 9: Example for the proof of Lemma 6.11, case 1 (a)

met, then for all branch vertices w; € Ay we have
holes(tree(F(u),wy)) < |dist(wy,u)| + 2,

and for all branch vertices wo € By we have
holes(tree(F(v), wz)) < |dist(wa,v)]| + 2.

Therefore by Lemma 6.10 u and v are not equivalent.

(b) Now consider the case in which w is a branch vertex (the case where v is a
branch vertex is handled by the same argument). Let w be a branch vertex
w closest to u. We have two options to negate condition 4:
i. Only one tree 7" € F(w) has holes.

A. If v ¢ T’ then w and v are on a tree with no holes so they must be
adjacent. See example in Figure 10. Moreover, since condition 2 does

Figure 10: Example for the proof of Lemma 6.11, case 1 (b) i A

not hold, we get:

holes(T") < |dist(w, u)| + 2.

11



Therefore it is possible to move the pebble from u to a vertex w’
adjacent to w so that all the holes from T” are now located on the
vertices of P,r,. Since only T" has holes holes(R(F(u),v)) = 0, then
by Lemma 6.10 w’ and v are now not equivalent, thus by Lemma 6.9
u and v are not equivalent with respect to the original arrangement.
B. If v € T” then let w’ be the branch vertex of R(F(v),u) closest to v.
See example in Figure 11. Since condition 3 does not hold, we get

Figure 11: Example for the proof of Lemma 6.11, case 1 (b) i B

holes(tree(F(v), w’)) < |dist(w',v)| + 2.

However, since only 7" has holes holes(R(F'(u),v)) = 0, then u and v
meet the conditions of Lemma 6.10, hence they are not equivalent.
ii. There are less than two holes outside A = tree(F(u),v).

A. If holes(R(F(u),v)) = 0, since condition 2 does not hold, we get for
the branch vertex w € A; closest to v:

holes(A1) < [dist(w,v)] + 2.

Therefore it is possible to move the pebble from v to a vertex w’
adjacent to w so that all the holes from A; are now located on the
vertices of P,r,,. Since holes(R(F(u),v)) = 0, then by Lemma 6.10
w’ and u are now not equivalent, thus by Lemma 6.9 « and v are not
equivalent with respect to the original arrangement.

B. If holes(R(F(u),v)) = 1, since condition 2 does not hold, we get for
the branch vertex wy € A closest to v:

holes(A1) < |dist(wy,v)| + 2,
and for the branch vertex wo € By closest to u:
holes(B) < |dist(wa,u)] + 2.

Therefore it is possible to move the pebble from v to a vertex w;’
adjacent to wy so that all the holes from A; are now located on the
vertices of P, ,. Similarly, it is possible to move the pebble from u
to a vertex wsy’ adjacent to ws so that all the holes from B; are now
located on the vertices of P,,,. Then by Lemma 6.10 wy’ and wy are
now not equivalent, thus by Lemma 6.9 u and v are not equivalent
with respect to the original arrangement.
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2. Now suppose there are some branch vertices in P,,. Since condition 1 in not met,
we know that holes(R(F(w),v) U R(F(w),u)) = 0.

(a) If there are more than two branch vertices in P,,, there is at least one, w,
not adjacent to v nor to u. Since two vertices of Vi cannot be adjacent and
since P, has no pebbles, it turns out that two of the trees of F'(w) have
holes. Thus condition 1 is met, contradicting our hypothesis.

(b) If there are exactly two branch vertices in P,,, w; and ws, then since con-
dition 1 is not met, they have to be adjacent to u and to v. By Lemma
6.10 wy and wy are now not equivalent (since there are no holes in the trees
containing u and v). Therefore, by Lemma 6.9 v and v are not equivalent
with respect to the original arrangement.

(c) If there is one branch vertex, w, w must be adjacent to u or to v, suppose it
is adjacent to u. Thus all the trees of F'(w) are full, except for tree(F(w),v)).
Since condition 2 does not hold and since all the trees of F'(w) are full (except
for tree(F'(w),v)), w and v satisfy the conditions of Lemma 6.10, and they
are now not equivalent. Therefore, by Lemma 6.9 u and v are not equivalent
with respect to the original arrangement.

Call Tyh(v) = tree(F(v),root), and T1(v),T>(v),...,Th(v) the trees of F(v) rooted
at the children of v. Call bad vertices the vertices of seen(v) which are not equivalent
to v. The action of marking the bad vertices for equivalence, in Algorithm MARK is
based on Lemmas 6.12 - 6.15, and proved in [6] for PPM (Lemmas 9-12). We generalize
the results to the case of T-PPM. The proofs of Lemmas 6.12 - 6.15 are identical to the
proofs of Lemmas 9-12 in [6] and rely on Lemmas 6.10 and 6.11 (which are analogues
of Corollary 3 and Lemma 8 in [6]).

Lemma 6.12 For each j = 0,...,h all the bad vertices of seen(v,T;(v)) are in the
same equivalence class.

Lemma 6.13 Suppose that u € seen(v,T;(v)) is a bad vertex and it is not equivalent
to any vertex of seen(v) \ Tj(v). Then all the vertices equivalent to u belong to T;(v).

Lemma 6.14 If some vertex of seen(v) is bad, then at most two trees of F(v) are not
full, and at most one of them contains more than one hole.

Lemma 6.15 Let u € seen(v,Tj(v)) and w € seen(v,T;(v)), with I # j, be two bad
vertices. u and w are equivalent if and only if there exists a tree Tp(v), h # 1,7 such
that holes(Ty(v)) > 2.

Algorithm MARK, see Figure 12, inserts the root vertex in an equivalence class by
itself and then traverses the tree by levels. Each time a regular vertex v ¢ Sy is visited,
algorithm MARK assigns each vertex of seen(v) that is also a descendant of v to an
equivalence class.

It marks for equivalence or non-equivalence (with respect to v) each vertex u €
seen(v,T;(v)), i = 1,...,h. In particular all vertices equivalent to v are marked.
Lemma 6.11 gives a necessary and sufficient condition for a vertex u € seen(v) to be
equivalent to v. This condition can be tested in constant time (since the number of
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holes for each sub-tree is computed in a preprocessing phase as explained in Theorem
6.16).

By Lemma 6.12, all bad vertices of seen(v) that belong to the same T)j(v) are
equivalent, by Lemma 6.13 if at least one of these vertices is not equivalent to vertices
of seen(v) outside of T}j(v) then all of them are not equivalent to vertices outside of
Tj(v). Thus all is left to check is whether bad vertices from different subtrees are
equivalent to each other. By Lemma 6.14 if there is any bad vertex then exactly one
of the following cases holds. Algorithm MARK splits the case where there is only one
tree with at least two holes into two cases, and checks the following four cases:

1. Only one tree, Tp(v) (the tree that contains the root), has at least two holes.
By Lemma 6.15 all the bad vertices outside of Tj(v) belong to the same equiva-
lence class, while the bad vertices of T(v) belong to their own equivalence class.
Therefore all the bad vertices outside Tj(v) belong to a new equivalence class.
This case is covered in the first item of the algorithm.

2. There is only one T} (v) with at least two holes. By Lemma 6.15 all the bad vertices
outside of T)j(v) belong to the same equivalence class, while the bad vertices of
Tj(v) belong to their own equivalence class. If j # 0 all the bad vertices outside
Tj(v) are in the same equivalence class as the parent of v. This case is covered in
the second item of the algorithm.

3. There are two non-full trees T}(v), T;(v) with one hole each. If j =0 orl =0
then the equivalence class already exists, this case is covered in the first item of
the algorithm. Else two equivalence classes will be created, one contains the bad
vertices of Tj(v) and the other one contains the bad vertices of Tj(v). This case
is covered in the third item of the algorithm.

4. There are two non-full trees, Tj(v) has one hole and T} (v) has at least two holes.
If v is not a branch vertex, then it is exactly as the former case. Else, only T’;(v)
contains bad vertices and they are in an equivalence class by themselves. This
case is covered in the fourth item in the algorithm.

Thus, the only nontrivial step in algorithm MARK is the check for every v € Vi '\ Sy
and u € seen(v) whether they are equivalent.

Theorem 6.16 The feasibility of T-PPM on a tree is decidable in linear time.

Proof: Let I = (G, A® A®) be a T-pPM instance where G is a tree. I is feasible if
A is such that every pebble is located on vertex of the same equivalence class as its
terminal. The partition of Vi into equivalence classes can be done in linear time using
the algorithm MARK.

The Algorithm uses the values of seen(v) and holes(Tj(v)), v € Vg \ So. These
values can be calculated in linear time as follows. seen(v) requires to traverse the tree
and calculate and remember it for every v € Vi \ Sp. For example, starting from
the root and going to the leaves, updating the value of the parent when reaching a
vertex in Vg \ Sp. holes(T}(v)) are calculated for each tree Tj(v) € F(v) and can be
calculated in O(n) using a bottom-up approach. Starting from the leaves and moving
up, calculate and remember these values for each vertex. This will require O(n) time
and O(n) memory space. The values of holes(Tj(v)) are also in use when checking the
conditions of Lemma 6.11. [

An example that illustrates algorithm Mark is given in Appendix A.
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Mark
input
1. Atree G=(V,E), V =VyUVp.
2. p pebbles in an initial color arrangement A©).
returns
VR, partitioned to equivalence classes.
begin
Choose vg € Vg \ Sy and set it as the root of G, label its descendants in BFS order®.
Calculate seen(v) for each v € V.
Calculate holes(Tj(v)) for each v € V' and for every T;(v) € F(v).
Put vy in an equivalence class.
fori=0,...,n—1:
Put the vertices equivalent to v; according to Lemma 6.11 in the same
equivalence class as v;.
Let W be the set of bad vertices of v; that do not belong to To(v;) (To(ve) = 0).
1. if holes(Ty(v;)) > 0
then
Put the vertices of W in a new equivalence class.
return
end if
Let h be number of children of v;.
2. if there is a unique 1 < j < h such that holes(T;(v;)) > 0

then
Put the vertices of W\T;(v;) in the equivalence class of the parent of v;.
Put the vertices of W N T;(v;) in a new equivalence class.
return
end if

3. if there are exactly two trees T;(v;), Ti(v;), 1 < j, I < h with holes and
holes(7};(v;)) = holes(T;(v;)) = 1
then
Put the vertices of W N T;(v;) in a new equivalence class.
Put the vertices of W N'T}(v;) in a new equivalence class.
return
end if
4. if there are exactly two trees T;(v;), Ti(v;), 1 < j,1 < h with holes and
holes(T;(v;)) > 1
then
Put the vertices of W N T;(v;) in a new equivalence class. [If v; is a
branch, W C T;(v;).]
return
end if
end for
end

“Begin at the root vertex and label all the adjacent vertices. Then for each of those vertices, label their
unlabeled adjacent vertices, and so on, until all vertices are labeled.
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7 T-m-PM on a tree

In this section we analyze T-m-PM on a tree, and give a method to decide on the
feasibility of a given instance of the problem. Auletta et al. used in [6] a partition
of G into equivalence classes to solve the feasibility question of PPM. In section 6 we
generalized this result to the feasibility of T-PPM. Here use this result in the more
general T-m-PM and show that partitioning Vg \ Sy into equivalence classes gives a
necessary and sufficient condition for equivalence also in T-m-PM. Algorithm MARK
(see Figure 12) is used for this purpose. The main result of this section is the necessary
condition.

Lemma 7.1 Let u,v € Vi \ Sy satisfy the following condition: there exists w €
V\{u,v} such that Py, and P, share at least one edge, and there exists a plan f
that moves the pebble from w to v and the other pebble from v to w (possibly among
other changes). Then there exists a (u,v) pebble swap.

Proof: A similar lemma, where there are no transshipment vertices is Lemma 6 in [6].
Its proof holds also for T-m-pPM, as we now describe. We only provide a brief review
of the needed changes. For the proof to hold we need to show two things:

e The proof holds if all branch vertices are transshipment vertices.

e The proof holds if there are transshipment vertices between the regular vertices
that host pebbles participating in proof.

Let y € V(Py, N P,y) be the closest branch vertex to w (it is also the closest to u). Let
x € Vg(P,,) be the closet vertex to y. Let z € Vg(P,,) be the closet vertex to y. The
proof concerns only with the vertices of the paths P,, and P,,, and only the vertices
x, y, and z need special care. The rest of the graph can have transshipment vertices
without affecting the proof.

For the first item, notice that if a regular vertex is replaces with a transshipment
vertex it reduces the number of holes in the graph, thus (or keep the same) the general
movement possibilities on the graph. Therefor if the proof holds when all branch
vertices are transshipment vertices, it will also hold when some of the branch vertices
are transshipment vertices, and some are regular vertices. y is the only branch vertex
containing a pebble among the three vertices considered in the proof. All the other
branch vertices only let the pebbles pass through them, the same role can be done
also by transshipment vertices. However, since y hosts a pebble only for a purpose of
moving it to clear the path, y can be replaced with a transshipment vertex without
changing the proof - it will not host a pebble at the first place. Moreover, the claim
that every plan has a simple plan does not depend on the existence of transshipment
vertices. Hence the movement of single pebble in a simple plan is also feasible.

For the second item, notice that transshipment vertices in parts of the graph do
that are not involved in the proof do not affect the proof since they do not affect the
movement possibilities on the graph. x and z are the vertices adjacent to y, so there is
a pebble move from one to another when the other is a hole (and y is a hole). Exactly
the same conditions holds also if there are transshipment vertices between x,y, z € Vg.
[

Lemma 7.2 Let f be a cyclic pebble swap on (vy,...,vx). Then there exists 1 < i < k

such that Py,_ ., and Py, , share an edge (the indices are considered mod k).
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Proof: Consider the tree induced by {v1,...,vx}. Let v; be a leaf of this tree, then
the claim holds for <. [

Lemma 7.3 Let f be a cyclic pebble swap on (v1,...,vx). Then there exists 1 < j < k,
for which there is a (vj,vjy1) pebble swap.

Proof: By Lemma 7.2 there exists j such that the conditions of Lemma 7.1 hold for
u = vj and v = vj41, where w = v; ;9. Therefore, there exists a (v;,v;11) pebble swap.
[

Lemma 7.4 Let f be a cyclic pebble swap on (v1,...,v;). Then there is a pebble swap
for every two vertices v;, v; 1,5 € {1,...,k}.

Proof: By Lemma 7.3 there exists 1 < j < k for which there is a (v;,v;41) pebble
swap, g. Call the pebble located on a vertex v, P,. For swapping the pebbles P, and
P,,, 1 <p < q<k do the following:
1. Execute fU—P)
The plan fU~P) moves P,, to vj.
2. Execute (f~lg)la—p=1)
The plan (f 1 g)(q_p_l) keeps P,, on v; and moves all the other pebbles (according
to their original order) so P,, is on vj and P, is on v;;1 when the plan is finished.
3. Execute g
When g is executed on the third step, P, is on v; and P,, is on vj;1 so they are

swapped by g.
4. Execute (gf)@>r=1

The plan (gf)@ =1 brings all the other pebbles back, i.e. (f~1g)P=1(gf)la—r-1) =

T

5. Execute f®~9)
The plan f®~7) moves back all the pebbles to their original locations, besides
P,, and P,, that where swapped (f (G=p) f(=7) = 7). When the plan ends P, is
located on vy, and P, is located on vy.

The process is illustrated in Example 7.5. ]

Example 7.5 Consider a cyclic pebble swap f = (a,b,c,d,e) and assume we want to
swap the pebbles x and y initially located on vertices b and e. By Lemma 7.3, there
is a plan g that swaps two adjacent pebbles, let them be ¢,d. Table 1 shows the color
arrangement after every plan. Using the notation of Lemma 7.4, in this example j = 3,
p =2 and ¢ = 5. The first and the last steps are executed j — p = 1 time; the second
and fourth steps are executed ¢ — p — 1 = 2 times. We mark x = P, and y = P, so it
will be easier to track the moves.

Corollary 7.6 The vertices of a cyclic pebble swap are in the same equivalence class.

We say that f and g are color equivalent with respect to A if T(f, A) =T(g,A).

Lemma 7.7 Let f be a plan, then there exists a color equivalent plan g = g, - g1,
where g1,...,g, are color swaps.
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Algorithm step | Pebble arrangement |a |b |c |d |e
A P, lz |P.| Py
1 AD =T(f, AD) y |P, |z | P.| Py
2 A® =T(g, AD) y |P,|P. |z | P
2 AG) =T (f71, A@) P,|P.lz |Pily
2 AW =T(g, A®)) P, |P.|Pj|lx |y
2 AB) =T(f~1, AW) P.|Py|lz |y | P,
3 AG) =1T(g, AD)) P.|Pily |o | P,
4 AT =T(f, A©) P,|P.|Pjly |=x
4 A® =T(g, AD) P,|P. |y | Pjlx
4 A =T (f, A®) v |P | Py | Py
4 A0 = T(g, AD) r |P, |y | P.|P;
5 A0D = T(f=1 A00) P, ly |P.|Pj|x

Table 1: (b, e) pebble swap in a cyclic pebble swap on (a, b, ¢, d, €)

Proof: By Observation 3.4 f consists of one or more cyclic pebble swaps f1,..., f,
(Since the final locations of the pebbles are the same as the initial locations, every
pebble either returns to its initial location or takes the initial location of another
pebble, which in turn does the same. So the pebbles switch locations in a cycle of one
or more pebbles).

Define N(f;) as the number of vertices for which the color of the pebble they
host is changed by f;. Let Vi, = (v1,...,vk,) be the set of vertices hosting pebbles
involved in the cyclic swap f;. By Corollary 7.6 every two pebbles located in Vy, can
be swapped. Hence, in each V}, every two colors can be swapped. Since f; is feasible
|SeN V| =|TeNVy|, c=1,2,...,m.

Each f; has a color equivalent plan with respect to A 9i = Yiy, " Girs that consists

_ IN(f)]

of color swaps, r; = —*. For plans f; and f;, the color equivalent plans g; and g;
are independent since each color swap ends in the same color arrangement besides the
swapped colors, 4,7 = 1,...,u. Hence, f has a color equivalent plan with respect to
A0 g = Gury, *** 9ps 91, - 91y, where each g, is color swap in Vi, h=1,... r;. =

Corollary 7.8 A (u,v) color swap is possible if and only if u and v are in the same
equivalence class.

Proof: If v and v are in the same equivalence class, there is a (u, v) pebble swap, hence
a (u,v) color swap. On the other hand, if there is a color swap, by Observation 3.4 it
must be between vertices of a cyclic pebble swap. By Corollary 7.6, all the vertices of
a cyclic pebble swap are in the same equivalence class. [

The direct implication of Corollary 7.8 is that there is no more strength in swapping
two colors than in swapping two pebbles, it does not make any difference regarding the
feasibility of the problem. The following theorem uses this property.

Theorem 7.9 An instance of T-m-PM on a tree is feasible if and only if for each
equivalence class Z C V, |ZNS.| = |ZNT,|, ¢ = 1,2,...,m. The feasibility is
decidable in linear time.
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Proof: Let I = (G, A®, A®) be a T-m-PM instance where G is a tree. By Lemma
7.7, a plan f for I is color equivalent to a sequence of color swaps. By Corollary 7.8,
a (u,v) color swap can be done if and only if v and v are in the same equivalence
class. Therefore an instance is feasible if and only if for each equivalence class Z C V,
|ZNS.|=1ZNT,|,c=1,2,...,m. The partition of V into equivalence classes can be
done in linear time using Algorithm MARK (see Figure 12). [

Since m-PM is a special case of T-m-PM we get also the following corollary.

Corollary 7.10 The feasibility of m-PM on a tree is decidable in linear time.

8 m-PM on a general graph

G is 2-vertex-connected if G\ v is connected for all v € V(G). (As a convention, if
|[V(G)| =1 then G is 2-vertex-connected.)

Observation 8.1 Let I be an m-PM instance where G is a 2-vertex-connected graph
with at least one hole, then any pebble can move to any vertex.

Proof: Let v,u € V(G) be two vertices. Since G is 2-vertex-connected, there is a
simple cycle C' containing u and v. If C' contains a hole then a pebble can move from
u to v on this cycle using a series of cyclic pebble swaps. Else, there is a vertex 1 € C
with degree greater than 2, and a cycle C'1 containing x1 and a hole. Move the hole on
(' to x1 using a series of cyclic pebble swaps. Now, a pebble can move from u to v on
C' using a series of cyclic pebble swaps. [

Our strategy to decide whether a given m-PM on a vertex-connected graph is fea-
sible, is to reduce it to a T-m-PM on a tree.

On an instance with only one hole, the pebble movement is limited: a pebble cannot
move between 2-vertex-connected components (see Lemma 8.2). Swaps of pebbles
on different 2-vertex-connected components are not possible with only one hole (see
Lemma 8.2). Therefore our main result concerns the case where there are at least two
holes (p < n —1). In Lemma 8.4 we show that two holes are enough to swap any two
pebbles in a 2-vertex-connected component. It follows that the problem is feasible if
it is possible to move the needed pebbles to each 2-vertex-connected component. In
each 2-vertex component the movement is not limited. Thus, the feasibility problem is
reduced to a problem of moving pebbles between the 2-vertex-connected components
of (G. This problem is very similar to the problem of moving pebbles on a tree, and we
use Theorem 7.9 to decide whether it is feasible.

For any instance I = (G, A®, A®) we define a T-m-pPM instance I = (G, A©), A®)
on a tree G with transshipment vertices, such that I is feasible if and only if I is
feasible.

Let G be a connected graph. Construct G as follows:
For every H C (G, a maximal nontrivial 2-vertex-connected component (H is nontrivial
if V(H) > 1):

1. Add a transshipment vertex h.
2. Remove every edge e € E(H).
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3. Add the edges {(u,h) | u € V(H)}.

G and G7 have a similar backbone structure where instead of 2-vertex-connected
subgraphs in G, G has ’stars’ with transshipment vertices as centers, see Figure 13
for an example. Notice that G and Gt have the same number of holes and the same
number of pebbles. Building I7 from I takes linear time.

Figure 13: Converting G (i) into Gr (ii)

Lemma 8.2 Suppose G is 2-edge-connected and contains a cut vertex, then any pebble
can be moved to any vertez if and only if p <n — 1.

Proof: Let v. be a cut vertex. Let C; and Cs be two 2-vertex-connected compo-
nents such that v. € C7 N Cy. Without loss of generality, assume that in the initial
arrangement a pebble z is in C7.

First we show that if p = n — 1 then x cannot pass from C; to C. x can move to
(5 only if a color arrangement where x is on v, and the hole is in Cy, can be reached
from the initial color arrangement. However, when moving x to v., v. is a hole and so
the hole is in C7 when z is on v.. The hole can move to v. only if z moves back to C.
Hence, there cannot be a color arrangement in which the hole is in Cy and z is on v..

Now assume p < n — 1. For moving x from C; to C5 first move one hole to C and
one hole to C9; next move x to v, (this is possible according to Observation 8.1). With
the hole in C5, = can be moved to any vertex in Cl. [
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Definition 8.3 Let H be a 2-vertex-connected graph. Let G be a graph where V(G) =
V(H)U{v,} and E(G) = E(H) U {(vg,v)}, where v € V(H). G is called H with an
attached edge.

The following lemma shows that any two pebbles on a cycle can be swapped without
changing the locations of the other pebbles, if there are at least two holes and an edge
attached to the cycle. This property will be used in Lemma 8.6, when we analyze the
moves on general graphs. The other direction, that some pairs of pebbles cannot be
swapped if there are less than two holes, is proved similar to the proof of Lemma 8.2,
and it is omitted here.

Lemma 8.4 If p<n—1 and G is a cycle with an attached edge, then all vertices of
V(G) are in the same equivalence class.

Proof: We show that any two pebbles can be swapped, and this will prove that all
vertices of V(@) are in the same equivalence class. Assume, without loss of generality,
that in the initial color arrangement v, € Sp. Let u be an occupied vertex on the
cycle. Let f, be a plan that moves the pebble located on u to v,, and then moves
the other pebbles back to their locations (f, moves all the pebbles on the cycle in
clockwise direction, until the pebble located on w is on v; then f, moves this pebble
to vg; finally, it moves all the pebbles on the cycle in counterclockwise direction back
to their initial locations). Let g, be a plan that moves a pebble from v, to u, and
then moves the other pebbles back to their locations (g,, moves the hole to u; then g,
moves all the pebbles on the cycle in clockwise direction, until the hole is located on
on v; then move the pebble from v, to v; finally, it moves all the pebbles on the cycle
in counterclockwise direction back to their initial locations, and the pebble that was
on v, is on u). Let u and w be two arbitrary vertices on the cycle and call the vertex
next to w, in clockwise direction, w;. For a (u,w) pebble swap do as follows:

1. Execute f,.

2. Move all the pebbles from w to u, one vertex in counterclockwise direction.
3. Execute g,,.

4. Execute fy,.

5. Move all the pebbles from u to w;, one vertex clockwise direction.

6. Execute g,.

Assume in the initial color arrangement pebble 1 is on u and pebble 2 is on w. Figure
14 is an example of such a swap.
[

Lemma 8.5 If p <n —1 and G is a graph which contains a cycle with an attached
edge, then all the vertices of V(G) are in the same equivalence class.

Proof: The proof is very similar to the proof of Lemma 8.4. In this case the first step
is to move one of the pebbles which do not take part in the swap to the vertex not on
the cycle, then follow the steps described in Lemma 8.4 on the cycle, and finally move
the pebble back to its initial location. [
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Figure 14: Swapping pebbles w and u on a cycle with an attached edge. To help follow the
steps, the swapped pebbles are marked with different texture.

Lemma 8.6 Consider a color arrangement A on G, a verter a € V(G) \ Sy and a
vertex b € Sy. Let o' € V(Grp)\ Sy and b’ € Sy be the corresponding vertices in Gr.
There is a plan fq that moves the pebble from a to b on G, without changing the final
locations of the other pebbles, if and only if there is a plan fl,, that moves the pebble
form a’ to V' on G, without changing the final locations of the other pebbles.

Proof: The first direction of the proof follows from the nature of the “stars” in Gr.
In a star graph every vertex is connected to the other vertices of the star, this allows
the same pebble movement as if it was a clique. In a clique there is a direct connection
between the vertices, while in a star the connection is through the transshipment vertex.
However, it does not affect the possible pebble moves. If there is a plan f,;, that moves
the pebble from a to b on G, it will remain feasible if we add edges to G and convert
each 2-vertex-connected component into a clique. Hence, there is also a plan f!,,, that
moves the pebble from a’ to ' on Gr.

The other direction follows from the fact that there are no more movement possi-
bilities in G than in G. If @’ and b’ belong to the same star, then a and b belong to
the same 2-vertex component and by Observation 8.1 f,;, exists.

If o’ and ¥’ are not in the same star, f/,, might include moves from vertices included
and not included in stars. Since holes(G) = holes(Gr) the moves that do not use
vertices included in a star are feasible also on G. When f/,,, includes moves from/to
vertices within stars, the feasibility of the moves in G follows from Lemma 8.2 (if
the 2-vertex-connected component is part of a 2-edge-connected component) and from
Lemma 8.5 (if the 2-vertex-connected component contains a cycle). (]

Corollary 8.7 I is feasible if and only if IT is feasible.
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Proof: I is feasible if and only if there is a plan f that solves it, and by Lemma 8.6
such a plan exists if and only is there is a plan f’ that solves Iy, which means I is
feasible. -

Remark 8.8 When G is biconnected and p = n—1 the feasibility of m-pPM is decidable
in linear time. The proof is based on an analysis of the graph structure which implies
the possible feasible plans.

Theorem 8.9 Feasibility of m-PM s decidable in linear time.

Proof: If p <n—1let I = (G, A(O),A(*)) be an m-PM instance where G is a connected
graph. Construct I7 in linear time. By Theorem 7.9, the feasibility of I can be
decided in linear time. By Corollary 8.7 It is feasible if and only if I is feasible.

If p>n—1 and G is not biconnected or if p > n — 1 then the pebble movement is
very limited and the feasibility is easily decidable. If p = n — 1 and G is biconnected
then by remark 8.8 the feasibility is decidable in linear time. [

9 Final Remarks

We studied the feasibility of m-PM and obtained the following results. When G is
a tree, Theorem 7.9 gives a necessary and sufficient condition for feasibility. Given a
specific instance of the problem on a tree, there is an algorithm which divides V(G)\ Sq
into equivalence classes. The the instance is feasible if and only if for every equivalence
class the number of vertices of each color equals the number pebbles of the same color.

When G is a general graph, p < n — 1, Theorem 8.9 transforms the feasibility
question to a similar question on a tree. The transformation is done in linear time.

It would have been interesting to estimate the number of moves as a function of
the input parameters (m, p, n), but it is not part of this study.
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Appendix A: An illustrative example of Algorithm Mark

The following example demonstrates how Algorithm Mark works. Consider the instance
of 2-PM on a tree given in Figure 15.

Vo Vi V2
O—@—©

V4 . V3
O—@—0©

Ve V5 V7

Figure 15: An instance of 2-PM

We set vy as the root. Each row in the table represents the classes each time the
algorithm completes the loop that handles a vertex, v;, 1 =0,1,2,3,4,5. We omit the
steps of the unoccupied vertices since they have no effect.

Loops | Class (7 | Class C5 | Class (3
Loop 0 | {vo} {o1}

Loop 1 | {vo,v2} | {v1,05}
Loop 2 | {vo,v2} | {v1,05}
Loop 5 | {vo,v2} | {vi,vs} | {ve,vr}
Loop 6 | {vo,v2} | {vi,v5} | {ve,v7}
Loop 7 | {vo,v2} | {vi,v5} | {ve,v7}
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Appendix B: Table of Notation

Notation Meaning Reference
A The vector (Sp(A),...,Sm(A)), denotes the
color arrangement of pebbles on the vertices
of G
A An initial color arrangement Definition 3.1
A®) A final color arrangement Definition 3.3
deg(v) The number of edges connected to v € V Definition 6.5
dist(u, v) Distance between two adjacent vertices u,v. | Definition 6.7
For u € Vi dist(u,v) = 0.5 if v € Vp
and dist(u,v) =1ifve Vg
dist(a, b) the distance dist(a,b) as the sum of Definition 6.7
dist(u,v) over the inspired path Py in G.
f A plan - a sequence of moves Definition 3.2
F(u) The forest obtained from G by removing u | Definition 6.6
and the edges connected to it
g A plan - sequence of moves Definition 3.2
holes(Q) The number of holes in Q C G Definition 6.8

(G, A, AV)

An instance of a pebble motion problem

Definition 3.3

Puv

The unique path between u and v
excluding u, v

Definition 6.2

R(F,v) F\tree(F,v), where F' is a forest Definition 6.6

s The vector (sg, ..., Sm), indicates the Definition 3.1
number of pebbles of each color

Se The number of pebbles of color ¢ Definition 3.1
sg is the number of holes

Se The set of vertices hosts pebbles of color ¢ Definition 3.1
Sp is the set of holes

seen (v, Q) {ueVr(Q)\ So | Q € F(v), Py, C So} Definition 6.8

T;(v) The tree rooted at the i*® child of v

T(f,A) The color arrangement result of executing Definition 3.2
fon A

tree(F, v) the tree of I containing v, where F' Definition 6.6
is a forest

Vr(G) The set of transshipment vertices of G

Vr(G) The set of regular vertices of G
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Appendix C: Table of Problems

Notation | Meaning Reference
m-PM Multi color pebble motion problem
PPM Permutation pebble motion problem
T-m-PM Multi color pebble motion problem on a

graph with transshipment vertices Definition 6.3
T-PPM Permutation pebble motion problem on a

graph with transshipment vertices

Definition 6.3
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