A}sz%z%}\zkfsm AAARBAARAARARA

STEVEN 8. MUCEI:CK

T A _;,H ™
AN UL, U, SRS DS

4 o
Veronigue Donzean-Gouge

Steven 8. Muchnick

- TR
YRR

POCR AR
a &\udu
SN INERT

'.4 ‘l.dfu .»aj

ANATYSI

Th 1eory

o

Sacawa

e - ST NRRREY PP SR,

(ﬁ)

}Ld\-—- 13 ""\'P} e
WineDlaivlad

CONTRIBUTING
AUTHC: S

1l A. Clarke

T e SR ES

Nefl D. Jones
Ken Kennedy
Etienne Mogel

.

T T
4201 \uﬁ LW 3"
A 819» wm'— Ta

viga.aie 0‘ Ak bt dne

Clzude Renvolse i

T

{
¥
|

E

PP YY

INTERPROCEDURAL ELIMINATION OF PARTIAL REDUNDANCIES / <CHAP. 6

e79]. It emerges from these comparisons that this algorithm is very fast

-applied separately to each procedure. For interprocedural application,
aly added task is the solution of systems in the data flow analysis phase,
his is known to be fast. Although this extended algorithm has not yet
implemented, it can reasonably be assumed to be efficient.

6-6. CONCLUSION

An algorithm for interprocedural optimization has been presented. It is
'd to a set of procedures compiled together and which call each other.
ased on the algorithm presented in [More79] for elimination of partial
dancies in a procedure. The interprocedural application is performed
wo-pass mechanism. The information on each procedure for the appli-
of the basic algorithm is computed by a preliminary data flow analysis
This phase, which requires a particular processing order on the set of
lures, gives for each procedure P information which represents the .
t of a call-of P on the environment at the calling point. The second
suppresses partial redundancies by treating the procedures individually
srse calling order, reflecting in the treatment of a called procedure the
iation gathered during the treatment of its callers.
n some cases, optimization can be improved by iterating part or all of
ocess. The algorithm can be used for recursive procedures, but in this
ome approximations are made in the data flow analysis phase in order
id unpredictable costs in the algorithm. As presented here, the algo-
“uns in time linear in the size of the program. Implementation of the
Igorithm has been shown to be efficient and well within the state of the
actual compilers. The same claims seem to be applicable to its inter-
ural extension. '

Chapter 7

Two Approaches
to Interprocedural
Data Flow Analysis'.

Micha Sha‘rir‘
Amir Pnueli

7-1. INTRODUCTION

Under the general heading of program a'nalysi.s we can ﬁ1.1d today two
disciplines which, even though they have SI'nnlar aims, (-hﬁ'er m'th'e lr'nean;‘
and tools they apply to the task of analysis. The first is the djsc;p f;ng'o
program verification. This is usually presented as’ the process o hn ing
invariants of the program, or in other words fu.lly charactcnzlpg the be avior
of the program, discovering all the properties of .a.ll possible execut19ns:
[Mann74, Cous77¢]. As such, it is extremely ambitious and hence a p.rlorc;
doomed to failure on theoretical grounds for all bp.t the mqst restricte

. , .
PTOgYaTD];:;:g:;d discipline falling under the name of program .analysz.s is ‘the
more pragmatically oriented data flow analysis. Assocgated w1t;1 optx;m?fnlg_
compilers, this methodology is very much .concerned with questllons o ;. e d
tiveness and efficiency, in particular the trade-off .betweenA effort ugvested 31
the increment in the quality of produced code gained. Quite understandably,

o first & ; d by the National Science Foun-
The work of the first author was partlall;{ supporte
dation Tunder grant MCS76-00116 and the United States Department of Energy under

grant EY-76-C-02-3077.

iR0

190 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7 . :
. sgc. 7-1 | INTRODUCTION 191
its objectives are more modest. The reduced ambitiousness is expressed in
not trying to extract all properties of the program but concentrating on
several simple, well-defined properties such as the availability of expressions,
the types and attributes of dynamic values, the constancy of variables, etc.

A basic technique used to analyze procedureless programs (or single
procedures) is to transform them into flow graphs [Alle69] and assume that
all paths in the graphs can represent actual executions of the program. This
model does not describe the “true” run-time situation correctly, and in fact
most of the graph paths are not feasible, i.e., do not represent possible execu-
tions of the program. However, this model is widely adopted for two main

reasons:

“instead the previously collected, overestimated information to deduce the
effects of procedure calls on the program behavior [Alle74]. These approaches
use a relatively simple model of the program at the expense of some informa-
tion loss, arguing that such a loss is intrinsic anyway even in a purely intra-
procedural model.

However, there is a growing feeling among researchers that more
importance should be given to interprocedural analysis, especially in deeper
analyses with more ambitious goals, where avoidance of flow overestimation
is likely to be significant in improving the results of the analysis. This is
true in particular for analyses related to program verification, in which area
several recent papers, notably [DeBa75, Grei75, Hare76, Gall78, Cous77¢]
have already addressed this issue. : ’

Recently, however, the interest in more accurate interprocedural data
flow analysis has increased considerably, and new approaches to the prob-
lem appear in several recent works by Rosen [Rose79], Barth [Bart77a],
Lomet [Lome75], and others. All these works attempt to generalize, achieve

". more accurate information than, or be more pragmatic than the traditional
methods mentioned earlier. However, none of these methods achieves com-
plete generality. They are all interested in gathering only local effects of
procedure calls, are limited to simple bit-vector data flow problems, and do
not view interprocedural analysis as an integral part of the global data flow
analysis, but rather as a preliminary phase, completely independent from
the actual program analysis phase. For example, they all ignore the problem
of computing data at procedure entries interprocedurally, and are therefore
forced to make worst-case assumptions about these values. However, they
all can handle recursion. Rosen’s work [Rose79] also handles reference
parameters and derives “sharpest” static information, at the cost of a rather
complex algorithm. v : '

) In this paper we introduce two new techniques for performing inter-

procedural data flow analysis. These techniques are almost generally appli-
fcable; they derive the sharpest static information, they integrate
interprocedural analysis with intraprocedural analysis, and they handle

- recursion properly. These two approaches use two somewhat different graph
models for the program being analyzed. The first approach, which we term

"ﬁhz& Junctional approach, views procedures as collections of structured pro-

‘gram blocks and aims to establish input-output relations for each such block.
One then interprets procedure calls as “super operations” whose effect on
the program status can be computed using those relations. This approach
relates rather closely to most of the known techniques dealing with inter-

- Procedural flow, such as the “worst-case assumptions,” mixed with processing

of procedures in “inverse invocation order” [Alle74], Rosen’s “indirect arcs”

method [Rose79], inline expansion of procedures [Alle77], and most of the
known interprocedural techniques for program verification [Grei75, Gall78,

1. Tts relatively simple structure enables us to develop a comprehen-
sive analytic theory, to construct simple algorithms which perform
the required program analysis, and to investigate general properties
of these algorithms in detail (cf. [Hech77, Aho77] or Chapter 1 for
recent surveys of the subject).

2. Isolation of feasible paths from nonfeasible ones is known to be
an undecidable problem, closely related to the Turing machine
halting problem.

This classical technique faces significant problems in the presence of
procedures. These problems reflect the dependence of individual interpro-
cedural branches upon each other during program execution, a dependence
which is known at compile time and is essentially independent of any com-
putation performed during execution. Interprocedural branching is thus
much easier to analyze than intraprocedural branches, which usually depend
on the values assumed by various program variables. It is therefore very
tempting to exploit our special knowledge of this branching pattern in pro-
gram analysis, thereby tracing the program flow in 2 more accurate manner.

Interprocedural flow cannot be treated as a simple extension of the
intraprocedural flow, but calls for a more complicated model whose mathe-
matical properties require special analysis. In addition, many programming
languages include features such as procedure variables and parameter passing
by reference or by name [Aho77} which complicate the analysis of interpro-
cedural flow.

It is therefore not surprising that interprocedural analysis has been
neglected in much research on date flow analysis. Most of the recent literature
on this subject virtually ignores any interprocedural aspect of the analysis,
or splits the interprocedural analysis into a preliminary analysis phase which
gathers overestimated information about the properties of each procedure
in a program and which is followed by an intraprocedural analysis of each
procedure, suppressing any interprocedural transfer of control and using

192 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [CHAP, 7

Hare76, Cous77e]. Our version of this first technique has the advantage of
being rather simple to define and implement (potentially admitting rather

- efficient implementations for several important special cases), as well as the
other advantages mentioned above.

Our second technique, which we term the call-strings approach, is some-
what orthogonal to the first approach. This second technique blends inter-

“procedural flow analysis with the analysis of intraprocedural flow, and in
effect turns a whole program into a single flow graph. However, as informa-
tion is propagated through this graph, it is “tagged” with an encoded history
of the procedure calls encountered during propagation. In this way we make
interprocedural flow explicit, which enables us to determine, whenever we
encounter a procedure return, what part of the information at hand can
validly be propagated through this return, and what part has a conflicting
call history that bars such propagation.

Surprisingly enough, very few techniques using this kind of logic have -
been suggested up to now. We may note in this connection that a crude
approach, but one using similar logic, would be one in which procedure
calls and returns are interpreted as ordinary branch instructions. Even though
the possibility of such an approach has been suggested occasionally in the -
literature, it has never been considered seriously as an alternative interpro-
cedural analysis method. A related approach to program verification has
been investigated by de Bakker and Meertens [DeBa75], but, again, this has
been quite an isolated attempt and one with rather discouraging results,
which we believe to be due mainly to the ambitious nature of the analyses
considered. There is some resemblance, though, between this second
approach and the inline expansion method [Alle77] (see Section 7-4 for
details).

We shall show that an appropriate sophlstlca.tlon of this approach is
in fact quite adequate for data flow analysis, and gives results quite com-
parable with those of the functional approach. This latter approach also has
the merit that it can easily be transformed into an approximative approach,
in which some details of interprocedural flow are lost, but in which the
relevant algorithms become much less expensive.

A problem faced by any interprocedural analysis is the possxble pres-
ence of recursive procedures. The presence of such procedures causes inter-
procedural flow to become much more complex than it is in the nonrecursive
case, mainly because the length of a sequence of nested calls can be arbitrarily
large. Concerning our approaches in this case, we will show that they always
converge in the nonrecursive case, but may fail to yield an effective solution
of several data flow problems (such as constant propagation) for recursive

“programs. It will also be seen that much more advanced techniques are
needed if we are to cope fully with recursion for such problems.

We note that it is always possible to transform a program with pro-

sgc. 7-2 ./ NOTATIONS AND TERMINOLOGY » 193

cedures into a procedureless program by converting procedure calls and
returns into ordinary branch instructions, monitored by an explicit stack.
If we do this and simply subject the resulting program to intraprocedural
analysis, then we are in effect ignoring all the delicate properties of the inter-
procedural flow and thus inevitably overestimating flow. This simple observa-
tion shows that the attempt to perform more accurate interprocedural
analysis can be viewed as a first (and relatively easy) step toward accurate
analysis of more sophisticated properties of programs than are caught by
classical global analysis.

This chapter is organized as follows: Section 7-2 contains prehmmary
notations and terminology. Section 7-3 presents the functional approach,
first in abstract, definitional terms, and then shows that it can be effectively
implemented for data flow problems which possess a finite semilattice of
possible data values and sketches an algorithm for that purpose. We also
discuss several cases in which unusually efficient implementation is possible.
(These cases include many of those considered in classical data flow analyses.)
Section 7-4 presents the call-strings approach in abstract, definitional terms
showing that it also yields the solution we desire, though in a manner which
is not necessarily effective in the most general case. In Section 7-5 we show
that this latter approach can be effectively.implemented if the semilattice of
relevant data values is finite and investigate some of the efficiency parameters
of such an implementation. Section 7-6 presents a variant of the call-strings
approach which aims at a relatively simple, but only approximative, imple-
mentation of interprocedural data flow analysis. Section 7-7 is a concluding
section in which some further directions of research are suggested and
discussed.

We would hke to express our gratitude to Jacob T. Schwartz for
encouragement and many helpful suggestions and comments concerning this

research, and to Barry K. Rosen for careful reviewing and helpful comments

on this manuscript.

7—-2 NOTATIONS AND TERMINOLOGY

In this section we will review various basic notations and terminology
used in intraprocedural analysis, which will be referred to and modified
subsequently. The literature on data flow analysis is by now quite extensive,
and we refer the reader to [Hech77], [Aho77], or Chapter 1, three excellent
recent introductory expositions of that subject.

To analyze a program consisting of several subprocedures, each sub-
procedure p, including the main program, is first divided into basic blocks.
An (extended) basic block is a maximal single-entry multiexit sequence of
code. For convenience, we will assume that each procedure call constitutes

194 TWO APPROACHES TO IN”J."E.RPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

a single-instruction block. We also assume that each subprocedure phasa
unique exit block, denoted by e, which is also assumed to be a single-instruc-
tion block, and that p has a unique entry (root) block, denoted by r,,.
Assume for the moment that p contains no procedure calls. Then the
Sflow graph G, of p is a rooted directed graph whose nodes are the basic blocks
of p, whose root is r,,, and which contains an edge (m, n) for each direct trans-
fer of control from the basic block m to (the start of) the basic block n,

effected by some branch instruction. The presence of calls in p induces severa]

possible interprocedural extensions of the flow graph, which will be discussed
in the next section.

Let G be any rooted directed graph. G is denoted by a triplet (N, E, r),
where N is the set of its nodes, E the set of edges, and r its root. A path p
in G is a sequence of nodes in N (n,, n,, . . . , n) such that for each 1 < j < k,

(), n;51) € E. p is said to lead from n, (its initial node) to n, (its terminal
node). p can be also represented as the corresponding sequence of edges

((nysm3), . . ., (mgy,). The length of p is defined as the number of edges
along p (k — 1 in the above notation). For each pair of nodes m, n € N we
define path, (7, 7) as the set of all paths in G leading from m to n.

We assume that the program to be analyzed is written in a programming
language with the following semantic properties: Procedure parameters are
transferred by value, rather than by reference or by name (so that we can,
and will, ignore the problem of “aliasing” discussed by Rosen [Rose79]),
and there are no procedure variables or external procedures. We also assume
that the program has been translated into intermediate-level code in which
the transfer of values between actual arguments and formal parameters of a
procedure is explicit in the code and is accomplished by argument-transmit-
ting assignments, inserted before and after procedure calls, Because of this
last assumption, formal parameters can be treated in the same way as other
global variables. (For simplicity, we ignore here some aspects of recursive
value stacking, which gives these “assignments” extra flavor. For example,
a formal parameter of a recursive procedure p will have the same value after
the “epilog” of a recursive call in p to p as the value it had before the call.
Such considerations can be incorporated into our techniques, but will not
be discussed in this paper. The reader may find it helpful to think of our
model as allowing only parameterless procedures, in which case the above
problems do not exist.) All these assumptions are made in order to simplify
our treatment and are rather reasonable. If the first two assumptions are
not satisfied, then things become much more complicated, though not beyond

control. The third assumption is rather arbitrary but most convenient. (In -

[Cous77¢], e.g., the converse assumption is made, namely that global vari-
ables are passed between procedures as parameters, an assumptlon which we
believe to be less favorable technically.)

A global data flow framework is defined to be a pair (L, F), where L

sEC. 7-2 | NOTATIONS AND TERMINOLOGY S 195

~ is a semilattice of data or attribute information and F is a space of functions

acting on L (and describing a possible way in which data may propagate
along program flow paths). Let A denote the semilattice operation of L
(called a meet), which is assumed to be idempotent, associative, and com-
mutative. We assume that [contains a smallest element, denoted by O,
usually signifying null (worst-case) information (see below), and also a largest
element O, corresponding to “undefined” information (see Section 7-3 for
more details). F is assumed to be closed under functional composition and
meet, to contain an identity map, and to be monotone, i.e., to be such that for
each f € F, x,y € L, x <y implies f(x) < f(3). L is also assumed to be
bounded, i.e., not to contain any infinite decreasing sequence of distinct ele-
ments. (L, F) is called a distributive framework if, for each f € F and x, y
eL, f(x Ay = f(x) A f(3). We also assume that F contains a constant
map f,, which maps each x € L to Q. This map corresponds to impossible
propagation (see below).

Given a global data flow framework (L, F) and a flow graph G, we
associate with each edge (m, n) of G a propagation function f,, ., € F,
which represents the change of relevant data attributes as control passes
from the start of m, through m, to the start of n. (Recall that a basic block
may have more than one exit, so that f,, ,, must depend on » as well as m.)

Once the set S = {fi,, ,»: (m, n) € E} is given, we can define a (graph-
dependent) space F of propagation functions as the smallest set of functions -
acting in L which contains S, f, and the identity map id,, and which is closed
under functional composition and meet. It is clear that this F is monotone
iff S is monotone, and that F is distributive iff S is distributive.

Once F is defined, we can formulate the following general set of data
propagation equations, where, for each #n € N, x, denotes the data available
at the start of n:

x,=0

Xy = /\ ﬁm,n)(‘xm) ne N — {f}
(m,n) €L

These equations describe attribute propagation “locally.” That is,
they show the relation between attributes collected at adjacent basic blocks,
starting with null information at the program entry.

The solutions of these equations approximate the following abstractly
defined function known -as the meet-over-all-paths solution to a data flow
problem '

-1

o= NfA0):p & pathe (m)} e N (7-2)

Here we define f, = fusm © fimnnen © « -+ © Sy for each path p =
(n4, 1y, ...,). If p is null, then f, is defined-to be the identity map on L.
Many algorithms which solve the system of equations (7-1) are known

by now. These algorithms fall into_two main categories: (1) iterative algo-

196 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS /[CHAP. 7

rithms, which use only functional applications [Kild73, Hech75, Kam76,
Hech77, Tarj76), and (2) elimination algorithms, which use functional com-
‘positions and meets [Alle76, Grah76, Tarj75b]. These elimination algorithms
require some additional properties of F to allow elimination of program
loops, a process which may require a computation of an infinite meet in F,
unless such properties are assumed. Most of the algorithms in both categories
yield the maximum fixed-point solution to Egs. (7-1), which does coincide

with the solution (7-2) provided that the data flow framework in question is

distributive [Kild73], but which may fail to do so if the framework is only
monotone [Kam77]. However, even in this latter case we still have x, < y,

for all n € N; i.e., obtain an underestimated solution, which is always a)

safe one [Hech77]. In what follows, we will assume some basic knowledge of
these classical data flow algonthms :

7-3. THE FUNCTIONAL APPROACH
TO INTERPROCEDURAL ANALYSIS

In this section we present our first approach to interprocedural analysis.
This approach treats each procedure as a structure of blocks and establishes
relations between attribute data at its entry and related data at any of its

nodes. Using these relations, attribute data is propagated directly through

each procedure call. ‘

We prepare for our description by giving some definitions and making
some observations concerning the interprocedural nature of general pro-
grams. Let us first introduce the notion of an interprocedural flow graph of a
computer program containing several procedures. We can consider two
alternative representations of such a graph G. In the first representation, we
have G = | J {G,: p is a procedure in the program}, where, for each p, G, =

(N, E,, 1), and where r, is the entry block of p, N, is the set of all basic v

blocks within p, and E, = EJ U E} is the set of edges of G,. An edge (m, n) €
E3 iff there can be a direct transfer of control from m to » (via a “go-to” or
“i f ” statement, and (m, n) € E1 iff m is a call block and 7 is the block imme-
diately following that call.

- Thus this representation, which is the one to be used exphmtly in our
first approach, separates the flow graphs of individual procedures from each
other.

A second representation, denoted by G*, is defined as follows: G* =
(N*,E*,r,), where N* = | J N, and E* = E° U E*, where E® = |_J E% and

Fd F4
an edge (m, n) € E' iff either m is a call block and # is the entry block of the
called procedure [in which case (m, n) is called a call edge], or if m is an exit
block of some procedure p and » is a block immediately following a call to
p [in which case (m, n) is called a return edge]. The call edge (m, r,) and a

'SEC. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 197

return edge (e,, 7) are said to correspond to each other if p = gand (m, n) €
E!, for some procedure s. Here r, is the entry block of the main program,
sometimes also denoted as ru,,. Of course, not all paths through G* are
(even statically) feasible, in the sense of representing potentially valid execu-
tion paths, since the definition of G* ignores the special nature of procedure
calls and returns. For each n € N* we define IVP(r;, n) as the set of all
interprocedurally valid paths in G* ‘which lead from r, to n. A path g &
pathg.(r,,) is in IVP(ry, n) iff the sequence of all edges in g which are in E*,
which we will write as g, or ¢|m, is proper in the following recursive sense:

1. A tuple q, which contains no return edges is proper.

2. If g, contains return edges, and 7 is the smallest index in ¢, such that
q.() is a return edge, then g, is proper if i > land ¢,(i — 1) is a
call edge corresponding to the return edge ¢,(i), and after deleting
those two components from g,, the remaining tuple is also proper.

Remark: It is interesting to note that the set of all proper tuples over E?, as
well as U IVP(r,, 1), can be generated by a context-free grammar (but not by

a regular grammar), in contrast with the set of all possible paths in G*, which

is régular. v

For each procedure p and each n € N, we also define IVP,(r,, 1} as
the set of all interprocedurally valid paths ¢ in G* from r, to n such that each
procedure call in ¢ is completed by a subsequent corresponding refurn edge
in g. More precisely, a path g € pathg(r,, n) is in IVP,(r,, n) iff ¢, = gz is
complete, in the following recursive sense.-

The null tuple is completé.

2. A tuple g, is complete if it is either a concatenation of two complete

tuples, or else it starts with a call edge, terminates with the corre-

- sponding return edge, and the rest of its components constitute a
complete tuple.

Example 1.
Main program Procedure p
read a, b; if ¢ = O then return;
t:=axb; ’ else
call p; a:=a—1;
t:=axb;, - call p;
print #; ' t:=axbh
stop; endif ;
end - return;

198 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

; This program is transformed into the interprocedural flow graph in
Fig. 7-1, which includes both edges of |] E, and of E* (where solid arrows

. P
denote intraprocedural edges, dotted arrows denote edges in | J E!, and
p

dashed arrows denote interprocedural edges, i.e., edges in E'):

r read a, b ifa =0 then "
t:=a*h e :
P / a:=a—1
Ve {
N |
PR
n, t:-=a*b - ny
print t S ’
So]
S \
~ M
2
Figure 7-1

The following path ¢, in G* is an interprocedurally valid path throughout
the program [i.e., g, € IVP(ry, e\)]: g, = (ry, €1, sy Coy 1oy €5, Ny €5, 14, €4);
however, the path ¢, = (ry, ¢, 7,5, ¢y, 1y, €5, 0y, €;) is nOt, since q,|m =
((cy, r3), (cp, 13), (€5, 1)) is not proper, as can be easily checked. Similarly
the path g; = (r,, ¢,, 13, €5, 1) is in IVPy(r,, n,), whereas q, = (r,, c,, 7,
C,, €5, 1,) 1s not. Heuristically, g, reaches n, in the same incarnation of p in

yvhich it has started, but g, reaches n, in another incarnation which has been
invoked by the initial one.

. The notions introduced above appear in the following Path Decomposi-
tion Lemma:

Lemma 7-3.1. Letn € N* and g € IVP(r,, n). Then there exist pro-
cedures py, p,, . . ., p;, where p, is the main program and p; the pro-
ce('iure containing n, and calls ¢y, ..., ¢;_, such that for each i < j
¢; is in p; and calls p,,,, and ¢ can be represented as

q=qll(c, rp)llall... | (c;-15 ro)ll q; (7-3)
where for each i <j, g, € IVPy(r,,c;) and g, € IVP(r,, n). Con-

versely, any path which admits such a decomposition is in IVP(r,, n).
Moreover, this decomposition is unique.

Proof. Let g* = q|p. If ¢* is empty, then it is also complete, so that
q € IVP(ry, n), and we have the trivial decomposition ¢ = g with
Jj =1 (n must belong to the main program in this case).

SEC. 7-3 / THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 199

Otherwise, in view of the definition of a proper E L_tuple, and by
making repeated deletions of adjacent call edges and corresponding
return edges, we can reduce g* to a tuple g** which is either a null tuple
or a nonempty tuple containing only call edges. Let j = length of
g** + 1.If j = 1, i.e,, if ¢** is empty, it is readily seen that g* is com-
plete and that n belongs to the main program, and we have again the
trivial decomposition g = g.

Ifj > 1, let ¢, = g**@)(1),i=1,...,/ — 1, and put p, = main
program, p,,, = the procedure called from ¢, i=1,...,j— 1. In
view of the way in which g** was obtained from g, it follows that ¢; is
in p, for each i < j. Let my, = 1 and m, be the original index of g**(i)
in q i=1,...,j— 1. Then we have the decomposition g =
gl (ci> o)l s - - AlCej=15 7)1 g; where g, = gm_ +1:m, —1),i=
1,...,j— 1,and g, = gq(m;_, + 1:).1 It is easily verified that g, | is
complete for each i < j, and therefore ¢, € IVPy(r,, c;) for i < j and
q; € IVPO(rp:’ n)'

The proof of the converse assertion is simpler, and follows
directly from the definitions of IVP and IVP,.

The uniqueness of this decomposition is also easy to establish,
since ¢y, . . . , ¢, are precisely all the calls along ¢ which are not subse-
quently completed, and it is fairly obvious from the definitions that
these calls and their positions in g are unique, which immediately implies
the uniqueness of the whole decomposition. M

We can now describe our “functional” approach to interprocedural
analysis. Let (L, F) be a distributive data flow framework for G. In the first
phase of the functional approach we take F as the direct basis for our analysis.
More precisely, for each procedure p and each n € N, we define an element
®,.» € F which describes the manner in which attributes in L are prop-
agated from the start of r, to the start of n along paths in IVPy(r,, n). These
functions must satisfy the following (nonlinear) equations, whose heuristic
meaning should be self-explanatory: For each (m,n) € E°, let f, ., € F
denote the associated propagation effect. Then

¢r,ry < id, for each procedure p
Biom = /\ (M, m © Deroomr) foreachn € N,
(Ep

m,n) €

(74

where

3 _ - if (m, n) € ES
(m, Boreen if (m, n) € E} and m calls procedure g

1For any tuple or string a, a(i: j) denotes its subpart from the ith component to the
jth one, inclusive; a(i :) denotes the subpart of a from the ith component to its end.

200 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP, 7. sEC. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS
This set of equations possesses a maximum fixed-point solution defined as:
follows: Let F be ordered by writing g, > g, for g;, g, € Fiff g,(x) > 82(%)

-forallx € L. ;

Start by putting

Brsrr —id, for each procedure p -
$m =fa foreachne N, —{r}

and then apply Egs. (7-4) iteratively in a round-robin fashion to obtain new
approximations to the ¢’s. (This can be done using iterations of either the
Gauss-Seidel type or the Jacobi type, though the former is a better approach.)
Let @, denote the ith approximation computed in this manner. Sinc
8%y = br,.m for all p, n, it follows inductively that ¢, ,, > ¢i:L, for each
pyrandi>0, :

A problem which arises here is that F need not in general be a bounded -
semilattice, even if L is bounded. If L is finite, then F must be finite and:
therefore bounded, but if L is not finite, F need not in general be bounded."

Nevertheless, even if the sequence {¢4,, ,} >0 is infinite for some p, n,;"
we still can define its limit, denoted by ¢, ,,, as follows: For each x € L,
the sequence {$/,,,,(x)} ;> is decreasing in L, and since L is bounded, it must,
be finite, and we define ¢, ,,(x) as its limit. [To ensure that ¢,,,, € Fw
must impose another condition upon F, namely: for each decreasing sequence _
{g}i>0 of functions in F, the limit defined as above is also in F. However, -
since we will assume that L is finite (so that F is bounded) in any practical

id, and f,. With these notations, Eqs (7-4) read
Diriry =

Plrson =10 ¢(n,n)

¢(n,m) = ¢(r2,e,) © Bren

Dirienr = 10 Birmy

by = d

Birson =00 By

Desm) = Ptrsen © ¢<r,,c,>

Dirsen = [id o ¢(r:,r=)] Ao di,ml

Table 7-1 summarizes the iterative solution of these equations:

Table 7-1

201

sis will show that @ * b is available upon exit from the recursive procedure
p, so that its second computation in the main program is redundant and can
therefore be eliminated. (Some traditional interprocedural methods will fail
to detect this fact, since the expression @ * b is killed in p.) For simplicity we
will only show that part of the analysis which pertains. directly to the single
expression a * b. Assuming this simplification, L = {0, 1, Q}, where 1 indi-
cates that @ * b is available and 0 that it is not, and F contains precisely four
functions [recall that f(Q) = Q always]; the “constant” functions 0 and 1,

application of this approach, we introduce this condition only temporarily,

After one After two After three

for the sake of the following abstract reasoning. Thus, the above process Function Initial value iteration iterations iterations
defines a solution also in F.] Thus, the above process defines a solution
{@(s,m} 5. to Eqs. (7-4), though not necessarily effectively. It is easy to check - Py id id id id
that the limiting functions defined by the iterative process that we have ey - f ' 1 1 1
described are indeed a solution, and that in fact they are the max1ma1 fixed- rum) fa fa 1 1
point solution of (7-4). ’ (e fa ’ fa 1 1
Having obtained this solution, we can use it to compute a solution to (rara) id id id id
our data flow problem. For each basic block 1 let x, € L denote the informa- Peraca . fa 0 o g
tion available at the start of #. Then we have the following set of equations: (raym) ,{" fg ?d id
(ra,e2} Q ' : ’

ren = 0 € L (7-52)

X, = N\ A@ 0, 0(x,): g is a procedure and
cisa call to p in g}

for each procedure 7-5b)
P p (-30) solve Eqs. (7-5), which read as follows:

=0

¢(f1.61)(‘xl'x) A ¢(fg,ca)(xrx)
= 10x,.) A 0(x,,)
For these equations we see after two iterations that

Xy = Prpm(X,) for each procedure p, and n € N, — {r,} (7-5(:)

These equations can be (effectively) solved by a standard iterative algorithm,
which yields the maximal fixed-point solution of (7-5).

We illustrate the above procedure for solution of Egs. (7-4) and 7-5
by applying it to Example 1 introduced earlier, in which we suppose that

available expressions analysis is to be performed. Our interprocedural analy- Xy =X, =0

Thus, the first stage of our solution stabilizes after three iterations.

202 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

from which, using (7-5¢), we obtain the complete solution
xft = x?‘z = xc‘z = xmz = xen = 0
Xoy =X, =X, =1

ie., a * b is available at the start of ., which is what we wanted to show.

Next we shall analyze the properties of the solution of Eqs. (7-4) and

(7-5) as defined above. As in intraprocedural analysis our main objective is
to show that this solution coincides with the meet-over-all-paths solution
defined (in the interprocedural case) as follows: i

Vo= A1{/3:q € WP(rmuin, W)} € F foreachn e N* (7-6)

_ " (this is the meet-over- i
Yo=yu0) foreachn e N all-paths solution) -7

Lemma 7-3.2. Letn € N, for some procedure p. Then
¢(fp,") = /\ {f;': q S IVPO(’p: n)}
Proof. We first prove, by induction on 7, that for all i > 0

¢£(rp1”) 2 /\ {fq q & IVPG Tps n)}
Indeed, for i =0, if n=r, then ¢}, ,, =id, =f,, where g, €
IVPy(r,, r,) is the empty path from r, to r, so that Dy =
AN q € WPy(r,,r)}. I nsr, then @3, ,, = fo > f forall f € F.
Thus the assertion is true for i = 0. ‘

Suppose that it is true for some i. For either kind of iterative
computation of the functions ¢**! using Egs. (7-4) we have

E:x:n) 2 /\ (h(m.n) ° ¢£(r,,m))
(m,n) € Ep .

2 - {)\GE (h(m,n) ° /\ {f;: qec IVPO(rpa m)})

for each procedure p and n € N, — {r,}. (Note here that if n = r,,
then (bi}k,,f,,) = 'Mr»,n) = Gl = {fq:q € IVP(r,, m}. Our chain of
equalities and inequalities then continues.)

= N\, Simn © NSy q € IVPy(r,, m)) A
A Bemenr © N LUyt q € IVP(r,, m)})

(m,n) € Ept
m calls p*

2 /\ (/\ {f:lll(m,n) ‘g€ IVPO(rPS m)}) A

(m,n) € Ep®

N AUt @ € IRy, €0} 0 A L2 g & IVR(r,0 mi)

m calls p’

= /\ (/\ {f;ll(m.n): q< IVPo(rps m)}) A

{m,n) EEL®

- n/)\eE A arimeiaicer,mn: 4 € IVPy(rp, m), ¢’ € IVPo(r,, e,)))

m calls p*

SEC. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 203

1t is easily checked that for each function f;, appearing in‘the last right-
hand side, ¢, € IVP,(r,, n). Hence, this last right-hand side must be

> {f,:q € IVP(r,, m)}

The same inequality is then seen to apply to the limit function ¢, »
as well. . .

To prove the inequality in the other direction, we will s:how t!nat
for each g € IVP,(r,, 1), [, = }(r,,m- This will be proven by induction
on the length of ¢. If this length is 0, then 7 must be equal to r, and
fo = Girarn = idz. Suppose that the assertion is true for a%l p, nand
afll g€ pI,VpPo(rp, n) whose length is < k, and let there be given p, m, 4
such that the length of ¢ is k + 1. Let (m, n) be the last edge in g, 80
that we can write g = ¢,||(m,).) y

If (m,n) € ES, then ¢, € IVP(r,, m) and its length is < k.

* Therefore f;, > $,,m and by (7-4) we have

Jo=Sanm© Fue = P © Dienmy = Birm

If m,n) € E!, then m = e, for some procedure p'. It is easily
seen from the definition of IVP,, that g can be decomposed as
g, (g,) 4211 (e, 1), sUCh that (my, 1) € E},,. = IVP‘é(rp, ny),
g, € IVPy(r,, e,). Since fimrn = Jiewmy = ldL. (since m, anl ép, a_u:;a1
single instruction blocks, containing only an interprocedural branc
instruction), we have '

fo=Juota
But both ¢, and g, have length < k, so that by Eq. (7-4) and the induc-
tion hypothesis, we obtain »
JaZ Bierem © Dirnmy = Bmm © Grpm = Pirnd .
This proves our assertion, from which the lemma follows immedi-
ately. B

Let us now define, for each basic block #,
Ao = /\ Bienm © Psppern) © -+ +° Plompent - N (7-8)
p, = main program, p; is the procedure containing 7,
and for each i < j, ¢;is acall to pryy from p;}
z, = 2(0) (7-9)
Theorem 7-3.3. y, = x, for eachn € N*.

Proof. letqg € IVP(r;,,»,ain, n). By Lemma 7-3.1, ¢ admits a def:ompﬁ)si-
tion ¢ = gull (c1, ro) @zl - -[(cjmis 7511 g; @s in Ba. (7-3); i-e,, tdzz
exist procedures p, = main program, p,...,P; = the. proce
containing n, and calls ¢;, . . ., €;-1 such that for each i <C j, ¢; is a call
10 Py, from p;, and g; € IVPy(r, ¢,), and also g; € IVP{(r,,,).

204

TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

Thus, by Lemma 7-3.2, we have

f; =fuotp.o o fu> ¢(rp,;n) °© ¢(rp,_,.c.--z) ©...0 ¢('Ppcl) = Xn
Hence, v, > ¥,

Conversely, let py,...,p5 ¢y, .
Lemma 7-3.2 we have

¢ffv;m) ° ¢(fn;-pci—l) I ¢(rﬂpcl)
= /\{ﬁu °fq1-1 .. of;h: q: € IVPO(’.?J;’ Ci)
for each i < jand ¢, € IVP(r,, n)}

- {f;zll(m.?pg)llﬂz.n|[(GJ-1,M;) jgs+ SAIME a8 above} :

By Lemma 7-3.1, each concatenated path in the last set expression
belongs to IVP(rp,ia, 7). Thus, the last expression is

2 /\\ {f;'. q € IVP(rmaim n)} = 'l/n‘
Therefore y, > y, so that y, and w, are equal for eachn € N*. W

We can now prove our main result:
Theorem 7-3.4. For each basic block » € N*, x, = y, = 7,

Proof. 1t is immediate from Theorem 7-3.3 that y, = z, for each
n e N*. We claim that x,, = z,, for all procedures p in the program.
By Egs. (7-5¢), (7-8), and (7-9) this will imply that x, = z, for all n. |

To prove our claim, we define a new flow graph G, = (N, E,, r1),
where N, is the set of all entry blocks and call blocks in the program.

E,= E% U E} is the set of edges of G,. An edge (m, n) € E? iff
m is the entry node of some procedure p and-» is a call within p. More-
over, (m, n) € ELiff mis a call to some procedure p and # is the entry
of p. As before, #, is the entry block of the main program. We now
define a data flow problem for G, by associating a data-propagating
map ge..y € Fwith each (m, n) € E_, in such a way that

¢(m,n) if (m’ n) = E:?
id, if (m, n) € E!

It is clear that Eqgs. (7-5a) and (7-5b) are equivalent to the iterative
equations for the new data flow problem. On the other hand, Egs.
(7-8) and (7-9) define the meet-over-all paths solution for. the same
problem, if we substitute only entry blocks or call blocks for #. Since
Fis assumed to be distributive, it follows by Kildall’s Theorem [Kild73],
that x,, = z,, for each procedure p, and this completes the proof of
our theorem. ’

g(m,;) = {

., ¢y be as in Eq. (7-8). By -

"SEC. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 205

Itis now time to discuss the pragmatic problems that will affect attempts
to use the functional approach to interprocedural analysis that we have
sketched. The main problem is, obviously, how to compute the @’s effectively
if L is not finite (or if F is not bounded). As examples below will show, in the
most general case the functional approach does not and cannot yield an
effective algorithm for solving Eqs. (7-4) and (7-5). Moreover, even. if the
iterative computation of the ¢’s converges, we must still face the problem of
space needed to represent these functions. Since the functional method that
we have outlined manipulates the ¢’s directly, instead of just applying them
to elements of Z, it can increase the space required for data flow analysis if
L is finite, and may even fail to give finite representation to the @’sif Lis
infinite. We note here that our functional approach belongs to the class of
elimination algorithms for solving data flow problems (a class of methods
which includes the interval-oriented algorithms of Cocke and Allen [Alle76],
and Tarjan’s fast elimination algorithms [Tarj75b]), since it uses functional
compositions and meets in addition to functional applications. All such

- elimination algorithms face similar problems, and in practical terms are

therefore limited to cases in which the elements of F possess some compact
and simple representation, in which meets and compositions of elements
of F can be easily calculated, and in which F is a bounded semilattice (or
else relevant infinite meets in F are easy to calculate). This family of cases
includes the classical “bit-vector” data flow problems (e.g., analysis for
available expressions, use-definition chaining, cf. [Hech77)).

It is interesting to ask whether it is possible to modify the functional
approach so that it avoids explicit functional compositions and meets, and
thus becomes an iferative approach. This is possible if L is finite, and an
implementation having this property will be sketched below.

The following example will illustrate some of the pragmatic problems
noted above, and also some potential advantages of the functional approach
over any iterative variant of it. Suppose that we want to perform constant
propagation (see, e.g., [Hech77] for a description of the standard framework
used in this analysis). Consider the following code:

Example 2.
Main program Procedure p
A:=0; if cond then
call P; A=4+1;
print 4; - - call p;
end A= 4-—1
: endif;
return;
end

206 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

If we do not. allow symbolic representation of the ¢’s, then, in any
iterative approach, we shall have to compute ¢, ,,({(4, 0)}), for which we
need to compute (for the second level of recursion) @, .,({(4, D}), etc.,
~ computing ¢, .,{(4, k)}) for all integers k 2> 0. Thus, an iterative approach
would diverge in this example.

However, if symbolic or some other compact representation of the ¢’s

is possible, then it can be advantageous to manipulate these functions directly,
without applying them to elements of L till their final values have been
obtained. This can give us an overall description of their behavior, allowing

them to be calculated in relatively few iterations. For example, in the example

shown above, it is easily checked that qS(,, en-1s found to be id, after two
iterations.

waever, convergence of the purely functional approach is not ensured
in general. To see this, consider the following slight modification of the
preceding example. ’

Example 3.
Main program Procedure p
A4:=0; if cond then]
. call p; A=A+ 2+ sign{4 — 100);
print A4; call p;
end , =4 —1;
endif
return;
end

It is fairly easy to check that the purely functional approach (which
uses symbolic representation of the ¢’s) will diverge if negative integers are

included in the program domain. Intuitively, this is due to the fact that it -

takes more than 100 -+ k iterations through Egs. (7-4) to detect that
Dr,en({(4, —K)}) = & for all k > 0. _

Remark: The data flow framework required for constant propagation is in
general not distributive. However, it can be shown that the standard frame
work for constant propagation becomes distributive if the program contains
only one single variable and each propagation between adjacent basic blocks
either sets the value of that variable to some constant, or calculates the output
-value of the variable from its input value in a one—to-one manner, as in the
above examples.

These examples indicate that if L is not finite, divergénce can actually

occur. If L is infinite but F is bounded, then a symbolic functional approach
would converge, whereas an iterative-approach could still diverge if infinite

sec. 7-3 / THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 207

space were needed to represent the ¢’s. Moreover, we have at present no
simple criterion which guarantees that F is bounded in cases in which L is
infinite. For these reasons, -we will henceforth assume that L is a finite
semilattice. We can then summarize our results up to this point as follows:

Corollary 7-3.5. If (L, F) is a distributive data flow framework and
the semilattice L is finite, then the iterative solution of Egs. (7-4)
converges and, together with Egs. (7-5), yields the meet-over-all-inter-
procedurally-valid-paths solution (7-7).

Next we shall sketch an algorithm which implements the functional
approach for general frameworks with a finite semilattice L. We do not
assume that any compact representation for elements of F is available, nor
that their compositions and meets are easy to calculate, but instead give a
purely iterative representation to the functional approach, which avoids all
functional compositions and méets and also computes the ¢’s only for values
which reach some relevant procedure entry during propagation.

- Our algorithm is workpile-driven. The functions ¢ are represented by
a two-dimensional partially defined map PHI: N* X L — L, so that for
eachn € N*, x € L, PHI(n, x) represents ¢, (x), where p is the procedure
containing n. The substeps of the algorithm are as follows:

1. Initialize WORK := {(r;, 0)}, PHI(r,, 0) := 0. [WORK is a subset
of N* x L, containing pairs (#, x) for which PHI(n, x) has been
changed and its new value has not yet been propagated to successor
blocks of #.]

2. While WORK # &, remove an element (#, x) from WORK, and
let y = PHI(n, x).

(a) Ifnisacall block in a procedure ¢, calling a procedure p, then

(i) If z =PHI(e, y) is defined, let m be the unique block
such that (n, m) € E;, and propagate (x, z) to m. [By this
we mean: -assign PHI(Gn, x) := PHI(m, x) A z, where
undefined PHI(m, x) is interpreted as Q; if the value of
PHI(m, x) has changed, add (m, x) to WORK.]

(ii) Otherwise, propagate (y, y) to r,. This will trigger pro-
pagation through p, which will later trigger propagation
to the block following » in g (see below).

(b) If nis the exit block of some procedure p, i.e., n = ¢,, find all
pairs (m,) such that m is a block following some call ¢ to p,
~and PHI(c, ¥) = x, and for each such pair propagate (u, y)

- tom.

208 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [/ CHAP. 7

(¢) If n is any-other block in some procedure p, then, for each
m & Ej — {n}, propagate (x, f, (7)) to m.
3. Repeatstep(2) till WORK = . When this happens, PHI represents
the desired ¢ functions, computed only for “relevant” data values,
from which the x solution can be readily computed as follows:

x, = /N\PHI(n,d) foreachn e N*

a€lL

Step (3) thus implies that in the implementation we have skctched separate

analysis to compute the x solution is unnecessary.

We omit analysis of the above algorithm, which in many ways would
resemble an analysis of the abstract approach. However, so as not to avoid
- the issue of the correctness of our algorithm, we outline a proof of its total
correctness, details of which can be readlly filled in by the reader. The proof
consists of several steps:

1. The algorithm terminates if L is finite, since each element (n, x)
of N* x L (which is a finite set) is added to WORK only a finite
number of times, because the values assumed by PHI(z, x) upon
successive. insertions constitute a strictly decreasmg sequence in
L, which must of course be finite.

2. We claim that for each n € N*, .
x, << /\ PHI(n, a) (7-10)

a€L

To prove this claim, we show, using induction on the sequence of

steps executed by the algorithm, that at the end of the ith step,-

x, < /\ PHF(n, a), for each n € N*, a € L, where PHI' denotes

aEL

the value of PHI at the end of the ith step. In executing the ith
step, we propagate some pair (@, b) € L X L to some n € N*,
By examining all possible cases, it is easy to show, using the induc-
tion hypothesis, that x, << b, from which (7-10) follows immedi-
ately.

3. In order to prove the converse mequahty, it is suﬁiment by Theo-

rem 7-3.4, to show that for each n € N* and g € IVP(ry, n),
10} = /\ PHI(n,). To do this, we first need the following asser-
a€L . .

tion:
Assertion. Let p be a procedure, n e N, and a € L for which

PHI(n, a) has been computed by our algonthm Then, for each path
q € IVPy(r,,), fi{@) = PHI(n, a).

Proof. We proceed by induction on the length of ¢. This is trivial
if the length = 0. Suppose that it is true for all p, n, a, and g with
length less than some k& > 0, and let ¢ € IVPy(r,, n) be of length k.

SEC. 7-3 / THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 209

Write ¢ = 4| (m, #) and observe that either (m, n) € E°, in which case

14D = finn(fe@) = fonn(PHI(m, @) = PHI(n, a)
(the last inequality follows from the structure of our algorithm),
or (m,n) is a return edge, in which case ¢ can be written as
qi “(C, rp’)”él “(m, n)s where Q1 € IVPo(rw C), ‘jz € IVPO()‘P:, m), and
we have

JLa) = fﬁz(‘ fa@) = f3,(PHI(c, a)) > PHI(n, PHI(c, 4)) > PHI(n,)

4. Now let g be any pathbin IVP(r,,). Decompose ¢ as in (7-3), ¢ =
gilller, ra)ll- - ey rp)11 G54 5- Then, using the monotonicity of
F, we have

J(0) = PHI(c,, 0) = 4, .
f;h(.fql(o)) 2]:”([11) 2 PHI(CZ’ al) = dy

[This is because our algorithm will propagate (a,, 4,) to r,,, so that
PHI(c,, a,) will eventually have been computed.] Continuing in this
manner, we obtain f,(0) > PHI(r, 4,), which proves (3). This completes
the proof of the total correctness of our algorithm. M

"Example 4. Consider Example 1 given above. The steps taken by our
iterative algorithm are summarized in Table 7-2 [where, for notational con-
venience, we represent PHI as a set of triplets, so that it contains (a, b, ¢) iff
PHI(a, b) = ¢]:

Table 7-2
Initially (ry, 0,0) {(r, 0)}
Propagate From To Entries added to PHI WORK .
(0, 1) ry c; {c;,0,1) {(€1,0)}
(1.1 cy r (r2. 1, 1) {(r2 1}
(1, 0) 23 2 (€2, 1.0 ’ {{ez. DI
(1.1) r ey . {ea, 1, 1) {(e2. 1), (62, 1)}
(0, 0) cy Iy (5.0, 0) {(ea: 1), (2, 0)}
(0: 1) e ny » (nI' 0, 1) {(’2- 0), (nif 0)}
(0, 0) 123 ¢ © (€2, 0,0) {(ny, 0), (2. 0)}
(0' O) 7q ey ‘ : (521 0! 0) {(n]r 0): (02' 0)' (921 o)}
0.1 ny ey (e, 0, 1) {(c2. 0). (€2, 0), (£1, 0)}
(0, 0) cy n, - (n,. 0,0) {(ez, 0), (e1, 0), (n,, 0)}
(1r 0) €y ”2 (nz: 1/ 0) {(31' 0)-,(”2: 0), (nZI 1)}
0, 0) €y . ny — {(e1. 0), (n2. 0), (n2, 1)}
- €1 . - - - {("2/ 0), (nZ' 1)}
(0, 1) ny. 7 - {(n2, 1)}
(1, 1) ny, e, —) &

210 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

Finally we compute the x solution of Egs. (7-4) and (7-5) in step (3) of our
iterative algorithm as follows: '
x,, = PHI(r,0) =0
x,, = PHI(¢,,0) = 1
X, = PHI(n,,0) =1
x,, = PHI(e,,0) =1
x,, = PHI{r,, 0) A PHI(r;, 1) =0
x,, = PHI{(c,, 0) A PHI(c,, 1) =0
Xy = PHI(n,, 0) A PHI(n,, 1) =0
x,, = PHI(e,, 0) A PHI(e,, 1) =0 v
Remark: In our treatment of the functional approach, we have deliberately
avoided the issue of its efficient and pragmatic implementation for special
simple frameworks in which elimination is feasible. For example, the iterative
solutic_m of Egs. (7-4) may not be the best approach and could be replaced,
e.g., by interval-based analysis [Alle76]. Also one might benefit from pro-
cessing procedures in some useful order, as in [Alle74]. In this chapter we have
preferred to emphasize the general approach and its analysis and general

applicability. Details of an efficient, pragmatic, and interval-based implemen-
tation will be discussed in a subsequent paper.

7-4. 'THE CALL-STRING APPROACH
'TO INTERPROCEDURAL ANALYSIS

We now describe a second approach to interprocedural analysis. This
approach views procedure calls and returns in much the same way.as any
other transfer of control, but takes care to avoid propagation along inter-
procedurally invalid paths. This is achieved by tagging propagated data with
an encoded history of procedure calls along which that data has propagated.
This contrasts with the idea of tagging it by the lattice value attained on
entrance to the most recent procedure, as in the functional approach. In our
second approach, this “propagation history” is updated whenever a call or a
return is encountered during propagation. This makes interprocedural flow
explicit and increases the accuracy of propagated information. Moreover, by
passing to approximate, but simpler, encodings of the call history, we are
able to derive approximate, underestimated information for any data flow
analysis, which should nevertheless remain more accurate than that derived

" by ignoring all interprocedural constraints on the propagation. The fact .

that this second approach allows us to perform approximate data flow
analysis even in eases in which convergence of a full analysis is not ensured
or when the space requirements of a full analysis is prohibitive gives this
second approach real advantages.

SEC. 7-4 / THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 211

We will first describe our second approach in a somewhat abstract
manner. We will then suggest several modifications which yield relatively
efficient convergent algorithms for many important cases.

As before, we suppose that we are given an interprocedural flow graph
G, but this time we make an explicit use of the second representation G* =
(N*, E*, r,) of G. That is, we blend all procedures in G into one flow graph,
but distinguish between intraprocedural and interprocedural edges.

Definition. A call string y is a tuple of call blocks ¢, €55 ..., ¢; in
N* for which there exists an execution path g € IVP(r,, n), terminating at
some n € N¥ such that the decomposition (7-3) of ¢ has the form
qill{es, rodll @21l - N1 12,)1 41 Where g, € TVPy(ry,) for each i<
and g,,; € IVPy(#,,.,,). To show the relation between g and y we introduce a
map CM such that CM(g) = 7. By the uniqueness of the decomposition (7-3)
(cf. Lemma 7-3.1) this map is single-valued. y can be thought of as the
contents of a stack containing the locations of all call instructions which
have not yet been completed. S

Example 5. In Example 1 of Section 7-3 the féllowing call strings are
possible: '

A—the null call string, (c,), {¢,¢3), (c1€2¢,), €tc.

However, for each n in the main program and each ¢ € IVP(r,, n), CM(g) =
A; no other call strings can “tag” such paths. All the other call strings “tag”
paths leading to nodes in the procedure p, and indicate all possible calling
sequences (i.e., contents of a stack of all uncompleted calls at some point of
the program’s execution) that can materialize as execution advances to p.

Let I" denote the space of all call strings y corresponding (in the above
sense) to interprocedurally valid paths in G*. Note that if G* is nonrecursive,
then I is finite; otherwise I" will be infinite, and as we shall soon see, this can
cause difficulties for our approach.

Let (L, F) be the data flow framework under consideration. We define
a new framework (L*, F*), which reflects the interprocedural constraints in
G* in an implicit manner, as follows: L* = LT, i.e., L* is the space of all
maps from I into L. Since we assume that L contains a largest “undefined”
element Q, we can identify L* with the space of all partially defined maps
from [into L — {Q}. If I' is finite, then the representation of L* as a space
of partially defined maps is certainly more efficient, but for abstract purposes
the first representation is more convenient. (In examples below, however,
we will use partial map representation for elements of L*.) If £ € L* and
y € T, then heuristically £(y) denotes that part of the propagated data which
has been propagated along execution paths in CM~1{y}.

212 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7

If we define a meet operation in L* as a pointwise meet on T, i.e., if
for &;, &, € L*, y € T, we define (£; A £)@) = &:(2) A &,(), then L*
becomes a semilattice. The smallest element in L* is 0%, where 0%(y) = 0
for each y € T. The largest element in L* is Q*, where Q*(y) = Q for each
y € I'. Note that unless I is finite, L* need not be bounded. However, if
E, >¢&E,>...>¢&,>...1s an infinite decreasing chain in L*, its limit is
well-defined and can be computed as follows: For each y € I, the chain
E,(y) = &,(y) > ... must be finite (since L is bounded). Define (lim &,)(y)
as the final value of that chain. Obviously lim &, = /\ &, and in the same

manner it can be shown that /\ &, exists for any sequence {&,};., in L*.

In order to describe F*, we first need to define a certain operation in I

Definition. o:T" x E* — T" is a partially defined binary operation
such that for eachy € I'and (m, n) € E* such that CM~'{y} N IVP(r,, m) ==
& we have

y if (m,n) € E°

y | [m] if (m, n) is a call edge in E!

y o (m,n) = (i.e., if m is a call block)

p(1:#y — 1) (i.e., y without its last component)
if (m, n) is a return edge in E*! such

that p(#y) is its corresponding call edge
in all other cases, y o (m, n) is undefined. Here #y denotes the length of y.

The following lemma can be proved in an obvious and straightforward way.

Lemma 7-4.1. Let y € I', (m,n) € E*, q € IVP(r;, m) such that
CM(q) = y. Then p, =7y o (m, n) is defined iff ¢, = g||(m, n) is in
IVP(r,, n), in which case CM(q,) = 7,.

The operation o defines the manner in which call strings are updated
as data is propagated along an edge of the flow graph. Loosely put, the
above lemma states that path incrementation is transformed into o by the
“homomorphism” CM.

Example 6. In Example | of Section 7-3, we have
Ao (cy,ry) = (cy)
(c1) © (c2, r2) = (c1€2)

(cic3) o (€3, m5) = (cy)
and

(c1c3) o (ez, 1y)

SEC. 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 213

is undefined, indicating that after p had called itself once, the return from p
must be to the block following ¢, in p; it is illegal to return then to the main
program.

Next, let (m, n) € E*, and let f,,,, € F be the data propagation map
associated with (m, n). Note that by our assumptions f,,, , = id, if (m, n) €
E!, since in these cases m is a block containing only a jump which in itself
does not affect data attributes. Define [, ,,: L* — L* as follows: For each
Eel*yeTl,

-f(m, n)(i(y 1))

if there exists (a necessarily unique)
e (§)) = { 71 such that y, o (m, n) =y

Q otherwise

The intuitive interpretation of this formula is as follows: f§, ,(£) represents
information at the start of » which is obtained by propagation of the informa-
tion &, known at the start of m, along the edge (m, n). For each y, € T for
which &(p,) is defined, we propagate &(p,), the y,-selected data available at
the start of m, to the start of n in standard intraprocedural fashion (that is,
using fi,.»). However, this propagated data is now associated not with y,
but with y, o (m, n), which “tags” the set of paths obtained by concatenating
" (m, n) to all paths which are “tagged” by y,, which lead to m, and along which
&(p,) has been propagated. If y, o (m, n) is undefined, then, by Lemma
7-4.1, &(p,) should not be propagated through (m, n) since no path which
leads to m and is tagged by p, can be concatenated with (2, n) in an inter-
procedurally valid manner. In this case, we simply discard fi,,»(E(¥1)), as
‘ indicated by the above formula.

Example 7. In Example 1 of Section 7-3, let £, = {(4, 1)} € L*. Then
~ (for notational convenience, call strings are written without enclosing paren-
theses): &, = &, ,.,(&) = {(cy, D}, since 4 o (¢y, r,) = ¢, and &, is defined
only at A. Note that f, ,, = id, as is the case for all interprocedural jumps.

& = fEnen(&1) = {(e1s frneo(D)} = {(c1, 0)}
This edge is intraprocedural, so that call strings need not be modified.
[=f2"c,,,,)(§z) = {(c1c2, 0)}
&o = flnen(€s) = {(c1c2, 0)}

¢s :le:?z,nz)(é-t) = {(c1, 0)}
[But note that, e.g., f¥, ,,(£,) = totally undefined map (Q*) in L*, since the
only y, € T for which p, o (e,, n;) is defined is the string ¢, but &,(c,) is
undefined.]
66 :f?:lz,ez)(éi) i~ {(cl’ 1)}

& = fEam@) ={4, D} (compare with [, ,,(£s)!)

214 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

To summarize, we have traced one possible interprocedurally valid path from
¢, to n,, starting with the information that a = b is availabl; at ¢, and obtain-
ing the fact that it is still available at n, (considering just this path, of 'course).
An attempt to return to the main program prematurely resulted in com-
pletely discarding the information. o ‘

F* is now defined as the smallest subset of maps acting in L* which
contains {f¥, ,,: (m, n) € E*} and the identity map in L* and which is closed
under functional composition and meet.

Lemma 7-4.2.

1. If Fis monotone in L, then F* is monotone in L*.
If Fis distributive in L, then F* is distributive in L*.

3. If Fis distributive in L, then for each (m,n) € E, f{, ., is
continuous in L*, that is, fz",,,,,,,(/k\ fk) = /k\ [E.m(&e), for each

collection {&,},>, = L*.

Proof. It is easily seen that it is sufficient to prove (1) or (2) for th.e
set {f&,.m:(m,n) € E*}, and this is straightforward from the defini-

tions. .
To prove (3), note that for each y € I' for which there exists

y, € I' such that y, o (m, n) =y we have
fzkm’”)(k/z\l ék)(y) - .f(m,n) (k/z\l ék(yl))

But since L is bounded, there exists k,(y,) such that the last. exp're.ssion
equals f(,,,_,,,(A\ f,,(y,)), which in turn, by the distributivity of

1<k<ko(y1)
Jm,m> equals (
k/>().f(m.n)(fk())l)) = lgk/g\k:u(ﬂ)fzkm.n)(ék)(y) 2 (k/z\lf;km,n)(ék))(y)

Thus f¥, ,,,(/\ ék) > A fE.m(&). The converse inequality is immedi-
T\ k=1 k=1
ate from the monotonicity of /', ,,. W

Remark: Note that interprocedural, as distinct from intraprocedural,
data flow frameworks depend heavily on the flow graph (I" itself may
vary from one flow graph to another). Thus, for example, there is no
simple way to obtain F* directly from F without any reference to the
flow graph. This will not create any problems in the sequel, ar?d we
argue that even in the intraprocedural case it is a better practice to
regard data flow frameworks as graph-dependent.

We can now define a data flow problem for G*, using the new frame-
work (L*, F*), in which we seek the maximal fixed-point solution of the

SEC. 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 215

following equations in L*:

xk ={(4, 0)} where 1 is the null call string
= /N [l ne Nt—{r}

(m,n) € E*

(7-11)

We can show the existence of a solution to these equations in the
following manner: Let x*©® = {(1, 0)}, x*© — Q* for all n € N* — {r.}.
Then apply Egs. (7-11) iteratively to obtain new approximations to the x*’s.
Let x;*® denote the ith approximation computed in this manner.

Since x}© > x}M for all n € N*, it follows inductively, from the
monotonicity of /¥, for each (m, n) € E*, that XFO > x*6+0 for all i > 0,
n € N*. Thus, for eachn € N*, {x¥®},., is a decreasing chain in L*, having
a limit, and we define x* = li{n xF@_ It is rather straightforward to show

that {x}},cy. is indeed a solution to (7-11) and that in fact it is the maximal
fixed-point solution of (7-11).

Having defined this solution, we will want to convert its values to
values in L, because L* has been introduced only as an auxiliary semilattice,
and our aim is really to obtain data in L for each basic block. Since there is
no longer a need to split the data at node n into parts depending on the
interprocedural flow leading to n, we can combine these parts together, i.e.,
take their meet. For each n € N*, we can then simply define

Xy = {E\r xx(7) (7-12)

A detailed example of applying this technique to our running example
(Example 1 of Section 7-3) will be given in the next section.

In justifying the approach that we have just outlined, our first step is
to prove that x] coincides with the meet-over-all-interprocedurally-valid-
paths solution y, defined in the preceding section. This can be shown as

follows:

Definition. Let pathg. (r;, n) denote the set of all execution paths
(whether interprocedurally valid or not) leading from r, to n € N*. For
each p=(r,s,,...,5.,n) e pathg. (ry, n) define f* = Flosm oL Gson °

- © f&.e- For each n € N* define y* = A {f5(x¥): p € pathg. (ry, n)}.

Since pathg. (r,, 1) is at most countable, this (possibly infinite) meet in

L* is well defined.

Theorem 7-4.3. If (L, F) is a distributive data flow framework, then,
for each n € N*, x* = y*,

Proof. The proof follows (it is quite similar to the proof of an analo-
gous theorem of Kildall for a bounded semilattice [Kild73]):

216

TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

l. Letne N*and p=(r,s,,...,s, n) € pathg. (r;, n). By
(7-11) we have

x:"; Sf?;l’.!’!)(x:':)
X5 S flnea(x¥)

X = flam(xl)

Combining all these inequalities, and using the mono-
tonicity of the f*’s, we obtain x* < f¥*(x*), and therefore
x¥ < y¥

2. Conversely, we will prove by induction on i that
xf® > yp¥ foralli>0,nec N*

Indeed, let i = 0. If n = r,, then x*© — Q* > y¥*. On the
other hand, the null execution path Po € pathg. (ry, r,), so
that y} << fh(x}) = x* = x*©_ Thus the assertion is true
for i = 0. Suppose that it is true for some i > 0. Then
XHOHD = x}® > p* and for each n € N* — {r.} we have

k(+1)
Xn = /\ le:n,n)(x:(l)) 2 /\ fzkm,n)(y::)
(m,n) € E*

(m,n) € E*

by the induction hypothesis.
We now need the following:
Lemma 7-4.4. For each (m, n) E*, f¥ o(¥) > y*

Proof. Since f%,, is distributive and continuous on L* (Lemma
7-4.2), we have

S onmOm) = fon(/\N{f3(x¥); p € pathg. (r,, m)})
= AN\ En(f3(}): p € pathg. (r,, m)}
AN {fa(x¥):q € pathg. (r, m)} = y* m

Now returning to Theorem 7-4.3, it follows by Lemma 7-4.4 that

k(i+1) - - 3
X > " {)\E W= ¥ (each n € N* is assumed to have predeces-

sors). Hence assertion (2) is established, and it follows that for each
ne N* xf =limx}? = A x*¥® > y* 5o that x* — yE n
i i>1 ¥ e

Lemma 7-4.5. Let n € N*, p=(r,,s,,... , Sx, 1) € pathg. (r;, n)
and y € I'. Then f¥(x*)(y) is defined iff p € IVP(r,, n) and CM(p) =
7. If this is the case, then f*(x})(y) = f0).

SEC. 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 217

Proof. The proof is by induction on /(p), the length of p (i.e., the
number of edges in p). If p is the null path, then » must be equal to r,.
Moreover, CM(p) = A, p € IVP(ry, ry) and f3¥(x¥) = x} is defined
only at 4 and equals 0 = f,(0). Thus our assertion is true if /(p) = 0.
Suppose that this assertion is true for all » € N* and p €
pathg. (r,, n)such that /(p) < A. Letn € N*and p = (ry, 55, ..., Si, h)
be a path of length k in pathg. (r,, n). Let p; = (ry, S35 . . ., Sx). By
definition, for each y € I' we have
F2GD@) = fEanlf 3.617)
Sl FEGH)] if there exists p, € I such that
= Yio(sp,n) =7y

Q otherwise
Thus f#(x}*)(y) is defined iff there exists p, € I" such that y, o (m, n)
=7y and f¥(x*)(y,) is defined. By our inductive hypothesis, this is
the case iff p, € IVP(ry, s), CM(p,) =y, and 7, o (s;, n) = . By
Lemma 7-4.1, these last conditions are equivalent to p € IVP(r,, n)

and CM(p) = y.
If this is the case, then again, by our inductive hypothesis,

(@) = /,,(0) and so
F3GE@) = fiounl /5 (0] = f(0) m

Now we can prove the main result of this section:
Theorem 7-4.6. For eachn € N*, x, = y,.

Proof. Lety € I'. By Theorem 7-4.3,
xx () = {/3G63)®): p € pathe. (ry, n)}
and by Lemma 7-4.5,
= A {fX0): p € IVP(r,, n) such that CM(p) = y}
Thus, by (7-12),
Xy = y/e\rx,’f(y) =NA{f,0):pelVP(r,n}=y, A

Corollary 7-4.7. If the flow graph G* is nonrecursive, then the itera-
tive solution of Eqgs. (7-11) that we have described will converge and
yield the desired meet-over-all-interprocedurally-valid-paths solution
of these equations.

Proof. Convergence is assured since I' is finite, and hence L* is
bounded. Thus (L*, F*) is a distributive data flow framework, and
by standard arguments the iterative solution of (7-11) must converge

218 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

[Kild73, Hech77]. Therefore, Theorem 7-4.6 implies that the limiting
solution coincides with the meet-over-all-paths solution. M

The call-strings approach is of questionable feasibility if I" is infinite,
i.e., if G* contains recursive procedures. Moreover, as for the functional
approach, it is rather hopeless to convert it into an effective algorithm for
handling the most general cases of certain data flow problems such as con-
stant propagation. However, as we shall see in the following section, a fairly
practical variant of the call-strings approach can be devised for data flow
frameworks with a finite semilattice L.

Let us also observe the similarity between the call-string approach and
the inline expansion method (discussed, e.g., in [Alle77]). Indeed, tagging
data by call strings amounts essentially to creating virtual copies of each
procedure, one copy for each possible calling sequence reaching that pro-
cedure. Indeed let y = c,c, ... c; € I. Then, if ¢, calls procedure p from
procedure p’, we can substitute the virtual copy of p corresponding to y at
the place of ¢, in the virtual copy of p’ corresponding to y’ = ¢,¢, ... ¢; ;.
Doing so, ¢; and the return from p become no-ops, and we get a full inline
expansion of procedures.

7-5. DATA FLOW ANALYSES USING
A FINITE SEMILATTICE

Let (L, F) be a distributive data flow framework such that L is finite.
As we have seen, the functional approach described in Section 7-3 converges
for such a framework. We will show in this section that it is also possible to
construct a call-strings algorithm which converges for these frameworks. As
noted in the previous section, convergence is ensured if I" is finite. The idea
behind our modified approach is to replace I' by some finite subset I'y and
allow propagation only through interprocedurally valid paths which are
mapped into elements of I'y. Such an approach is not generally feasible
because it can lead to an overestimated (and unsafe) solution, since it does
not trace information along all possible paths. However, using the finiteness
of L, we will show that I'y can be chosen in such a way that no information
gets lost and the algorithm produces the same solution as defined in Section
7-4.

We begin to describe our approach without fully specifying I'y. Later
we will show how I'y should depend on L in order to guarantee the above
solution.

Definitions.

1. LetI'; be some finite subset of I' with the property that if y € ',
and p, is an initial subtuple of p, then y, € T, too.

SEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 219

2. Foreachn € N*, let IVP'(r,, n) denote the set of allg € IVP(ry, n)
such that for each initial subpath g, of ¢ (including g), CM(q,)
e TI,.

3. We also modify the o operation so that it acts in Iy rather than
in T, as follows: If y € Ty, (m, n) € E* such that there exists
g € IVP'(r,, m) where CM(q) = p, then

y if (m, n) € E°
y || [m] if (m, n) is a call edge in E! and
?llm] € Ty

YoM =1 1:4y—1) if(m, n)isa return edge in E* and

y(#7y) is the call block preceding n

undefined in all other cases

The only difference between this definition of o and the previous one is
that it will not add a call block m to a call string y unless the resulting string
is in I'y. When this is not the case, information tagged by y will be lost when
propagating through (m, n), unless it is also tagged by some other call string
to which m can be concatenated.

The following lemma is analogous to Lemma 7-4.1:

Lemma 7-5.1. Let y € Ty, (m,n) € E*, g € IVP'(r;, m) such'thfit
CM(q) = y. Then y, =y o (m, n) is defined iff ¢, = g||(m, n) is in
IVP'(r,, n), in which case CM(q,) = y;.

We now define a data flow framework (L*, F*) in much the same way
as in Section 7-4, but replace I" by I'y. This leads to a bounded semilattice
L* = L™ and to a distributive data flow framework (L*, F*).

Hence, Egs. (7-11) come to be effectively solvable by any standard
iterative algorithm which yields their maximal fixed-point solution. To this
solution we will want to apply the following final calculation, which is a
variant of (7-12):

X = N x@) (7-13)
Y€

Careful scrutiny of the analysis of the previous section reveals that the
only place where the nature of I', and the operation o are referred to is in
Lemma 7-4.1, and it is easily seen that if we replace I" and o by I', and the
modified o, throughout the previous analysis, and also replace IVP(ry, n)
by IVP(r,, n) for all n € N*, then by proofs completely analogous to those
presented in Section 7-4 (but with one notable difference, i.e., that there is
now no need to worry about continuity of F* or infinite meets in L*, since L*
is now known to be bounded) we obtain the following:

220 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

Theorem 7-5.2. Foreachn € N*
Xn = Vi = N\ {,(0):p € IVP'(r,, n)}

Up to this point, our suggested modifications have been quite general
and do not impose any particular requirements upon L or upon I'y. On the
other hand, Theorem 7-5.2 implies that x// is an overestimated solution, and
as such is useless for purposes of our analysis, as it can yield unsafe informa-
tion (e.g., it may suggest that an expression is available whereas it may
actually be unavailable), unless we can show that x|/ coincides with the meet-
over-all-interprocedurally-valid-paths solution of the attribute propagation
equations which concern us. As will be shown below, this is indeed the case
if L is finite.

Definition. Let M > 0 be an integer. Define I',, as the (finite) set of
all call strings whose lengths do not exceed M. I'), obviously satisfies the
conditions of part (1) of the previous definition.

Lemma 7-5.3. Let (L, F) be a data flow framework with L a finite
semilattice, and let M = K(|L| + 1)?, where K is the number of call
blocks in the program being analyzed and | L| is the cardinality of L.
Let I'y = I'j,. Then, for each n € N* and each execution path g €
IVP(r,, n) there exists another path ¢° € IVP'(r,, n) such that f,(0) =
Ja(0).

Proof. By induction on the length of ¢. If the length is 0, then n = r,
and ¢ is the null execution path, which belongs to both IVP(r,, r,) and
IVP’(ry, r,), so that our assertion is obviously true in this case.

Suppose that the lemma is true for all paths whose length is
less than some k > 1, and let n € N*, g € IVP(r,, n) be a path of
length k. If ¢ € IVP(r,, n) then there is nothing to prove, so assume
that this is not the case, and let ¢, be the shortest initial subpath of ¢
such that CM(q,) ¢ I'y. Then ¢, can be decomposed according to
Eq. (7-3) as follows:

g0 = qillCco, ro)ll@all - - Al (ess 7o) 1 G541

Hence j > M. Next, consider the sequence {(c;, &;,)}, where, for
each i <j, o, = fi, o fo.©...0 f,(0), and B, is either Q if the call
at ¢, is not completed in g (this call is certainly not completed in g,),
or f;,(0) if the call at ¢; is completed in ¢, and g, is the initial subpath of
g ending at the return which completes the call. Thus, for each call,
the sequence records the calling block, the value propagated along
this path up to the call, and the value propagated up to the correspond-

SEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 221

ing return, if it materializes. The number of distinct elements of such a
sequence is at most K(|L| + 1)> = M (we do not count Q as an element
of L; if we did, then the bound can be reduced to K|L|?). Since j > M,
this sequence must contain at least two identical components (c,, &,, S.)
and (c,, &, B,), where a < b < j.

Now, if f, = f, = Q, then neither of the calls ¢, ¢, is completed
in g. If we rewrite ¢ as

q = q1ll (o rp.)1 9211 (e, 72,11 95

then it is easily seen that the shorter path § = ¢}||(c,, 75..) || 5 is also
in IVP(r,, n). Moreover

o, = fo,(0) = o, = fo, o f5,(0)
so that

JA0) = fay © faw © [2,(0) = foy © £2,(0) = £3(0)
By our induction hypothesis there exists g’ € IVP'(r,, n) such that
J#(0) = £3(0) = £,(0), which proves the lemma for g.
On the other hand, if f, = B, = Q, then it follows that both
calls ¢, and ¢, are completed in ¢, with ¢, necessarily completed first.
Thus we can write

9 = qill(ca rp.) 19211 (o 75D 1145 11 (€pis M) 11 G511 (€pnis 0) 11 G5

where n, = n, is the block immediately following c,. Again it follows
that ¢ = i1l (co> r5..) 1145 11 (e5,.) 1 45 is in IVP(ry, n). Moreover

O = f;h'(o) =0y = f;h’ e f;n'(o)
ﬂn . f;h' 9 fqa’ 2 f;h’ o f;ln’(o) o ﬂb e f‘q:' e f;h’ 2 f;ll'(o)

from which one easily obtains f,(0) = f;(0), and the proof can now
continue exactly as before. W

The main result of this section now follows immediately:

Theorem 7-5.4. Let (L, F) be a distributive data flow framework
with a finite semilattice L, and let 'y = I',,, with M as defined above.
Then, for each n € N*, x] = y,. That is, the modified algorithm
described at the beginning of the present section yields a valid inter-
procedural solution.

Proof. Since IVP'(r,, n) = IVP(r,, n) we have x, > y,. On the other
hand, let ¢ € IVP(r,, n). By Lemma 7-5.3 there exists ¢’ € IVP'(ry, n)
such that f,(0) = f,(0) > /\ {f,(0): p € IVP'(r;, n)} = x,,. Hence y,
=NA{f0):q9 € IVP(r;,n)} > x,. |

222 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

Remark: Note that in Lemma 7-5.3 and Theorem 7-5.4, K can be
replaced by the maximal number K’ of distinct calls in any sequence of
nested calls in the program being analyzed. In most cases this gives a

significant improvement of the bound on M appearing in those two
results.

We have now shown that finite data flow frameworks are solvable by
a modified call-strings approach. However, the size of T' o can be expected
to be large enough to make this approach as impractical as the corresponding
functional approach. But in several special cases we can reduce the size of
r o still further. The following definition is taken from [Rose78b], rewritten
In our notation:

Definition. A data flow framework (L, F) is called decomposable if

there exists a finite set 4 and a collection of data flow frameworks
{(La, F.)}ac4 such that

I. L=]J L., ordered in a pointwise manner induced by the indi-

a€EA
vidual orders in each L,.

2. F< 3 F, Thatis, for each f € F there exists a collection [s

aEA
where f* € F for each & € A, such that for each x — (X.)eca E L
we have

f(x) - (fa(xa))aeA

In the cases covered by this definition we can split our data flow frame-
work into a finite number of “independent” frameworks, each inducing a
separate data flow problem, and obtain the solution to the original problem
simply by grouping all the individual solutions together.

For example, the standard framework (L, F) for available expressions
analysis is decomposable into subframeworks each of which is a framework
for the availability of a single expression. Formally, let 4 be the set of all
program expressions. For each « € 4 let L = {0, 1} where 1 indicates that
o is available and 0 that it is not. Then {0, 1}4 is isomorphic with L (which
is more conveniently represented as the power set of A). It is easily checked
that each f € F can be decomposed as Y f*, where for each a € 4, fee

a€EA

F,, and is either the constant 0 if & can be killed by the propagation step
describeq by f, is the constant 1 if « is unconditionally generated by that
propagation step, and is the identity map in all other cases. The frameworks
useq .for use-definition chaining and live variables have analogous decom-
positions.

A straightforward modification of Lemma 7-5.3, applied to each

(L., F,) separately yields the following improved result for decomposable
frameworks:

SEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 223

Theorem 7-5.5. Let (L, F) be a decomposable distributive data flow
framework with a finite semilattice. Define M = K - max (| L, | + 1)?
a€EA

and let I'y = I',. Then, for each n € N*, y; = y,.

In the special case of available expressions analysis this is certainly an
improvement of Theorem 7-5.4, since it reduces the bound on the length of
permissible call strings from K - O(4!4) to 9K. For this analysis we can do
even better since available expression analysis has the property appearing in
the following definition.

Definition. A decomposable data flow framework (L, F) is called
I-related if, for each o € A, F, consists only of constant functions and
identity functions.

This property is characteristic of situations in which there exists at
most one point along each path which can affect the data being propagated.
Indeed, consider a framework having this property; let « € A and let p =
(54, 85, ..., 5, be an execution path. Let j < k be the largest index such
that /¢, , ., is a constant function. Then clearly f% = f¥,, ., ,, and is there-
fore also a constant. Hence in this case the effect of propagation in L, through
p is independent of the initial data and is determined by the edge (s,-;, s,)
alone. If no such j exists, then f, = id|[,_, in which case no point along p
affects the final data.

Note also that since each F, is assumed to be closed under functional

‘meet, it follows that if (L, F) is l-related then the only constant functions

that F, can contain are 0 (the smallest element in L,) and 1 (the largest ele-
ment). Hence we can assume, with no loss of generality, that L, is the trivial
lattice {0, 1} for each @ € A. All the classical data flow analyses mentioned
above have 1-related frameworks. It is therefore easily seen that, under these
assumptions, 1-related frameworks are those having a semilattice of effective
height 1 [Rose78b, Section 7].

For frameworks having the I-related property it is easy to replace an
execution path g by a shorter subpath ¢ such that f£(0) = f7(0) for some
o € A.Indeed, to obtain such a § we have only to ensure that g is also inter-
procedurally valid and that the last edge (s, s”) in g for which f, ,, is constant
belongs to 4. This observation allows us to restrict the length of permissible
call strings still further. The following can then be shown:

Theorem 7-5.6. Let (L, F) be a l-related distributive data flow
framework. Put I’y = I';x. Then, for each n € N*, x|, = y,.

The analysis developed in this section and the previous one can be
modified to deal with nondistributive data flow problems. In the nondistribu-
tive case, Theorems 7-4.6 and 7-5.2 guarantee only inequalities of the form

224 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

x, < y, (resp. X! < y!)for all n € N*. The arguments in this section show
that under'appropriate conditions y, = y, for eachn € N*, so that assumin
these conditions Theorems 7-5.4, 7-5.5, 7-5.6 all yield the inequalities x! <g
», for each n € N*. Thus, in the nondistributive case, our approach lgad—s
to an underestimated solution, as is the case for intraprocedural iterative
algorithms for nondistributive frameworks [Kam77].

. Example 8. We return to Example 1 studied in Section 7-3. Since
available expressions analysis uses a 1-related framework, and SiI;CC the
flow graph appearing in that example satisfies K = K’ = 2, w,e cantakeI', =
I’s, and apply Kildall’s iterative algorithm [Kild73] to solve Egs. (7-011)
Table ’{-3 summarizes the steps which are then performed (for notationai
convenience call strings are written without enclosing parentheses):

Table 7-3
Propagat:
pagate Workpile of nodes
from which further
From
To Updated x* value propagation is required

(initially) x* =1{(4 0)} {r}
N xE={d) {c)
€y 2 X;l:={(cl'1)} {r2}
ra Cy Xi: ={(cy, 0)} {ca)
I €y X;: ={(e1. 1)} {ca, 3}
c, ry Xr, = {(c1, 1), (c1c5, 0)} {es 1}
e, n, X% = Q*(unchanged) {ry}
ey m Xr?i={(l'1)} {r2. ny}
%o c, xfk*’ ={(¢1, 0), (cyc,, 0)} {ny, c,}
r, e, x;: ={(c1, 1), (cyc,, 0)} {ny, ¢y, €3}
ny 31 Xe =[(ﬂ, 1)} { 1

T . Cas €, €1}
cy ry Xr:E ={(e1, 1), (cic2,0), (cicc,, 0)} fez €1, 13}
e, n, Xn, = {(c1, 0)} {e1, ry, Ny}
. e ey
e? 2 e, ry, 0y}

== {ra, ny}

The. next steps of the algorithm update x%, x*, x* x* in similar fashion
adding new entries with increasingly longer call strings, up to a string,
€1€2€2€,C,¢,, but none of x}, x*, x* or xX is ever modified. Final x* values
for the blocks appearing in our example are:
* ek
xra . x:.’z - {(cla l)’ (Clcz’ 0)3 (C1c2(32a 0)) CRCRURC) (CICZCZCZCZCZ, 0)}
k
x5 = {(1, 0), (¢1¢5,0), . . ., (c1e3¢565¢5¢5, 0)}
R
Xz = {(c1, 0), (c1¢5,0), . . ., (c1¢50,05¢,, 0)} (# x¥, by the way)

SEC. 7-6 | AN APPROXIMATIVE CALL-STRING APPROACH 225
An x”’ solution can now easily be computed; of course, this is identical to
the solutions obtained by previous methods.

Note that in this example there was no need to maintain call strings of
length up to 6 (length 2 would have sufficed). However, to derive correct
information in the example depicted as Fig. 7-2, we need call strings in which

one call appears three times.

Example 6:

€4

return

=
-~
~_————

Figure 7-2

The shortest path in Fig. 7-2 showing that a * b is not available at m’ is
q = (ry,cy, 1oy 0, €' 1y, Cyy Py Ny Coy Fyy Cos Fay €3, My, €4, My, €3, My €4, m’),
in which ¢, appears three times before any of the calls in g is completed.

It is an interesting and challenging problem to find, for a given flow
graph, by some preliminary analysis, an optimal set I, of call strings needed
to perform some particular interprocedural data flow analysis without losing

information.

7-6. AN APPROXIMATIVE CALL-STRING
APPROACH

In this section we present a modification of the call-string approach
developed in Section 7-4, which yields a convergent algorithm for any data
flow analysis, even though this algorithm may in general fail to produce
precisely the desired (meet-over-all-interprocedurally-valid-paths) solution.
However, the output of the algorithm to be presented will always be an
underestimated (and hence safe) solution. This compromise, which is useful
even when L is finite, can make the call-string approach much more efficient.

226 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS |/ CHAP. 7

Moreover, if L is infinite, or if F is not bounded or does not admit compact
representation, then this modified approach is one of the very few ways to
perform interprocedural analysis that we know of.

Three things should be kept in mind when evaluating any approxima-
tive approach to an interprocedural data flow problem: (1) Even in intrapro-
cedural analysis, a meet-over-all-paths solution is itself an underestimation
to the “true” run-time situation, since many of the static execution paths
which enter into such an analysis may not be executable; (2) many data flow
analyses whose semilattices L are not finite are also not distributive [Kam77,
Shar78a], so that even the intraprocedural iterative solution of the data flow
equations may underestimate the meet-over-all-paths solution; and (3) in
nondistributive cases, the meet-over-all-paths solution may not be calculable
(cf. [Hech77] for details).

By analyzing the abstract approach presented in Section 7-4, we can
easily see that the convergence (and efficiency) of the call-strings approach
depends primarily on T. Convergence can be ensured in general only if '
is finite; and the smaller I is, the less complex the algorithm becomes. This
observation motivates the approach that we propose in this section, whose
general outline is as follows.

Choose some finite (preferably rather small) set T* which is closed under
a binary operation * and has a left identity with respect to this operation.
(We suggest that in practice * be associative and noncommutative, but the
general description given below will not assume this.) As in Section 7-4, let
I" denote the set of all call strings. Choose an “encoding” map ¢ which maps
each call block to some element of T, Using *, we can extend o to I" by put-
ting a(y) = a(c,) * a(cy) * . . . * o(c;) (computed left to right) for each y =
(¢15 €3, ..., ¢;) € T. We also define a(4) to be w, the left-identity of I

Let (L, F) be any (not necessarily distributive) data flow framework.
We will define a modified data flow framework (L*, F*) in essentially the
same way as we did in Section 7-4, but with some differences reflecting the
nature of the approximative approach, as detailed below.

L* is defined as LT. All the observations made in Section 7-4 concerning
L* still apply, only now L* is bounded since I* has been assumed to be finite.

As before, in order to define F*, we first define an updating operation
between encoded call strings and edges in E*. This updating operation is now
more complex than that defined earlier, and need not be one-to-one and
single-valued any more. It is therefore best described by assigning to each
edge (m, n) € E* a relation R In I Essentially, R, , is the identity
relation for each (m, n) € E° and for each call edge (m, n) and its correspond-
ing return edge (m’, n’) we have R,y = Rirny. Then a path (ny, n,, . . . , n)
will be considered to be acceptable if and only if R s'e R . S6¥WCH
Ry iny #= @. To make these relations bear some meaningful relationship
to the updating map o defined in Section 7-4, we first define for each (m, n) «

SEC. 7-6 | AN APPROXIMATIVE CALL-STRING APPROACH 227

E* a relation [, ,, in T, so that for each y,,y, € T, Pl iff p, =7, 0
(m, n), and then require the relation o o R, o 07! to contain the relation
I(m, - This condition will guarantee that every interprocedurally valid path
is also acceptable by our encoding scheme, but not necessarily vice versa.

To make the above ideas more precise, we suggest the following con-
struction to obtain such suitable relations:

Definition. For each procedure p in the program being analyzed,
define ECS(p) = {o(CM(q)): q € IVP(r,, rp)}. This is the set of all encoded
call strings which result from interprocedurally valid paths reaching the
entry of p.

These sets can be calculated by a rather simple preliminary analysis
based upon the following set of equations (where main denotes the main
program, which is assumed to be nonrecursive):

ECS(main) = {w}

ECS(p) = {& * a(c): c is a call to p from some procedure P’ (7-14)
and & € ECS(p’)} for p = main

After initializing each ECS(p) to @, for all p 5= main, these equations can
be solved iteratively in a fairly standard way. (The iterative solution will
converge because T is finite.) It is a simple matter to prove that the iterative
solution yields the sets ECS(p) defined above.

Using the sets ECS, we now define the following objects: for each
n € N* a set of interprocedurally acceptable paths leading from the main

A
entry to n, denoted by 1AP(r,, n); a modified set-valued map CM f[om
(J IAP(r,, n) to 2%; and a modified relation-valued map R: E* — 20T,
neEN*

For each (m, n) € E*, R, is a relation in f', so that for each «, B € T" we
have

o = B € ECS(p) if (m, n) € ES for some

procedure p

o € ECS(p) and f = a * a(m) if (m, n) is a call edge from
procedure p

B € ECS(p) and & = B * a(c) if (m, n) is a return edge
corresponding to a call edge
from a call block ¢ in
procedure p

OR ;B ifE

A\
Using these relations, we define the map CM, so that for each n € N* and
cach path g € pathg. (r,, n) of the form (r,, S25 83, - - -, Sk_1, n) we have

S
CM(q) = R(n.n) 4 R(Il.-l‘:) QR O R(Jrl.n){”)}

228 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

Finally, for each n € N* we define
N
IAP(r,, n) = {q € pathg. (r,, n): CM(q) # &'}

The intuitive meaning of these concepts can be explained as follows:
Since we have decided to record the actual call string by a homomorphism
CM of paths into a finite set f', it is inevitable that we will also admit paths
which are not in IVP(r,, n). Thus IAP(r,, n) = IVP(r,, n) and will also con-
tain paths which the encoding CM cannot distinguish from valid IVP paths.
In particular, some returns to other than their originating calls will have to
be admitted.

AN\
Having defined IAP, CM, and R, we next define F* in essentially the
same manner as in Section 7-4. Specifically, for each (m, n) € E* we define
fEms L* — L* as follows: For each & € L*, o € T

S enm(@)@) = A\ {Simm(E(@1)): 01 R,)

where, by definition, an empty meet yields Q.

F* is now constructed from the functions ', , exactly as before. The
heuristic significance of this definition is the same as in Section 7-4, only now
the “tag” updating which occurs when propagation takes place along an
interprocedural edge involves less extensive and less precise information.
The modified updating operation that has just been defined can be both one-
to-many and many-to-one, possibilities which are both reflected in the above
formula. It is easy to verify that both monotonicity and distributivity are
preserved as we pass from (L, F) to (L*, F*).

Next we associate with (L*, F*) the data flow problem of determining
the maximal fixed-point solution of the equations

x5 = (v, 0) .
xt= N ShaGB) ne N = () 3
(m,n) € E*

As previously, a solution of these equations can be obtained by standard
iterative techniques. Once this solution has been obtained, we make the
following final calculation:

£, = A\ XH@) (7-16)

o€l

The techniques of Section 7-4 can now be applied to analyze the pro-
cedure just described. Theorem 7-4.3 retains its validity, if restated as follows:

Theorem 7-6.2.

1. If (L, F) is distributive, then, for each n € N*, xf = y
AAS3(x%): p € pathg. (1, n)}.
2. If (L, F) is monotone, then, for each n € N*, x} < y¥.

SEC. 7-6 | AN APPROXIMATIVE CALL-STRING APPROACH 229

Instead of Lemma 7-4.5, the following variant applies:

Lemma 7-6.3. Let n € N* p € pathg. (r,n) and « € I'. Then
A
[EK) (@) is defined iff @ € CM(p), in which case fF(xF)(«) = f,(0).

Proof. By induction on the length of p. The assertion is obvious if
p is the null execution path. Suppose that it is true for all paths with
length <k and let p = (ry, 85, . . . , S, 1) € pathg. (r;, n) be a path of
length k. Let p, = (ry, 85, . - ., S;). Then for each & € I we have

o) = fGum [7.(7)N@)
. /\ {f‘(n,n)[ftn(x:l:)(al)]: a’lR(Sk.n)a'}

Thus f#(x*)(«) is defined iff there exists &, € T such that 00 R (5O
and f% (x,)(a,) is defined. By inductive hypothesis, this is true iff there
A

exists o, € CM(p,) and o, R, &, and, by the definition of R, , and
N\ S

CM, this last assertion is true iff « € CM(p). Hence, applying the induc-

tive hypothesis again, /% (x*)(«,) = £,,(0), for all &, appearing in the

above meet, so that this meet equals f,, ,[/5.(0)] = f,(0). ®
Remark: As previously noted, and can be seen, e.g., from the proof
of the last lemma, use of an encoding scheme creates chances for
propagation through paths which are not interprocedurally valid. How-
ever, our lemma shows that even if an execution path ¢ is encoded by
more than one element of I', all these “tags” are associated with the
same information, namely f,(0). Thus information is propagated cor-
rectly along each path, only more paths are now acceptable for that
propagation. These observations will be made more precise in what
follows.

Lemma 7-6.4. For each n € N*, IVP(r,, n) = IAP(r,, n).

Proof. Let g € IVP(ry, n) for some n € N*. We will show, by induc-
tion on the length of ¢, that a(CM(q)) € C@I(q), so that, by Lemma
7-6.1, q € 1IAP(ry, n).

Our assertion is obvious if ¢ is the null execution path. Suppose
it is true for all paths whose length is less than some k£ > 0, and let
n e N* g € IVP(r,, n) whose length is k. Write ¢ = q,||(m, n). By

2N
inductive hypothesis, 6(CM(q,)) € CM(q,). Now, three cases are
possible:

1. (m,n) € E°. In this case C/ltfl(q) = C/R/I(ql) and CM(q) =

CM(g,) so that a(CM(g)) € CM(g).

2. (m,n) is a call edge. Then, by definition, C/R/I(q) contains
a(CM(q,)) * a(m) = a(CM(q)).

230 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

3. (m, n) is a return edge. Let (¢’, r,) denote the corresponding
call edge. Since g € IVP(r,, n), ¢ can be decomposed as
q'll(c’, r)llq"”||(m, n), where ¢’ € IVP(r,, ¢') and q' €
.IVPo(rp, m). It is evident from the definitions of the quantities
involved that that CM(q) = CM(gq’) and that CM(q,) =
CM(q)||(c"). Hence a(CM(q,)) = o(CM(q)) * a(c’). It thus
follows that ¢(CM(q)) is a member of the set {B e
ECS(p)| B ::\ a(c’) = 6(CM(q,))} which, by definition, is a
subset of CM(q). m

We can now state an analog of Theorem 7-4.6:

Theorem 7-6.5.

1. If (L, F) is a distributive data flow framework, then, for each
ne N* :

)’en = /\ {fP(O)‘p € IAP(rl’ n)} S yn
2. If(L, F) is only monotone, then, for each n ¢ N*
’Qn S /\ {fp(o) p = IAP(’I, ”)} S y'l
Proof.

l. Letoef. By Theorem 7-6.2 and Lemmas 7-6.1 and 7-6.3
we have ’
X2 (@) = A {S5C8)@): p € pathg. (r,, n)}
= A\ U/0): p € ARG, n), & € CM(p)}
Thus, by Eq. (7-16)
X, = /e\fx,’."(a) = A 1{/0): p € IAP(r,, n)}

By Lemma 7-6.4, this is

== /\ {fp(o):p € IVP(’I’ n)} = DVn
proving (1).

2. Canbe pr_oved in a manner completely analogous to the proof
of (1), using part (2) of Theorem 7-6.2. m

Thus {%,},cy is an underestimation of the meet-over-all-paths solution
{Vu}nen-. The degree of underestimation depends on the deviation of IAP(r,, n)
from IVP(r,, n), and this deviation is in turn determined by the choice o}”f'
*, and o. The most extreme underestimation results if we let IAP(r,, n) =
pathg. (r,, n) for all n € N*, i.e., define F= {wh, w* w=w, and let; map
all calls to w. If we do this, then the resulting problem is essentially equivalent

SEC. 7-7 | CONCLUSION 231

to a purely intraprocedural analysis, in which procedure calls and returns
are interpreted as mere branch instructions.

Another more int}t\:resting encoding scheme is as follows. Choose some
integer k > 1, and let I" be the ring of residue classes modulo k. Let m > 1
be another integer. For each o4, a, € f“, define o, * a0y, = m - 06, + &,(mod k).
Let o be any map which maps call blocks to values between 0 and m — 1
(preferably in a one-to-one way). In this scheme, call strings are mapped into
a base m representation modulo k of some encoding of their call blocks.
Note that if kK = oo, i.e., if we operate with integers rather than in modular
arithmetic, then T and T are isomorphic, with b corresponding to concatena-
tion. If k = m’, for some j > 1, and ¢ is one-to-one and does not map any
call block to 0, then the encoding scheme just proposed can roughly be
described as follows: Keep only the last j calls within each call string. As

~ long as the length of a call string is less than j, update it as in Section 7-4,

However, if ¢ is a call string of length j, then, when appending to it a call
edge, discard the first component of ¢ and add the new call block to its end.
When appending a return edge, check if it matches the last call in g, and, if
it does, delete this call from ¢ and add to its start all possible call blocks
which call the procedure containing the first call in g. This approximation
may be termed a call-string suffix approximation.

At present we do not have available a comprehensive theory of the
proper choice of an encoding scheme. Appropriate choice of such a scheme
may depend on the program being analyzed, and reflects the trade-off between
tolerable complexity of the interprocedural analysis and some desired level
of accuracy.

7-7. CONCLUSION

In this chapter we have studied in some detail two basic approaches to
interprocedural analysis of rather general data flow problems. We have seen

~ that by requiring the associated semilattice L to be finite, both approaches

yield convergent algorithms which produce the “sharpest” interprocedural
information, in a natural sense.

The main concern has been to introduce a comprehensive theory of
interprocedural data flow analysis for general frameworks. Subsequent re-
search in this area should address itself to more pragmatic issues that arise
when trying to implement our approaches. Some of these issues are:

(a) Pragmatic implementation of the functional approach for bit-vector
problems. These data flow frameworks are amenable to elimination tech-

~ niques, which are more efficient than iterative techniques. However, our

basic way of solving Eqs. (7-4) is iterative in nature and hence is not optimal

 for these problems. One would mainly like to come up with an algorithm

232 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP, 7

which incorporates standard intraprocedural elimination techniques, such ag
interval analysis, in a modular manner, which will enable us to implement
the functional approach as an extension of already existing intraprocedural
algorithms rather than as a completely different algorithm.

In addition, one might wish to study the efficiency of such an imple-
mentation, bearing in mind that recursion is a somewhat rare phenomenon in
actual programs, and that co-recursion is much rarer. This issue is closely
related to Allen’s approach of processing procedures in “inverse invocation
order” (see also [Rose79] for a similar observation). However, careful refine-
ment of this method is required to handle recursion. Additional gain might
be achieved by processing “offline” parts of the flow graph which are call-
free, so that one does not have to repeat all the intraprocedural processing
whenever an interprocedural effect is propagated. One possible approach to
this problem, which, however, is probably not the best possible one for
implementation, is indicated in [Rose79, Section 8].

(b) Pragmatic implementation of more complex interprocedural data
Jlow problems. 1If the relevant framework is not amenable to elimination,
then the functional approach may be inadequate for such a problem. More-
over, some commonly occurring complex data flow problems, such as con-
stant propagation [Hech77), type analysis [Tene74b, Jone76], value flow
[Schw75b] or range analysis [Harr77a), are usually solved by algorithms which
make use of the use-definition map [Alle69] in a way which propagates infor-
mation only to points where it is actually needed. As indicated in [Shar77],
interprocedural extension of such algorithms calls for some proper inter-
procedural extension of the use-definition map itself. It seems that such an
extension can be based on the call-strings approach (or the approximative
call-strings approach), but exact details have yet to be worked out.

(¢) Extending our approaches to handle reference parameters. Here
the problem of “aliasing” (i.c., temporary equivalence of two program
variables during a procedure call) arises, which complicates matters con-
siderably if “sharpest” information is still to be obtained. Major work in
this area has been done by Rosen [Rose79].

(d) Extending the ideas of the call-strings approach methods which take
into account more semantic restrictions on the execution flow. Thus only flow
paths which satisfy such restrictions would be traced during analysis. The
call-return pattern of interprocedural flow is but one such possible restriction
(though a very important one). For example, one might also keep track of
the values of boolean flags which control intraprocedural branches. Current
research in such directions by Holley and Rosen at IBM seems quite promis-
ing. (We are indebted to Barry K. Rosen for some stimulating discussion
concerning the above-mentioned research.) '

SEC. 7-7 | CONCLUSION 233

The present chapter has been motivated by the research on the design
and implementation of an optimizing compiler for the SETL. programming
language at Courant Institute, New York University. SETL is a very-hx.gh-
level language [Schw75d] which fits into our interprocedural model; Le.,
parameters are called by value and no procedure variables are allowed. Actl\{e
research is now under way to implement the approaches suggested in this
chapter in the optimizer of our system, as discussed in (a) and (b) above.

Aho76

Aho77

Alle74

Bart77a

Berm76

Birk67

ClaE77

ClaE79

343

Bibliography

AHO, ALFRED V,, and JerrREY D. ULLMAN, “Node Listings for Reducible
Flow Graphs,” J. Comput. Syst. Sci., 13, no. 3 (December 1976), 286-299,

AHO, ALFRED V., and JEFFrReY D, ULLMAN, Principles of Compiler Design.
Reading, MA: Addison-Wesley, 1977.

ALLEN, FrANCES E., “Interprocedural Data Flow Analysis,” Information
Processing 74, Proc. IFIP Congress 74, Stockholm, Sweden (August 1974),
ed. J. L. Rosenfield, pp. 398-408. Amsterdam: North-Holland, 1974,

BARTH, JEFFREY M., “An Interprocedural Data Flow Analysis Algorithm,”
Conf. Rec. 4th ACM Symp. on Principles of Programming Languages, Los
Angeles, CA (January 1977), pp. 119-131,

BERMAN, LeEONARD, and GrEORGE MARKOWSKY, “Linear and Non-linear
Approximate Invariants,” IBM RC7241 (February 1976), T.J. Watson
Research Center, Yorktown Heights, NY,

BmRkHOFF, G., Lattice Theory (3rd ed.), Vol. 25. Providence, RI: AMS
Colloquium Publications, 1967.

CLARKE, E. M., Jr., “Program Invariants as Fixed Points,” Proc, 18th Ann.
Symp. on Foundations of Computer Science, Providence, RI (October—
November 1977), pp. 18-29. '

, “Synthesis of Resource Invariants for Concutrent Programs,”

Conf. Rec. 6th ACM Symp. on Principles of Programming Languages, San

Antonio, TX (January 1979), pp. 211-221.

BIBLIOGRAPHY 344

Cous77a

Cous77b

Cous77c

Cous77d

Cous77¢

Cous77f

Cous78

Cous79

Dijk76

Floy67

Fong75

Fong76

Fong77

Fosd76

Germ78

Gill77

Cousor, PATRICK, and RapHiA CousoT, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints,” Conf. Rec. of 4th ACM Symp. on Principles of
Programming Languages, Los Angeles, CA (January 1977), pp. 238-252.

Cousot, PATRICK, “Asynchronous Iterative Methods for Solving a Fixed
Point System of Monotone Equations in a Complete Lattice,” Rapport
de Recherche No. 88 (September 1977), Laboratoire d’Informatique,
Grenoble, France.

Cousor, PATRICK, and RADHIA CousoT, “Automatic Synthesis of Optimal
Invariant Assertions: Mathematical Foundations,” Proc. ACM Symp.
on Artificial Intelligence and Programming Languages, Rochester, NY,
SIGPLAN Notices, 12, no. 8 (August 1977), 1-12.

, “Constructive Versions of Tarski’s Fixed Point Theorems,” Pacific

J. Math, 82, no. 1 (May 1979), 43-57. .

, “Static Determination of Dynamic Properties of Recursive Proce-

dures,” IFIP Working Conf. on Programming Concepts, St. Andrews,

N.B., Canada (August 1977), ed. Erich J. Neuhold. New York: North-

Holland, 1978, pp. 237-277.

, “Static Determination of Dynamic Properties of Generalized Type
Unions,” SIGPLAN Notices, 12, no, 3 (March 1977), 77-94.

Cousor, PATRICK, and N, HAaLBwACHS, “Automatic Discovery of Linear
Restraints Among Variables of a Program,” Conf. Rec. 5th ACM Symp.
on Principles of Programming Languages, Tucson, AZ (January 1978),
pp- 84-97.

Cousor, PATrICK, and RapHIA CousoT, “Systematic Design of Program
Analysis Frameworks,” Conf. Rec. 6th ACM Symp. on Principles of
Programming Languages, San Antonio, TX (January 1979), pp. 269-282.

DUKSTRA, EDSGER W., A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

Froyp, R. W., “Assigning Meanings to Programs,” Proc. Symp. in Applied
Mathematics of the AMS, ed. J. T. Schwartz, Providence, RI (1967),
19-32.

Fong, AMELIA C,, J. KaMm, and JerFreY D. ULLMAN, “Application of Lattice
Algebra to Loop Optimization,” Conf. Rec. 2nd ACM Symp. on Principles
of Programming Languages, Palo Alto, CA (January 1975), pp. 1-9.

Fong, AMEUIA C., and JEFFREY D. ULLMAN, “Induction Variables in Very
High Level Languages,” Conf. Rec. 3rd ACM Symp. on Principles of
Programming Languages, Atlanta, GA (January 1976), pp. 104-112.

Fong, AmeLia C., “Generalized Common Subexpressions in Very High
Level Languages,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 48-57.

Fospick, L. D., and L.J. OsTerwelL, “Data Flow Analysis in Software
Reliability,” Comput. Surv., 8, no. 3 (September 1976), 305-330.

GERMAN, S., “Automating Proofs of the Absence of Common Runtime
Errors,” Conf. Rec. 5th ACM Symp. on Principles of Programming Lan-
guages, Tucson, AZ (January 1978), pp. 105-118.

GILLETT, W. D., “Iterative Global Flow Techniques for Detecting Program
Anomalies,” Ph.D. thesis UIUCDCS-R-77-868, (January 1977), University
of Illinois at Urbana-Champaign.

345

Grah76

Hant76

Harr77a

Hech77
Hoar69

Jone76

Kam77

Kapl78a

Karr76
Kell76

Kenn75b

Kild73

King69

Klee52

Lome75

Naur66

Park69

Pnue77

ReiJ77

BIBLIOGRAPHY

GRrAnAM, S. L., and M. WEGMAN, “A Fast and Usually Linear Algorithm
for Global Flow Analysis,” J. ACM, 23, no. 1 (January 1976), 172-202.

HANTLER, S. L., and J. C. KING, “An Introduction to Proving the Correct-
ness of Programs,” Comp. Surv., 8, no. 3 (September 1976), 331-353.

HarrisoN, WiLLiaM H., “Compiler Analysis of the Value Ranges for
Variables,” IEEE Trans. Software Eng., SE-3, no. 3 (May 1977), 243-250.

HEecuT, MATTHEW 8., Flow Analysis of Computer Programs. New York:
Elsevier North-Holland, 1977.

Hoare, C.A.R., “An Axiomatic Basis for Computer Programming,”
Commun. ACM, 12, no. 10 (October 1969), 576-583. '

Jongs, NEIL D., and STEVEN S, MUCHNICK, “Binding Time Optimization in
Programming Languages: Some Thoughts Toward the Design of an Ideal
Language,” Conf. Rec. 3rd ACM Symp. on Principles of Programming
Languages, Altanta, GA (January 1976), pp. 77-94.

Kawm, J. B., and JerFrey D. ULLMAN, “Monotone Data Flow Analysis
Frameworks,” Acta Inf., 7, fasg. 3 (1977), 305-317.

KaPLAN, M. A., and JerrreY D. ULLMAN, “A General Scheme for the
Automatic Inference of Variable Types,” Conf. Rec. 5th ACM Symp. on
Principles of Programming Languages, Tucson, AZ (January 1978), pp.
60-75. o

KARR, M., “Affine Relationships Among Variables of a Program,” Acta
Inf., 6, fasc. 2 (April 1976), 133-151.

KELLER, R. M., “Formal Verification of Parallel Programs,” Commun. ACM,
19, no. 7 (July 1976), 371-384.

KenneDY, KENNETH W., “Node Listing Applied to Data Flow Analysis,”
Conf. Rec. 2nd ACM Syimp. on Principles of Programming Languages,
Palo Alto, CA (January 1975), pp. 10-21.

KipaLL, G. A., “A Unified Approach to Global Program Optimization,”
Conf. Rec. ACM Symp. on Principles of Programming Languages, Boston,
MA (October 1973), pp. 194-206.

King, J., “A Program Verifier,” Ph.D. thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1969.

KLEeNE, STEPHEN CoLE, Introduction to Metamathematics. New York:
D. Van Nostrand. 1952.

LoMeT, D. B,, “Data Flow Analysis in the Presence of Procedure Calls,”
IBM Research Report RC-5728 (1975), T.J. Watson Research Center,
Yorktown Heights, NY.

NAUR, P..“Proof of Algorithms by Generalized Snapshots,” BIT, 6(1966),
310-316.

PARK, DAvID, “Fixpoint Induction and Proofs of Program Properties,” in
Machine Intelligence 5, ed. Bernard Meltzer and Donald Michie. New
York: American Elsevier, 1969, pp. 59-78.

PNuUELL A., “The Temporal Logic of Programs,” Proc. 18th Ann, Symp. on
Foundations of Computer Science, Providence, RI (October-November
1977), pp. 46-57.

RErF, Joun H., and HARRY R, LEwis, “Symbolic Evaluation and the Global
Value Graph,” Conf. Rec. 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 104-118.

BIBLIOGRAPHY 346

Reil78

Rose77a

Rose78a

Rose79
Scha73

Schw75b

Schw75¢

Shar81

Sint72

Spil72

Suzu77

Tarj75b

Tarj76

Tene74b

Wegb75

Wels77

RErF, Joun H., “Symbolic Program Analysis in Almost Linear Time,” Conf.
Rec. 5th ACM Symp. on Principles of Programming Languages, Tucson,
AZ (January 1978), pp. 76-83.

RosEN, BArry K., “Applications of High Level Control Flow,” Conf. Rec.
4th ACM Symp. on Principles of Programming Languages, Los Angeles, CA
(January 1977), pp. 38-47.

, “Monoids for Rapid Data Flow Analysis,” Proc. 5th ACM Symp.

on Principles of Programming Languages, Tucson, AZ (January 1978),

pp. 47-59.

, “Data Flow Analysis for Procedural Languages,” J. ACM, 26, no. 2
(April 1979), 322-344. .

SCHAEFER, MARVIN, 4 Mathematical Theory of Global Program Optimization.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

ScawarTz, JacoB T. “Optimization of Very High Level Languages I: Value
Transmission and its Corollaries,” J. Comput. Languages, 1 (1975), 161-194.

, “Optimization of Very High Level Languages 11: Deducing Relation-
ships of Inclusion and Membership,” J. Comput. Languages, 1 (1975),
197-218. :

SHARIR, M., and A. PNguLs, “Two Approaches to Interprocedural Data
Flow Analysis,” this volume, chap. 7.

SintzOFF, M., “Calculating Properties of Programs by Valuations on
Specific Models,” Proc. ACM Conf..on Proving Assertions about Programs,
New Mexico (1972), pp. 203-207.

SeiLLMAN, THoMAS C., “Exposing Side-Effects in a PL/I Optimizing Com-
piler,” Information Processing 71, Proc. IFIP Congress 71, Ljubljana,
Yugoslavia (August 1971), ed. C.V. Freiman, 376-381. Amsterdam:
North-Holland, 1972.

Suzuki, NormIsA, and KiyosHI ISHIHATA, “Implementation of Array Bound

Checker,” Conf. Rec. of 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA (January 1977), pp. 132-143.

TARJAN, RoBERT ENDRE, “Solving Path Problems on Directed Graphs,”
STAN-CS-75-528 (November 1975), Computer Science Department,
Stanford University, Stanford, CA.

, “Iterative Algorithms for Global Flow Analysis,” in Algorithms and

Complexity, New Directions and Recent Results, ed. J. F. Traub. New

York: Academic Press, 1976, pp. 11-101.

TENENBAUM, AARON, “Type Determination for Very High Level
Languages,” Report NSO-3 (October 1974), Computer Science
Department, New York University.

WEeGBREIT, BEN, “Property Extraction in Well-founded Property Sets,”
IEEE Trans. Software Eng., SE-1, no. 3 (September 1975), 270-285.

WELSH, J., “Economic Range Checking in PASCAL,” Department of Com-
puter Science, Queen’s University, Belfast, Northern Ireland, October 1977.

