On Expressive Power of Regular Expressions
over Infinite Orders

Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University, Israel
email: rabinoa@post.tau.ac.il

Abstract. Two fundamental results of classical automata theory are
the Kleene theorem and the Biichi-Elgot-Trakhtenbrot theorem. Kleene’s
theorem states that a language of finite words is definable by a regular
expression iff it is accepted by a finite state automaton. Biichi-Elgot-
Trakhtenbrot’s theorem states that a language of finite words is accepted
by a finite-state automaton iff it is definable in the weak monadic second-
order logic. Hence, the weak monadic logic and regular expressions are
expressively equivalent over finite words. We generalize this to words
over arbitrary linear orders.

1 Definitions and Result

A linear ordering (L, <) is a non-empty set L equipped with a total order. A
subset I of a linear order (L, <) is convex, if for all z < y < z with z,z € I also
y € I. We use “interval” as a synonym for “convex subset.”

A linear order (A, <) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. For example, finite
orders, the naturals and reals are Dedekind complete, while the order of the
rationals is not.

In this paper a cut of a linearly ordered set (A, <) is a downward closed set
C C A. A cut C is non-trivial if it is not empty and is a proper subset of A.
If (A, <) is Dedekind complete and C' is its nontrivial cut, then there is a € A
such that C:={c€ A|c<a}orC:={ce A|c<a}.

1.1 Extended Regular Expression

We use a generalized notion of a word, which coincides with the notion of a
labeled linear ordering. Given a finite alphabet Y| a word over X or X-labeled
chain is a linear order (L, <) equipped with a function lab from L into X. A
language over X is a class of words over X. Whenever Y is clear from the
context or unimportant we will use “word” for "word over X" and “language”
for “language over X.”

The concatenation (the lexicographical sum) of two words wy = (L1, <1, laby)
and we = (Lo, <o,labs) over the same alphabet (up to renaming, assume that
Ly and Ly are disjoint) is a word (Ly U Lo, <, lab), where (1) lab coincides with

laby on Ly, with laby on Lo, and (2) < coincides with <; on L;, with <5 on Lo,
and if a € L1 and b € Ly then a < b. The concatenation of words w; and ws is
denoted! by wi + ws.

For languages C; and Cs, their concatenation is defined as {w; + wq | wy €
Cy and wy € Cy} and is denoted by Cfy; Cs.

The Kleene iteration or the positive concatenation closure of a language C'
is denoted by C* and is defined as U3 {wy + wa + + - + wy, | w; € C}.

Extended reqular expressions over an alphabet X are defined by the following
grammar: E:=0 | o | EUE | E;E | ET | -E | where o € X. The semantics
assigns to such an expression a language over X, as follows: (1) The empty lan-
guage is assigned to (). (2) A language consisting of one element order labeled by
o is assigned to . (3) U is interpreted as the union and — as the complementa-
tion with respect to the class of all words over X. (4) Ey; Es is the concatenation
of the languages assigned to F1 and Es, and (5) E™T is the positive concatenation
closure of the language assigned to F.

A regular expression is an extended regular expression without negation.
Note that the semantics assigns to a regular expression only a set of finite words.
Usually, in classical automata theory the complementation is taken only with re-
spect to the set of finite words. Clearly, under such finite-words interpretation of
complementation only languages of finite words are defined by extended regular
expressions.

We conclude this section with examples which illustrate the expressive power
of extended regular expressions.

All expressions below are over unary alphabet {1}; a word over a unary
alphabet can be identified with the underlying linear order.

— All :== =) - defines the class of all linear orders.

— Max :=1U All;1 - defines the linear orders with a maximal element.

— Min :=1U1; All - defines the linear orders with a minimal element.

— Dense:= =(Max; Min) - defines the dense linear orders.

— Dedekind:=1 U —((—=Max); (-Min)) - defines the Dedekind complete linear
orders.

— Dense™ - defines the orders which can be partitioned in a finite set of dense
intervals; equivalently the linear order with a finite set of a successor elements
where a is a successor if there is b < a such that no element exists between
b and a.

1.2 Fragments of MSO

The Monadic second-order logic (MSO) is an extension of first-order logic that
allows to quantify over elements as well as over subsets of the domain of the
structure.

The structures considered in this paper are expansions of nonempty linear or-
derings (A4, <?) by subsets P{}, ..., P/. When no confusion arises we cancel the

! In algebraic framework to formal languages the concatenation of w; and ws is called
“the product” and is denoted by wi - wa.

superscript A, use the abbreviating notation P for the set tuple (P, ..., P/),
and write (A, P).

Such a structure is called [-chain. It can be regarded as a labeled ordering
(or generalized word) with labels in {0,1}!: the element a € A has the label
(b1,...,b;) defined by b; := 1 iff a € P,. When Py, ..., P, partitions the domain
of a linear ordering (A, <), such a structure can be regarded as a word with
labels in {1,...,1}: the element a € A is labeled by i iff a € P;.

The standard language of MSO for structures of this signature is built up as
follows, using the relation symbols < and Py, ... P,,. We have first-order variables
x,y,... for elements of structures, monadic second order variables XY ... for
sets of elements of structures, and the atomic formulas are of the form z =y, z <
y, P;(x), and Y (), with the canonical interpretation. Formulas are constructed
from atomic formulas by the Boolean connectives, and by applying the first-order
quantifier 3z “there is an element z” to first-order variables, and the monadic
second-order quantifier 3X - “there is a set X” to monadic variables.

The Weak Monadic Second-Order logic is an extension of first-order logic
that allows to quantify over elements as well as over finite subsets of the domain
of the structure. So, it has the first-order quantifiers, and the quantifier 37 X -
“there is a finite set X”. We denote this logic by MSO[3/"].

The logic we are going to consider is denoted by MSO[3" 3°%] and it ex-
tends the weak monadic logic by the quantifier over cuts: 3¢“* X - “there is a cut
X.”

A language (or a class of chains) definable by a formula ¢ is the class of all
chains that satisfy .

Note that over Dedekind complete chains MSO[3"] is expressively equiva-
lent to MSO[3™, 3%]. Both MSO[3"] and MSO[F™, 3] are equivalent to
MSO over the class of finite words. McNaughton’s theorem [10] implies that
an w-language is definable in MSO iff it is accepted by a deterministic Muller
automaton. For a deterministic automaton “the run on an w-word is accepting”
can be formalized in MSO[3]. Hence, MSO[3], MSO[3™ 3] and MSO
are expressively equivalent on the class of w-words.

1.3 Result

Kleene [7] introduced regular expressions and proved that a language is definable
by a regular expression iff it is accepted by a finite state automaton, and that the
transformations from expressions to automata and vice versa are computable.
The Biichi-Elgot-Trakhtenbrot theorem states that finite-state automata and
the Weak Monadic Second-Order Logic (interpreted over finite words) have the
same expressive power, and that the transformations from formulas to automata
and vice versa are computable [1,4,17]. Hence, the classical theorem is:

Theorem 1.1 (Kleene, Biichi, Elgot, Trakhtenbrot) The following are equiv-
alent for languages of finite words:

1. A language is definable by a regular expression.

2. A language is accepted by a finite state automaton.
3. A language is definable in MSO[3"].

We generalize the equivalence between (1) and (3) of this classical result to
arbitrary words, as follows:

Theorem 1.2 (Main) A language of labelled orderings is definable by an ex-
tended regular expression iff it is definable in MSO[Fm, JFeut],

Hence, extended regular expressions and MSO[3/", 3°%!] have the same expres-
sive power over the class of all words. The transformations from formulas to
extended regular expressions and vice versa are computable and can be easily
extracted from the proof.

The paper is organized as follows. The next section provides a logical back-
ground and summarizes elements of the composition method. In Section 3 we
prove that every MSO[3/ 3°%] formula is equivalent to an extended regular
expression. In Section 4 we prove that every extended regular expression is equiv-
alent to a MSO[3/" 3] formula. Section 5 presents a conclusion and further
results.

2 Logical Background

2.1 A variant of MSO[3f", Feu!]

It will be convenient to work with a slightly modified (but expressively equiv-
alent) set-up, in which the first-order variables are canceled. We allow only
monadic second-order variables and take as atomic formulas of MSO[3i, Jeut]
the following: Empty(X), X C Y, Sing(X), X <Y, All(X), Finite(X) and
Cut(X). These are interpreted, respectively, as “X is empty,” “X is a subset
of Y,” “X contains one element,” “X contains one element and Y contains one
element and the element of X is smaller than the element of Y,” “X is the
universe,” “X is finite,” and “X is a cut.”

Formulas are constructed from atomic formulas by the Boolean connectives,
and by the quantifiers 3" and 3°u¢.

The use of the unary relation symbols P; will be avoided by taking free set
variables X; instead. Thus, we shall use labeled chains (4, <, P) as interpreta-
tions of monadic formulas ¢(X).

The quantifier rank of a formula ¢, denoted qr(¢), is the maximum depth of
nesting of quantifiers in . For r;I € N we denote by Form; the set of formulas
of quantifier rank < r and with free variables among X1,..., X].

2.2 Elements of the composition method

Our proofs use a technique known as the composition method [9,14]. To fix
notations and to aid the reader unfamiliar with this technique, we briefly review
those definitions and results that we require. A more detailed presentation can
be found in [16] or in [5].

2.2.1 Hintikka formulas and r-types
Definition 2.1 Let r,l € N and 2,*B [-chains. The r-theory of A is

Th" () := {p € Form] | M |= p}.
If Th" (A) = Th"(B), we say that A and B are r-equivalent and write A =" B.

Clearly, =" is an equivalence relation. For any r,l € N, the set Form; is infinite.
However, it contains only finitely many semantically distinct formulas. So, there
are finitely many ="-classes of [-chains. In fact, we can compute “representa-
tives” for these classes:

Lemma 2.2 (Hintikka Lemma) For r,l € N, we can compute a finite set
H] C Form; such that:

(a) For distinct 7,7 € H], T AT’ is not satisfiable.

(b) If T € H] and ¢ € Form;, then either 7 |= ¢ or T |= —¢. Furthermore,
there is an algorithm that, given such 7 and @, decides which of these two
possibilities holds.

(¢) For every l-structure 2, there is a unique 7 € H] such that A = 7.

Any member of H] we call an (r,1)-Hintikka formula? or a formal (r,1)-type.

Definition 2.3 (r-type) For r,l € N and 2 an l-chain, we denote by Tp"(2A)
the unique member of H] satisfied by 2 and call it the r-type of 2.

Thus, Tp" (2A) determines Th” () and, indeed, Th" () is computable from Tp" ().

Lemma 2.4 (Projection) Forr,l € N, there is an operation Pr] from H] into

HJ | such that if Tp] (A, <, P2, ,P*,, P*) =1, then Tp]_,(A,<,PZ,--- ,P*))

Prl (7).

2.2.2 The lexicographical sum of chains and of r-types Let 2 := (4, <*
PR P and B = (B,<®,,PP,...,P®) be I-chains with disjoint do-
mains. The lexicographical sum (or concatenation) of A and 9% is denoted A +*B
and is defined as the I-chain (AU B, <, PR UPE, .. .,Plgl U Pl%) where a < b if
acAandbe Bora,be Aand a <g bora,be B and a <y b.

As usual, we do not distinguish between isomorphic structures. So, if the
domains of 2 and B are not disjoint, replace them with isomorphic /-chains that
have disjoint domains, and proceed as before.

It is clear that the sum of chains is associative. We will use the notation
A + Ao + - - - + Ay, for the sum of k chains.

The next Lemma says that =" is a congruence with respect to the sum.

Lemma 2.5 The r-types of l-chains A, B determine the r-type of A + B.

% Hintikka formulas made their first appearance in [6], in the framework of first-order
logic.

The Lemma justifies the notation 7 + 7 for the r-type of an I-chain which is the
sum of two [-chains of r-types 71 and 7o, respectively. The composition theorem
states that + can be extended to a (uniformly) computable operation on the
formal types.

Theorem 2.6 (Composition Theorem) For r,l € N, there is an associative
operation + : H x H] — H] such that for every l-chains 2, B if Tp"(A) =n
and Tp"(B) = 1o then Tp" (A + B) = 71 + 2. Furthermore, the sum of (r,1)-
formal types is (uniformly) computable.

The reader may wonder why we do not say: “m + 7o is the unique element of
Hj such that ...”. The reason is that by Hintikka’s construction [6] there are in
H] formulas that are not satisfied in any structure.

3 From Logic to Expressions

In this section we prove that for every formula ¢ in MSO[F" 3°%] there is an
equivalent extended regular expression K.

We proceed by induction on the quantifier rank of formulas.

For a quantifier free formula the corresponding equivalent expression is easily
constructed.

If ¢4 is equivalent to E,, for ¢ = 1,2, then ¢ V¢> is equivalent to E,, UE,,,
and -y is equivalent to —E,,

The only interesting case is for quantifiers:

3.1 Translation for 3 quantifier

Assume that the inductive assumption holds for r. In particular, for every Hin-
tikka formula 7 of quantifier rank r there is an equivalent expression F.

Let (X1, -+, X)) be a formula and assume that qr(y) = 7.

3°ut X, is equivalent to a disjunction of

1. o := 3 X Empty(X;) A ¢
2. 1= FUXANX,) A p
3. g = I X~ Empty(X;) A —AL(X) A

Let Sy € H] , be defined as {Pr] (1) | m € H] and 7 = ¢AEmpty(X;)}, where
Pr; was defined in Lemma 2.4. Then A |= ¢ iff Tp;_; () € So. Therefore, ¢q is
equivalent to Ureg, Er (where E. are defined by the inductive assumption). For
1 an equivalent expression E,, is defined in a similar way as E,, := U,¢gs, Fr,
where S1 :={Prj(n) | ™ € H and 7y = o A All(X))}.

In order to translate ¢o into an equivalent expression we will use the com-
position theorem and an observation that every non-empty proper downward
closed subset P of the domain of 2 induces a representation of 2 as the sum
A +2A; where 25 (respectively, 23) is the substructure of 2 over P (respectively,
the complement of P).

Set g := = Empty(X;) A =All(X;) A Cut(X;) A . Hence, pg := I X 1.

Claim 1 Let*B be an l-chain. B |= g iff there are 71,72 € H] and B1 and Bs
such that

1. B =B1 + By and 7, = Tp"(B1) fori=1,2.
2. T1 —+ T2): 1,[}2.
3. n | All(X;) and o = Empty(X;).

Proof. < is immediate.
= Take as B (respectively, Bs) the substructure of B over P, (respectively,
over the complement of P;), and as 7; the r-type of ;. a

Let S be the set of pairs (71, 72) of H] formulas, which satisfy conditions (2) and
(3) of Claim 1.

Define S C H | x H]_, as S := {(PrI(71),Prl(2)) | (r1,72) € S}, where
Pr; was defined in Lemma 2.4. Thus we obtain:

Claim 2 2 = @9 if and only if there are A1 and Ay such that A = Ay + Az and
(Tp"(Ay), Tp"(A)) € S.

By the inductive assumption each formula of quantifier rank r is equivalent to
an expression. In particular, each Hintikka formula 7 of quantifier rank r is
equivalent to an expression E.. Finally, Claim 2 implies that @9 is equivalent to

U<T1,T2>€§ET1) ETQ !

3.2 Translation for 3" quantifier

In order to translate 3" X, into an equivalent expression we will use the com-
position theorem and an observation that every finite subset of the domain of
induces a natural representation of 2 as a finite sum of its subchains.

Claim 3 B |= ¢ A Finite(X;) iff there is a sequence 11,..., 7, of H] formulas
and a sequence B ..., By of l-chains such that

1. B=B1+Bo+ - +B and 7, =Tp"(B;) fori=1,... k.

2. T41+ -+ Ep and

3. if i E —Empty(X)) then 7; = Sing(X;) N All(X), i.e., 7; holds only on
singleton chains.

Proof. < is immediate.

= Assume B = @A Finite(X;). Hence, P, is finite. Define an equivalence ~ as
follows: a1 ~ as iff either a; = as € P, or there is no element of P, in the interval
[min(aq, as), max(ar, az)]. It is clear that ~ is an equivalence relation. It has
finitely many equivalence classes, and each ~ equivalence class is an interval of
the domain of 8. Let [; < --- < Ij be the ~-equivalence classes. For j = 1,... k,
define B, as the substructure of B over I; and 7; := Tp"(B,). It is clear that
B; and 7; satisfy the requirements of the claim. a

Let S be the set of finite sequences of H] formulas, which satisfy conditions (2)
and (3) of Claim 3.

Define a set S of finite sequences of H | formulas as S = {(PrI(m),..., Pri(ts)) |
(11,...,7%) € S}. Therefore, Claim 3 implies:

Claim 4 2 = 37 X, iff there is a sequence (11,...,Ts) € S and a sequence
A1 ..., A of (I —1)-chains such that A=Ay + Ao + -+ + A and 7, = Tp" ()
fori=1,... k.

Claim 5 There is a regular expression E which defines S.

Proof. We will construct a finite state automaton .4 which accepts S. The set
Q. of its states is Q4 := {q;} U H], where ¢; ¢ H] is a fresh state.

q; is the initial state of A. The set Acc of accepting states is defined as
Acc:={r € H | 7 = ¢ A Finite(X;)}.

For every 7 € H]_; define two sets D(7), F(1) C H] as D(1) := {7’ € H] |
7' =7 A Empty(X))} and F(r):= {7 € H] |7 7N All(X;) A Sing(X;)}.

The transition relation —4C Q4 x H]_; x @ 4 is defined as follows:

L {gi,7,7') €=4 iff 7' € D(7) U F().
2. (11, 7,72) €4 iff there is 7/ € D(7) U F(7) such that 7, = 7 + 7.

It is straightforward to check that A accepts S. Therefore, by Theorem 1.1, S is
definable by a regular expression. a

By the inductive assumption each formula of quantifier rank r is equivalent
to an expression. In particular, each Hintikka formula 7 of quantifier rank r is
equivalent to an expression F..

Finally, let E,, be obtained from a regular (complementation free) expression
E of Claim 5, by replacing each letter 7 € H]_ ; with an equivalent extended
regular expression E,. Claims 4 and 5 imply that ¢ is equivalent to E,.

4 From Expressions to Logic

We are going to prove that for every expression E over an alphabet 3 there is
an equivalent MSO[3 3] formula (.

We proceed by the structural induction on expressions.

It is straightforward to write a formula for () and for a letter o € X.

If E; are equivalent to ¢; for i« = 1,2, then E; U Fs is equivalent to (1 V @9
and —F; is equivalent to - .

Below we will treat concatenation and iteration.

First, let us introduce notations and state a standard “relativization” lemma
which will be used several times.

Notation 4.1 Let | € N, 2 := (A, <, Py,...,P) an l-chain and D a non-
empty subset of A. The restriction of A to D is the l-chain A;p defined as
Aip = (D,<,PiND,...,PND).

Lemma 4.2 (Relativization) Let o(Y) be a formula, U a variable not ap-
pearing in . There is a formula oy (Y,U) such that for every chain (A, <, P)
and every non-empty D C A,

(A7 <’?7D) ’: @TU(?v U) iff (A7 <’ﬁ)fD ’: @(?)

When this is the case, we say that ¢ holds in (A, <, P) relativized to D.

4.1 Concatenation

Assume g; is equivalent to F; for i = 1, 2.
Then Ei; E, is equivalent to 3¢“* X where ¢ is the conjunction of the fol-
lowing:

1. X is a non-empty proper downward closed subset of the domain of .
2. 1 holds in A relativized to X.
3. @9 holds in 2 relativized to the complement of X.

(1)-(3) are easily formalized in MSO[3™, 3°u]. Moreover, if p; and @y are
MSO[3°“] formulas, then (1)-(3) are easily formalized in MSO[3“!].

4.2 Kleene Iteration

Assume that F is equivalent to .

Recall that 21 is in E* iff there is £ > 0 and a partition of the domain of
20 into intervals Iy,..., I such that 27, are in E. In the case when all I; are
intervals with endpoints in 2 this can be easily formalized. However, 2 is not
necessarily Dedekind complete, and not all intervals have end-points in 2. To
overcome this problem we use the following Lemma:

Lemma 4.3 Let p(X) be a formula. Then there are formulas 1/)% (X) and d)"z (X)
(i=0,...,m) such that for every 2, element a € A, and intervals I<, = {b €
A|b<a} and Isq:={becA|b>a}:

A = @ iff there is i such that Ajr_q = V% and A, =YL

The Lemma is easily obtained from Lemma 2.5 (one can take as 9% (X), 1% (X)
formulas of quantifier rank smaller than qr(y) + 3). - -
The Lemma implies that “Q is in E+” can be rephrased as:

there is a partition of the domain of 2l into intervals Iy, ..., I}, and there
are a; € I; and a function F' : {1,...,k} into {0,...,m} such that for
every j € {1,...,k} and s := F(j)
1. the substructure of 2 over the interval {b € I; | b > a;} satisfies 9%
2. the substructure of 2 over the interval {b € I, | b < a;} satisfies %

The above is equivalent to

there is a non-empty finite subset P of the domain of 20 and a function
F:P —{0,...,m} such that
1. if a is the maximal element of P and s = F'(a) then the substructure
of A over the interval {b | b > a} satisfies ¥
2. if @ is the minimal element of P and s = F(a) then the substructure
of A over the interval {b | b < a} satisfies ¥%, and
3. If a < c are successive elements of P and s = F(a) and p = F(c),
then there is a downward closed set D such that
(a) ae D, c¢D
(b) the substructure of 2 over the interval {b € D | b > a} satisfies
P
(c) the substructure of 2 over the interval {b & D | b < c} satisfies

Ve

Observe that F' cannot be represented by a single monadic predicate. However,
since F' is a mapping from a finite set P to a set of size m + 1 (m is defined
in Lemma 4.3 depens on ¢, but is independent of P), it can be represented
by a tuple of finite sets and the conditions (1)-(3) can be easily formalized in
MSO[3fin, Fewt],

5 Conclusion

The classical automata theory establishes equivalence (over finite words) be-
tween three fundamental formalisms: the monadic second-order logic, regular
expressions and finite state automata. The cornerstones of automata theory on
infinite objects are Biichi’s and Rabin’s theorems. The Biichi theorem states
that MSO and finite automata are equivalent over w-words [2] and the Rabin
theorem states that MSO and finite automata are equivalent over labeled binary
trees [12].

MSO and its fragment have a natural interpretation over arbitrary (even
partial) orders. Regular expressions have a natural interpretation over arbitrary
linear orders. We proved expressive equivalence (over arbitrary words) between
the extended regular expressions and MSO[3/ 3], Tt seems that there is no
natural notion of automata which has the same expressive power as the above
formalisms. Usually, automata correspond to logical formulas of a fixed quantifier
alternation depth. However, Thomas Colcombet pointed out that the quantifier
alternation hierarchy does not collapse for MSO[3fin 3eut].

Below we comment about some extensions of our results.

5.1 Words over linear orders of a bounded cardinality

Let N be an infinite cardinal. A linear order (L, <) is an R<-order if the car-
dinality of L is less than Y. Given a finite alphabet X, an R<-word over X or
X-labeled N<-chain is an N<-linear order (L, <) equipped with a function lab
from L into ¥. A R<-language over X is a set of N<-words over . Whenever 3.

is clear from the context or unimportant we will use “N<-word” for “N<-word
over X" and “N<-language” for “N<-language over X.”

For an extended regular expression F over Y the N<-semantics assigns an
N<-language over Y. The N<-semantics is defined exactly like the semantics
of extended regular expressions in Sect. 1.1 with the only exception that com-
plementation is taken with respect to the set of N<-word over X. Namely, the
N<-semantics is defined as follows: (1) The empty language is assigned to (). (2)
A language consisting of one element order labeled by o is assigned to 0. (3) U is
interpreted as the union and — as the complementation with respect to the set of
all R<-words over X. (4) E; Es is the concatenation of the languages assigned to
E; and Fs. (5) ET is the positive concatenation closure of the language assigned
to E.

Note

(1) For the first infinite cardinal Ry, the RS -semantics assigns to an extended
regular expression the same language (of finite words) as the classical se-
mantics does.

(2) If C is the class of words assigned to E by the semantics defined in Sect. 1.1,
then R<-semantics assigns to E the set of all N<-words in C.

We say that a language C' is R<-definable by an expression E if N<-semantics
assigns C to E. We say that an R<-language is definable by an MSO formula ¢
iff it is the set of all N<-words that satisfy .

Our main theorem and (2) imply the following Theorem:

Theorem 5.1 Let R be an infinite cardinal. An R<-language is definable by an
extended regular expression iff it is definable by an MSO[3™ 3] formula.

From our proof it is also easy to extract that a language of labelled Dedekind
complete orderings is definable by an extended regular expression iff it is defin-
able by an MSO[3"] formula.

5.2 Star-Free Expressions

McNaughton and Papert introduced star-free regular expressions. These are ex-
tended regular expressions without the Kleene iteration. Namely, given an al-
phabet X, the star-free expressions over X' are built up from () and the letters
in X by union, concatenation and complementation. A famous theorem of Mc-
Naughton and Papert [11] states that a language of finite words is definable by a
star-free expression if and only if it is definable in first-order logic. This theorem
was extended to w-languages in Ladner [8] and Thomas [15], and to languages
over the real order by Rabinovich [13]. The following generalization to Dedekind
complete orders was proved in [13]:

Theorem 5.2 A language of labelled Dedekind complete orderings is definable
by a star-free reqular expression iff it is definable by a first-order formula.

Our proof of Theorem 1.2 can be easily modified to show that:

Theorem 5.3 A language of labelled orderings is definable by a star-free reqular
expression iff it is definable by an MSO[3“!] formula.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

J. R. Biichi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik
und Grundl. Math. 6, pp. 66-92, 1960.

J. R. Biichi. On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, Stanford University Press, pp. 1-11, 1962.
T. Colcombet. Personal communication. September 2012.

C. Elgot. Decision problems of finite-automata design an d related arithmetics.
Trans. Amer. Math. Soc. 98, pp. 21-51, 1961.

Y. Gurevich. Monadic second order theories. In J. Barwise and S. Feferman eds.
Model Theoretic Logics pp. 479-506, Springer Verlag, 1986.

J. Hintikka, Distributive normal forms in the calculus of predicates, Acta Philos.
Fennica 6, 1953.

S. Kleene, Representation of events in nerve nets and finite automata, Automata
Studies, Princeton University Press, pp. 3-41, 1956.

R. E. Ladner Application of model theoretical games to linear orders and finite
automata theory. Information and Control 9, pp. 521-530, 1977.

H. Lauchli and J. Leonard, On the elementary theory of linear order, Fund. Math.
59 pp. 109-116, 1966.

R. McNaughton, Testing and generating infinite sequences by a finite automaton,
Information and Control 9, pp. 521-530, 1966.

R. McNaughton and S. Papert. Counter-free automata. The MIT Press, 1971.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, vol. 141, pp. 1-35, 1969.

A. Rabinovich Star Free Expressions over the Reals. Theoretical Computer Science,
Vol. 233, pp. 233-245, 2000.

S. Shelah, The monadic theory of order, Annals of Mathematics, Ser. 2, Vol. 102,
pp. 379-419, 1975.

W. Thomas. Star Free regular sets of w-sequences. Information and Control 42,
pp. 148-156, 1979.

W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In Structures in Logic and Computer Science, A Selection of
Essays in Honor of A. Ehrenfeucht. LNCS 1261, Springer, pp. 118-143, 1997.

B. A. Trakhtenbrot. The synthesis of logical nets whose operators are described
in terms of one-place predicate calculus. Doklady Akad. Nauk SSSR 118 (4), pp.
646-649, 1958.

