
Complementation of Finitely Ambiguous Büchi
Automata

Alexander Rabinovich

Tel Aviv University

Abstract. A nondeterministic automaton is finitely ambiguous if for
each input there is at most finitely many accepting runs. We prove that
the complement of the ω-language accepted by a finitely ambiguous
Büchi automaton with n states is accepted by an unambiguous Büchi
automaton with 2× 5n states.

1 Introduction

Restricted Forms of Nondeterminism The relationship between determin-
istic and nondeterministic machines plays a central role in computer science. An
important topic is comparison of expressiveness, succinctness and complexity of
deterministic and nondeterministic models. Various restricted forms of nonde-
terminism were suggested and investigated (see [4, 7] for recent surveys).

Probably the oldest restricted form of nondeterminism is unambiguity. An
automaton is unambiguous if for every input there is at most one accepting
run. For automata over finite words there is a rich and well-developed theory
about the relationship between deterministic, unambiguous and nondeterminis-
tic automata [7]. All three models have the same expressive power. Unambiguous
automata are exponentially more succinct than deterministic ones, and nonde-
terministic automata are exponentially more succinct than unambiguous ones
[10, 13].

Some problems are easier for unambiguous than for nondeterministic au-
tomata. As shown by Stearns and Hunt [18], the equivalence and inclusion prob-
lems for unambiguous automata are in polynomial time, while these problems
are PSPACE-complete for nondeterministic automata.

The complexity of basic regular operations on languages represented by un-
ambiguous finite automata was investigated in [14], and tight upper bounds on
state complexity of intersection, concatenation and many other operations on
languages represented by unambiguous automata were established. It is well-
known that the tight bound on the state complexity of the complementation of
nondeterministic automata is 2n. In [14], it was shown that the complement of
the language accepted by an n-state unambiguous automaton is accepted by an
unambiguous automaton with 20.79n+logn states.

Many other notions of ambiguity were suggested and investigated. An au-
tomaton is k-ambiguous if on every word it has at most k accepting runs. A

recent paper [7] surveys works on the degree of ambiguity and on various non-
determinism measures for finite automata on words.

The theory of finite automata on ω-words is more subtle than the theory of
finite automata on words. Deterministic Büchi automata (DBA) are strictly less
expressive than nondeterministic Büchi automata (NBA). The restricted notions
of nondeterminism can be considered for finite automata on ω-words. Arnold
[1] proved that unambiguous Büchi automata (UBA) have the same expressive
power as nondeterministic Büchi automata over ω-words.

From the exponential succinctness gap between unambiguous and nondeter-
ministic automata on words it is easy to derive that there at least an exponential
succinctness gap between UBA and NBA. Kahler and Wilke [9] proved that a
Büchi automaton with n states is equivalent to an UBA with (3n)n. However,
the tight bound on disambiguating NBA is unknown.

The complexity of universality and inclusion problems for UBA are long
standing open problems; polynomial time algorithms are known only for sub-
classes of UBA [8]. It seems that the only problem which was proved to be easier
for UBA than for NBA is the almost universality problem, which can be seen as
a probabilistic variant of the universality problem [2].

Our Results In this paper we will show that the complementation of UBA
is easier than the complementation of NBA. The complementation of Büchi
automata is a classical problem which was extensively studied [3, 11, 17, 15, 6, 16,
22]. Yan [22] and Schewe [16] proved tight Ω((0.76n)n) lower and upper bounds
for state complexity of complementation of NBA. The main result of our paper
implies O(5n) upper bound on complementation of UBA.

Actually, we introduce a more liberal notion of ambiguity. A nondeterministic
automaton is called finitely ambiguous if for each input there is at most finitely
many accepting runs. An automaton is k-ambiguous if for each input it has at
most k accepting runs. It is clear that an unambiguous automaton is k-ambiguous
for every k > 0, and a k-ambiguous automaton is finitely ambiguous. The reverse
implications fail. The automaton in the left of Fig. 1 is finitely ambiguous, but
for no k, it is k-ambiguous.

q0start

q1

f

a

b

a

a

a

q0start

q1

f

a

b

a

b

a

Fig. 1. Finitely ambiguous and 2-ambiguous Büchi automata

We prove that the complement of the ω-language accepted by an n-states
finitely ambiguous automaton is accepted by a 2× 5n-states unambiguous semi-
deterministic automaton (semi-deterministic automata are defined in Sect. 4).

Organization of the paper. The next section outlines the complementation
procedure. This procedure has two clearly separated steps, respectively presented
in Sect. 3 and Sect. 4. Section 5 analyzes the complexity. Section 6 investigates
the degrees of ambiguity for Büchi automata and states some open problems.

2 Outline of the complementation procedure

Throughout the paper we use standard notations and terminology about au-
tomata on ω-words (see e.g. [19]). Let B be a Büchi automaton and let α be an
ω-word. The nodes of the computational forest FTα,B of B on α are the runs of
B on the finite prefixes of α. The runs (nodes) are arranged in a natural way:
if r1 is a prefix of r2 then r1 is an ancestor of r2. B accepts α iff FTα,B has a
branch with infinitely many accepting states - an accepting branch. The roots
of FTα,B are the initial states of B (the runs on the empty word), and if B has
one initial node, a computational forest is a computational tree.

Our complementation procedure has two steps (see Fig. 2) and is a variant
of the construction used by Kahler and Wilke [9].

The first step of the construction is to extract from FTα,B a narrow forest
tα,B which has an accepting branch iff FTα,B has an accepting branch. A forest
is n-narrow if at every level it has at most n nodes. This implies that an n-narrow
forest has at most n infinite branches, while a computational forest might have
uncountable many infinite branches.

An n-narrow forest t can be coded by a string. The i-th letter of the string
describes how nodes of level i are connected to the nodes of level i − 1. This is
the i-th slice of t.

Let us consider two runs r1 and r2 of B on a prefix of α which lead to the
same state q. The nodes v1 and v2 of FTα,B which correspond to the runs are
on the same level in the forest. The subtree of FTα,B rooted at v1 is isomorphic
to the subtree of FTα,B rooted at v2. Hence, one of the subtrees contains an
accepting branch iff the other contains such a branch. So, if we prune FTα,B
at one of these nodes and grow up the computational forest from the other, the
pruned tree will have an accepting branch iff FTα,B has such a branch. If we
have a strategy to keep on each level of the computational forest for every state
q at most one run that leads to q and to prune the others such that the existence
of an accepting branch is preserved, then we obtain a |QB|-narrow forest which
has an accepting branch iff FTα,B has one. Surprisingly, it turns out that for
finitely ambiguous Büchi automata every strategy works.

Relying on a standard powerset construction for determinization of automata
on finite words, for every finitely ambiguous Büchi automaton B we construct
a transducer of size 2|QB| that receives an ω-string α and outputs a code of
|QB|-narrow sub-forest tα,B of FTα,B such that tα,B has an accepting branch iff
FTα,B has an accepting branch.

Transducer
Extracting narrow forest

Recognizing n-narrow forests
without an accepting branch

α t

Fig. 2. Complementation Procedure

In the second step we construct an automaton of state complexity 2O(n) that
receives the code of an n-narrow forest t and accepts it iff t has no accepting
branch. This step is based on the breakpoint construction [12], which is a variant
of the construction used by Kahler and Wilke [9] and the resulting Büchi au-
tomaton is unambiguous. The product of the transducer constructed in the first
step and the unambiguous Büchi automaton of the second step (see Fig. 2) is an
unambiguous Büchi automaton that accepts the complement of the language of
a finitely ambiguous automaton.

3 Extracting narrow forest

Let A := 〈QA, δA, ΣA, QinitA , FA〉 be a Büchi automaton, where QA is its set
of states, δA is its transition relation, QinitA and FA are the sets of initial and
accepting states, and ΣA is an alphabet. Let α = a1a2 . . . be an ω-string over
ΣA. The computational dag of A on α is denoted by Dagα,A := 〈Vα,A, Eα,A〉
and is defined as follows:

Nodes Vα,A ⊆ QA×N is the union Ql×{l}, where Q0 is the set of initial nodes
of A, and Ql+1 := δA(Ql, al+1).

Edges There is an edge from 〈q, l〉 to 〈q′, l′〉 iff l′ = l + 1 and q′ ∈ δA(q, al+1).

A node 〈q, l〉 is said to be on the level l; there are at most |QA| nodes on each
level. For S ⊆ QA, a node 〈q, l〉 is an S-node if q ∈ S. There is a bijection
between the set of ω-runs of A on α and the set of ω-branches (maximal ω-
paths) in Dagα,A. To an ω-run ρ := q0, . . . qi . . . of A corresponds an ω-branch
ρ̂ := 〈q0, 0〉, . . . 〈qi, i〉, The set of ω-runs on α as well as the corresponding set
of ω-branches in Dagα,A might be uncountable. We often will not distinguish
between ρ and its corresponding branch ρ̂; e.g., we will say “a node is on ρ”
instead of “a node is on the branch which corresponds to ρ.”

A branch is called accepting if it contains infinitely many FA-nodes.
A spanning forest of Dagα,A is a subgraph of Dagα,A which has the same

set of nodes and every node except the initial nodes has in-degree one. (If A has
one initial state, its spanning forests are spanning trees.) The next proposition
is our main technical result.

Proposition 1 Assume that A is finitely ambiguous. Let Tα,A be any spanning
forest of Dagα,A. Then, Tα,A has an accepting branch iff A accepts α.

First, we prove the following Lemma.

Lemma 2. Let ρ be an ω-run on α. Then Tα,A has an ω-branch π such that
from every node of π a node on ρ is reachable in Tα,A.

Proof. First, note that if ρ is unreachable from an i-th node of π, then for every
j > i, ρ is unreachable from the j-th node of π. Note T := Tα,A has finitely many
(at most |QA|) ω-branches. For the sake of contradiction assume that Lemma
fails. Then, there is i such that no node of ρ is reachable from the nodes which
are on ω-branches of T and are on the level > i. If u is not on an ω-branch of T
then, by König Lemma, it has only finitely many descendants in T . Hence, from
the nodes on the level i + 1 of T only finitely many nodes of ρ are reachable.
This contradicts the assumption that T is spanning which implies that from the
nodes of level i+1 of T every node on every level > i of Dagα,A is reachable. ut

Proof. (of Proposition 1) Let ρ be an accepting run on α. Let π be as in
Lemma 2. If there is i such that ∀j > i(π(j) = ρ(j)), then π is an accept-
ing branch. Otherwise, there is an ω-sequence g(0) < g(1) < · · · such that
π(g(i)) 6= ρ(g(i)) and there is a node in ρ \ π on a level < g(i + 1) which is
reachable in Tα,A from π(g(i)) by a path ri. Hence, the run which follows π up
to g(i) then follows ri and then follows ρ is accepting. Since all these runs are
different, we obtain infinitely many accepting runs on α. Contradiction. ut

init f initstart

Fig. 3. Büchi automata over a unary alphabet with countably many and uncountably
many accepting runs

Example 3. This example shows that the requirement that A is finitely am-
biguous is necessary for Proposition 1. Let A be the automaton in the left of
Fig. 3. The unique ω string over the unary alphabet is accepted by A. One
of the spanning trees of its computational DAG is the tree with one ω-branch
〈init, 0〉, . . . 〈init, i〉, . . . of init-nodes, where each init node has two sons: one
is a leaf labelled f and the second one is its son on the ω-branch. The unique
ω-branch of this tree is not accepting.

Remark 4. Proposition 1 is stated for automata with Büchi acceptance condi-
tions, yet it holds (with the same proof) for any prefix independent acceptance
conditions; in particular, for Muller and Parity acceptance conditions.

Code of a narrow forest Let t be a forest such that for every q ∈ QA and
i, t has at most one node labeled by q at distance (level) i from the roots. The
edges between nodes on i-th and i+1-th levels of t can be described by a partial
function fi : QA ⇀ QA that maps a node at level i + 1 to its father; there is
an edge to node q at level i + 1 from a node q′ at level i if fi(q) = q′. Hence,
such a tree can be coded by a string code(t) := f0f1 . . . over the alphabet of

the partial functions QA ⇀ QA. Moreover, this code has the following well-
formedness property: the image of fi+1 is a subset of the domain of fi for all
i ∈ N.

A transducer with an input alphabet Σ and an output alphabet Γ is a com-
plete deterministic automaton D over the alphabet Σ together with an output
function out : QD×Σ → Γ . Such a transducer defines a function F : Σω → Γω

defined as follows: for α := a1a2 . . . let q0a1q1a2 . . . be the unique run of D on
α. Then, F (α) := b1b2 . . . where bi := out(qi−1, ai).

The following proposition holds for arbitrary automata and its proof is based
on a standard powerset construction.

Proposition 5 For every Büchi automaton A there is a transducer TA of state
complexity 2|QA| which for every α ∈ Σω

A output (the code of) a spanning forest
of Dagα,A.

Proof. The states of TA are the set of the subsets of QA. The initial state is the
set of the initial states of A. After reading a string s = a1 . . . an its state will
be the set of states reachable from the initial states in A after reading s. In a
state B when reading a it goes to the state B′ := ∪q∈BδA(q, a) and outputs any
function g with domain B′ and range B such that if g(q′) = q then q′ ∈ δA(q, a).

ut

Combining Propositions 1 and 5 we obtain:

Theorem 6. For every finitely ambiguous Büchi automaton A there is a trans-
ducer TA of state complexity 2|QA| which for every α ∈ Σω

A outputs (the code of)
a |QA|-narrow forest T such that T has an accepting branch iff A accepts α.

4 Recognizing the narrow forests without accepting
branches

In this section we construct a Büchi automaton U that accepts the code of n-
narrow forest t iff t has no accepting ω-branch. Moreover, this automaton will
be both unambiguous and semi-deterministic (semi-deterministic is defined on
page 8).

Let Q ⇀ Q be the set of partial functions from Q to Q and F ⊆ Q. Recall
that an ω-string g0g1 . . . over Q ⇀ Q is well-formed if for all i the image of gi+1

is a subset of the domain of gi. The transducer TA from Theorem 6 outputs only
well-formed ω-strings. We first describe auxiliary automata C, D and B and then
present our construction for U .

Lemma 7. The automaton C in Fig. 4 is deterministic and it accepts a well-
formed ω-word α over Q ⇀ Q iff the forest described by α has at least one
ω-branch which starts at an (initial) F -node, and has no other F -nodes.

Proof. Let a forest t′ be obtained from t by removing all the initial (root) nodes
which are not in F and their descendants, and removing all the non-initial F -
nodes and their descendants.

States: C has an initial state initC and the non-empty subsets of Q \ F .
Transition relation δC. Let g : Q ⇀ Q.

δC(initC , g) := {q ∈ Q \ F | g(q) ∈ F}

δC(L, g) := {q ∈ Q \ F | g(q) ∈ L}
Büchi Acceptance Condition: All states are accepting states.

Fig. 4. A Deterministic Safe Büchi automaton C

A code of t should be accepted iff t′ has at least one ω-branch. By König
Lemma, the latter is equivalent to t′ has a node on every level i ∈ N.

Assume that after reading g1 . . . gi, the automaton is in a state L. Then q ∈ L
iff there is a path π to a node q on level i from an F -root such that π contains
no other F -node. Therefore, there is an ω-run of C on α (i.e., L is always non-
empty) iff t′ has a node on every level. ut

Lemma 8. The automaton D in Fig. 5 is deterministic and it accepts a well-
formed ω-word α over Q ⇀ Q iff the forest described by α has no ω-branch that
passes through an F -node.

States: D has an initial state initD and states of the form 〈A,D〉 where A ⊇ D
are subsets of Q.
Transition relation δD. Let g : Q ⇀ Q.

– δD(initD, g) = 〈A,D〉, where A := D := (Dom(g) ∩ F) ∪ g−1(F).
– 〈A′, D′〉 := δD(〈A,D〉, g) if

A′ := g−1(A) ∪ (Dom(g) ∩ F)

D′ :=

{
g−1(D) if D 6= ∅
A′ otherwise

Büchi Acceptance Condition: FD := {〈A, ∅〉 | A ⊆ Q}.

Fig. 5. The Deterministic Büchi automaton D

Proof. By König Lemma, no ω-branch has an F node iff every F node has a
finite number of descendants. We use a variant of the breakpoint construction
[12].

After reading a string g1g2 . . . gk the automaton records the set A ⊆ Q of
descendants (on the current level k) of the F -nodes visited so far. In addition
to the set A, the automaton records a subset D ⊆ A which is used to verify
that every F -node has a finite set of descendants. The verification is done by
phases. After reading the first letter g1, D is the same as A and is equal to the
set of the nodes on level one which have an F -node as ancestor. This starts the
first phase; we want to verify that D has a finite number of descendants. When

reading g2g3 . . . we update D to the set of descendants on the current level of
the nodes initially assigned to D. We keep updating D until it becomes empty.
If the nodes assigned initially to D are not on ω-branches, then D will become
eventually empty, and this completes the first phase.

We begin the next phase by assigning to D the set of nodes in A (recall that A
is updated all the time and always keeps the nodes at the current level that have
an F -node as ancestor); we will continue to update D to keep the descendants
of the nodes reassigned to D until it becomes empty. The automaton continues
in this way: when D becomes empty, it starts a new phase by re-assigning to D
the nodes in A, and computes the set of descendants of the nodes re-assigned to
D in the beginning of the phase, which are at the current level.

We claim that g1 . . . gi . . . has no F node on any ω-branch iff D is empty
infinitely often. Indeed, assume that g1 . . . gi . . . has an F -node u at level i on
an ω-branch π. Then, this node will enter A at stage i. If D is not empty at any
stage j > i, then we are done. If D becomes empty at a stage j > i, then A
will contain π(j) the j-th node of π which is a descendant of u on π. At stage
j, the node π(j) will enter D and at every stage l > j, D will contain π(l) and
therefore will be non-empty.

Conversely, if g1 . . . gi . . . has no F -node on any ω-branch, then A and D
contain only nodes with finitely many descendants. Hence, each time D is reas-
signed, it will become eventually empty. ut

Now, from D, a Büchi automaton B that accepts a narrow forest t iff t has no
accepting ω-branch is obtained as follows. In addition to the states of D, B has
a new initial state initB. B waits in initB until a guessed stage k from which no
F nodes will appear on the ω-branches of t. Then, it moves to the initial state of
D. It is clear that B accepts α := g1 . . . gk . . . iff D accepts a suffix of α iff every
ω-branch of α has finitely many F -nodes.

Recall that a Büchi automaton is semi-deterministic, if for every state q
reachable from an accepting state and b ∈ Σ there is at most one transition
labelled by b from q. Semi-deterministic automata are sometimes called limit
deterministic and were introduced by Vardi [20].

B is semi-deterministic. Its only nondeterministic transitions are in its initial
state. However, it is ambiguous because if it accepts t by leaving the initial state
after reading a prefix of length k, every run that leaves initB after a prefix of
length > k is accepting. We will disambiguate B by leaving its initial state as
early as possible, namely, when reading the last F -node on the ω-branches of t.

Lemma 9. The following are equivalent:

1. The last occurrence of F -nodes on the ω-branches of t described by α :=
g1 . . . gk . . . is on level k − 1.

2. (a) gk+1 . . . gi . . . has no F -node on the ω-branches, i.e., it is accepted by D,
and

(b) gkgk+1 . . . gi . . . has an ω-branch that starts at an F -node and contains
no other F -node, i.e., it is accepted by C.

For FA ⊆ Q
Lang(U) = {g1 . . . gi . . . | no FA-accepting ω- branch }.

States: initU , wait, QD, QC ×QD.
Transition relation δ. Let g : Q ⇀ Q.

– δ(initU , g) :=

{
{wait, δD(initD, g)} if the image of g ∩ FA = ∅
{wait, δC(initC , g)× initD} otherwise

– δ(wait, g) := {wait, δC(initC , g)× initD}
– δ(q, g) := δD(q, g) for q ∈ QD.
– δ(〈q1, q2〉, g) := 〈δC(q1, g), δD(q2, g)〉 for 〈q1, q2〉 ∈ QC ×QD.

Büchi Acceptance Condition: FU := FD ∪QC ×FD (recall that QC = FC)

Fig. 6. The unambiguous Büchi automaton U

Now, we are ready to describe a semi-deterministic unambiguous automaton
U which accepts (a well-formed) α := g1 . . . iff the forest described by α has no
accepting ω-branch. U works as follows:

In its initial state U either (a) immediately wakes up D and then accepts
if D accepts, or (b) waits for an arbitrary number k ≥ 0 of steps, wakes up C
which starts to work on gk . . . and in the next step wakes up D which works on
gk+1 . . ., and accepts if both accept. The explicit description of U is in Fig. 6.

Note that U is semi-deterministic; its only nondeterministic states are initU
and wait. It is also unambiguous. If U accepts α := g1g2 . . ., then either forest
described by α has no F -node on ω-branches and in this case the only accepting
run on α goes to D, or the last occurrence of F -nodes on its ω-branches is on
level k− 1 and in this case its only accepting run enters QC ×QD when reading
k-th letter.

5 State Complexity

If A has n states, then the number of states |QU | of U is bounded by 2 + |QD|+
|QD| × |QC | ≤ 2|QD| × |QC | ≤ 2× 3n × 2n.

The automaton that accepts the complement of A is the product of the
transducer TA and U . Its state complexity is bounded by 2 × 2n × 2n × 3n.
However, not all the states of the product are reachable.

At least half of the set of reachable states in the product of TA and U are
states which correspond to the tuples 〈B,L,A,D〉 where B,L,A,D ⊆ QA, B
is a state of TA, 〈L,A,D〉 is a QC ×QD state of U . Moreover, if 〈B,L,A,D〉 is
a reachable state, then B,L,A,D are subsets of QA which satisfy the following
restrictions: L ⊆ B \ FA, D ⊆ A ⊆ B and L is disjoint from A. The number of
tuples which satisfy these restriction is bounded by the cardinality of the set of
functions from QA into {1, 2, 3, 4, 5} which is 5|QA|.

Theorem 10. The complement of the ω-language accepted by a finitely am-
biguous Büchi automaton with n states is accepted by an unambiguous semi-
deterministic automaton with ≤ 2× 5n states.

6 Further Results and Open Questions

We introduced a natural class of finitely ambiguous Büchi automata and proved
that their complementation is easier than the complementation of general NBA.
The class of finitely ambiguous Büchi automata includes the class of unambigu-
ous and the class of k-ambiguous Büchi automata. It is incomparable with the
class of semi-deterministic Büchi automata. The automaton in the left of Fig. 3
is semi-deterministic, but it is not finitely ambiguous. The automaton in the
right of Fig. 1 is finitely ambiguous, but it is not semi-deterministic.

For nondeterministic ε-free automata over words, on every word there are
at most finitely many accepting runs1; however, even over unary ω-words there
are nondeterministic automata with uncountable many accepting runs (see the
automaton on the right of Fig. 3). Hence, over ω-words one can consider a class
of countably ambiguous automata which is a proper subclass of nondeterministic
automata.

We do not know whether the complementation of countably ambiguous Büchi
automata is easier than of NBA.

It is easy to check in polynomial time whether an automaton is unambiguous.
Weber and Seidl [21] investigated several classes of ambiguous automata on

words and provided respective structural characterisations of the classes from
which polynomial time algorithms are obtained for deciding the membership in
each of these classes.

In particular, they proved that the following Bounded Ambiguity Criterion
(BA) characterizes whether there is a bound k such that a nondeterministic
automaton on words has at most k accepting runs on each word.

Forbidden Pattern for Bounded Ambiguity: There are distinct useful2 states
p, q ∈ Q such that for some word u, there are runs on u from p to p, from p
to q and from q to q (see Fig. 7.)

Theorem 11 (Weber and Seidl [21]). Let A be an NFA on words. There is
no bound k ∈ N such that on every word A has at most k accepting runs if and
only if A contains the forbidden pattern for bounded ambiguity (see Fig. 7).

It is easy to use the above theorem and to show that it holds when “NFA on
words” is replaced by “NBA.”

The following Forbidden Patterns for Countable Ambiguity (FPCA) and
Finite Ambiguity (FPFA) characterize NBA for which on every ω-string there
are at most countably many and finitely many accepting runs.

1 unfortunately, an automaton on words is called finitely ambiguous if it is k-
ambiguous for some k. Maybe a more appropriate name for such automata is
“bounded ambiguous.”

2 A state is useful if it is on an accepting run.

p qu

u u

Fig. 7. Forbidden Pattern for Bounded Ambiguity

Forbidden Pattern for Countable Ambiguity: there is a final useful state
f and there are two distinct runs on the same word u from f to f .

Forbidden Pattern for Finite Ambiguity: either contains the forbidden pat-
tern for countable ambiguity or there is a final useful state f , a useful state
q 6= f , and a string u such that there are runs on u from q to q, from q to f
and from f to f (see Fig. 8).

q f
u

u u

Fig. 8. Forbidden Pattern for Finite Ambiguity

Theorem 12. Let A be a NBA.

1. A has uncountably many accepting runs on some ω-word if and only if A
contains the forbidden pattern for countable ambiguity.

2. A has infinitely many accepting runs on some ω-word if and only if A con-
tains the forbidden pattern for finite ambiguity.

The proof of Theorem 12 is given in the full paper. As an immediate consequence,
we obtain a polynomial time algorithm that decides whether NBA is bounded
ambiguous, finitely ambiguous, or countable ambiguous.

Kahler and Wilke [9] proved that a nondeterministic Büchi automaton with n
states is equivalent to an UBA with (3n)n states. This gives (3n)n upper bound
on the succinctness gap between NBA and UBA. The 2n lower bound is easily
derived from the 2n succinctness gap for automata over words [10]. The tight
bounds on the succinctness gap between finitely ambiguous, unambiguous, k-
ambiguous, countable ambiguous Büchi automata and NBA are open questions.

Acknowledgments. I would like to thank anonumous reviewers for their useful
and insightful suggestions.

References

1. Arnold, A.: Rational ω-languages are non-ambiguous. Theoretical Computer
Science 26 (1983) 221-223.

2. C. Baier and Stefan Kiefer, J. Klein, S. Klüppelholz, D. Müller and J. Worrell.
Markov Chains and Unambiguous Büchi Automata, In CAV 2016, pp. 23–42.

3. J. R. Büchi. On a decision method in restricted second order arithmetic. In
CLMPS 1960, pages 1-11. Stanford University Press, 1962.

4. Colcombet, T.: Unambiguity in automata theory. In DCFS 15, LNCS vol.
9118, pp. 3–18. Springer (2015).

5. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential ma-
chines. Theor. Comput. Sci. 23, 95–101 (1983).

6. E. Friedgut, O. Kupferman, and M. Y. Vardi. Büchi complementation made
tighter. Inter. J. of Foundations of Computer Science, 17(4):851–868, 2006.

7. Y. Han and A. Salomaa and K. Salomaa, Ambiguity, Nondeterminism and
State Complexity of Finite Automata, Acta Cybern., 23 1, 141–157, 2017.

8. D. Isaak and C. Loding. Efficient inclusion testing for simple classes of unam-
biguous ω-automata. IPL 112(14-15):578–582, 2012.

9. D. Kahler and T. Wilke. Complementation, disambiguation, and determiniza-
tion of Büchi automata unified. In Proc. ICALP 2008, LNCS vol. 5125 pp.
724-735. Springer, 2008.

10. Leiss, E. Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci., 13: 323–330, 1981.

11. R. McNaughton. Testing and generating infinite sequences by a infnite au-
tomaton. Information and Control, 9(5):521–530, October 1966.

12. S. Miyano and T. Hayashi. Alternating Infite automata on ω-words. Theoret-
ical Computer Science, 32(3):321–330, 1984.

13. Leung, H. Descriptional complexity of NFA of different ambiguity. Intern. J.
Foundations Comput. Sci., 16(5): 975–984, 2005.

14. Jirasek J., Jiraskova G., Sebej J. (2016) Operations on Unambiguous Finite
Automata. In DLT 2016, LNCS vol 9840. Springer, 2016.

15. S. Safra. On the complexity of omega-automata. In FOCS 1988, pages 319–
327. IEEE Computer Society, 1988.

16. S. Schewe. Büchi complementation made tight. In TACS 2009, pp. 661–672,
2009.

17. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. TCS 49(3):217–239, 1987.

18. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for
un- ambiguous regular expressions, regular grammars and finite automata.
SIAM J. Comput. 14(3), 598–611 (1985).

19. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Com-
puter Science, Vol. B: Formal Models and Sematics, pp. 133–192. 1990.

20. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS 1985, pages 327–338, 1985.

21. Weber, A. and Seidl, H.: On the degree of ambiguity of finite automata. Theor.
Comput. Sci. 88(2), 32–349, 1991.

22. Q. Yan. Lower bounds for complementation of omega-automata via the full
automata technique. J. of Logical Methods in Computer Science, 4(1:5), 2008.

