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Abstract. The First-Order Monadic Logic of Order (FO[<]) is a promi-
nent logic for the specification of properties of systems evolving in time.
The celebrated result of Kamp [14] states that a temporal logic with
just two modalities Until and Since has the same expressive power as
FO[<] over the standard discrete time of naturals and continuous time
of reals. An influential consequence of Kamp’s theorem is that this tem-
poral logic has emerged as the canonical Linear Time Temporal Logic
(LTL). Neither LTL nor FO[<] can express over the reals properties like
P holds exactly after one unit of time. Such local metric properties are
easily expressible in FO[<,+1] - the extension of FO[<] by +1 function.
Hirshfeld and Rabinovich [10] proved that no temporal logic with a finite
set of modalities has the same expressive power as FO[<,+1].
FO[<,+1] lacks expressive power to specify a natural global metric prop-
erty “the current moment is an integer.” Surprisingly, we show that the
extension of FO[<,+1] by a monadic predicate “x is an integer” is equiv-
alent to a temporal logic with a finite set of modalities.

1 Introduction

1.1 Temporal Logics and Kamp’s Theorem

Temporal Logics were introduced to Computer Science by Pnueli in [18]. They
provide a convenient framework for reasoning about “reactive” systems. This
made temporal logics a popular subject in the Computer Science community,
enjoying extensive research in the past 30 years.

In a temporal logic we describe basic system properties by atomic propositions
that hold at some points in time, but not at others. More complex properties
are expressed by formulas built from the atoms using Boolean connectives and
Modalities (temporal connectives): A k-place modality M transforms statements
ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement M(ϕ1, . . . , ϕk) on
the ‘present’ point. The rule to determine the truth of a statement M(ϕ1, . . . , ϕk)
is called a truth table. The choice of particular modalities with their truth tables
yields different temporal logics.

A basic modality is 3 - eventually: 3P says: “P holds some time in the fu-
ture.” It is formalized by a formula ϕ(z0, P ) := (∃z > z0)P (z) with one free vari-
able z0 (for the current moment). This is a formula of the First-Order Monadic
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Logic of Order (FO[<]) - a fundamental formalism in Mathematical Logic where
formulas are built from atomic monadic formulas P (z) and atomic order formu-
las z1 = z2, z1 < z2, by Boolean connectives and first-order quantifiers ∃z and
∀z. Most modalities used in the literature are defined by such first-order truth
tables, and, as a result, every temporal formula translates directly into an equiv-
alent first-order formula. Thus, the different temporal logics may be considered
a convenient way to present fragments of first-order logic. A first-order logic can
also serve as a yardstick by which one can check the strength of temporal logics.
A temporal logic is expressively complete for a fragment L of a predicate logic if
every formula of L with a single free variable is equivalent to a temporal formula.

Actually, the notion of expressive completeness is with respect to the type
of the underlying model since the question whether two formulas are equivalent
depends on the domain over which they are evaluated. The standard linear time
intended models are the Naturals 〈N, <〉 for discrete time and the Reals 〈R, <〉
for continuous time.

A major result concerning temporal logics is Kamp’s theorem [14,5] which
states that the temporal logic with two modalities “P Until Q” and “P Since Q”
is expressively complete for FO[<] over the above two linear time canonical
models.

LTL (Linear Time Temporal Logic) is the temporal logic with two modalities
Until and Since. An influential consequence of Kamp’s result is that LTL has
emerged as the canonical temporal logic.

1.2 Expressing Metrical properties

The choice between FO[<] and LTL is merely a matter of personal preference,
as far as only the expressive power is concerned. For discrete time these logics
suffice. Properties like “Every P will be followed promptly enough by a Q”
can be explicitly written once a number k is chosen, and “promptly enough” is
interpreted as: “within k steps.”

LTL and FO[<] are expressively equivalent whether the system evolves in
discrete or in continuous time. However, for continuous time both logics lack the
power to express properties of the kind just described, and we must strengthen
their expressive power.

Some measure of length of time needs to be included, and the language must
be adapted to it. This is done by assuming that there is a basic unit of length;
let’s call it “length 1.” For predicate logic it is a standard procedure to extend
the language by a name for the “+1” function, or for a corresponding relation.
It will then be the question which fragment of the extended language FO[<,+1]
suits our needs.

Burgess and Gurevich [4] proved that FO[<] is decidable over the reals. Un-
fortunately, FO[<,+1] is undecidable over the reals. Much research was carried
out to find decidable temporal logics which can specify some metric proper-
ties. Extending temporal logic, without relating it to a corresponding predi-
cate logic, has led to a veritable babel of metric temporal logics over the reals
[15,3,2,16,5,21,1,7,8,9]. The most popular among decidable temporal logics is
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MITL (Metric Interval Temporal Logic) introduced by Alur, Feder and Hen-
zinger [1]. MITL uses infinitely many modalities. However, it has the same ex-
pressive power as QTL (Quantitative Temporal Logic [9]), which has besides the
modalities Until and Since two metric modalities: ♦(0,1)P and ♦(−1,0)P . The
first one states that P will happen (at least once) within the next unit of time,
and the second says that P happened within the last unit of time.

Adding the power to say “P will be true (at least once) within the next unit
of time” is natural and necessary. There is, however, no reason to believe that
this gives us the required expressive power. Is it enough, or do we need additional
modalities? If we must add more modalities, which ones should we choose? A.
Pnueli was the first to address these questions.

In previous work we have defined the counting modalities Cn(P ) and
←−
C n(P )

for n ∈ Nat. Cn(P ) says “P will hold at least at n points within the next unit

of time” and its dual
←−
C n(P ) says “P was true at least at n points within the

previous unit of time” [9,10].
TLC (Temporal Logic with Counting) is the extension of LTL by all count-

ing modalities. For n ∈ N, a fragment TLCn of TLC has only finitely many

modalities: Until, Since and Ck,
←−
C k for k ≤ n. In particular, TLC 1 is exactly

QTL and has the same expressive power as MITL.
We proved in [9,10,11] the following:

1. TLC is decidable and equivalent to a natural fragment of FO[<,+1].
2. TLCn is strictly less expressive than TLCn+1, so this is a strict hierarchy.
3. If the expressive power of a temporal logic L is between TLC and FO[<,+1],

then L has infinitely many modalities.

As a consequence of (3), and in contrast to Kamp’s theorem, no temporal logic
with a finite set of modalities is expressively equivalent to FO[<,+1] over the
reals.

1.3 Kamp’s Theorem in Metric Setting

Over the reals, FO[<,+1] still lacks expressive power to specify a natural global
metric property “the current moment is an integer.”

This paper is concerned with the expressive power of FO[<,+1] over the ex-
pansion RZ of the reals by a monadic predicate interpreted as the set of integers.
We prove that FO[<,+1] has the same expressive power as a temporal logic with
a finite set of modalities, hence an analog of Kamp’s theorem holds.

More specifically, MTL (Metric Temporal Logic [15]) in addition to four
modalities of QTL has two more modalities: 3=1 and 3=−1; 3=1(P ) says: “P is
true exactly after one unit of time” its dual 3=−1(P ) says “P was true exactly
before one unit of time.”

Our main result states that FO[<,+1] has the same expressive power as MTL
over RZ.

The paper is organized as follows. Section 2 provides definitions of the first-
order monadic logics and of temporal logics. In Section 3, Kamp’s theorem and
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our main result are stated. Sections 4 outlines a proof of the main theorem.
The structure of the proof of expressive completeness is similar to the simplified
proof of Kamp’s theorem [20]. We recall the relevant notions and propositions
from [6,20] used in the proof of Kamp’s theorem. Then, we generalize these
propositions to the metric setting and prove expressive equivalence of MTL and
FO[<,+1] over RZ. Sections 5-7 contain the proof of main technical lemmas,
which uses some ideas from [17,19]. The last section presents conclusion and
discusses related works.

2 Logics

In this section we recall definitions of the first-order monadic logics and of tem-
poral logics.

Fix a set Σ of atoms. We use P,R, S . . . to denote members of Σ. The syntax
and semantics of both logics are defined below with respect to such Σ.

2.1 First-order monadic logics

In the context of first-order logics, the atoms of Σ are considered as unary
predicate symbols.

The signature of FO[<] (first-order monadic logic of order) in addition to Σ
contains two binary relation symbols: < and =. We use x, y, z, . . . for (first-order)
variables. The formulas are defined by the following grammar:

atomic := x < y | x = y | P (x) (where P ∈ Σ)

ϕ := atomic | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ

We will also use the standard abbreviated notation for bounded quantifiers, e.g.,
(∃x)>z(. . . ) denotes ∃x((x > z)∧ (. . . )), and (∀x)<z(. . . ) denotes ∀x((x < z)→
(. . . )), and ((∀x)<z2>z1(. . . ) denotes ∀x((z1 < x < z2)→ (. . . )), etc.

A Σ-structure (or just structure) M for FO[<] is a tuple M = (T , <, I)
where T is a set - the domain of M, < is a linear order relation on T , and
I : Σ → P(T ) is the interpretation of Σ (where P is the powerset notation).

FO[<,+1] is the extension of FO[<] by a unary +1 functional symbol. We
mostly will be interested in the interpretations of FO[<,+1] over the reals. Un-
der such interpretations, the domain of M is the set R of reals, < and +1 are
interpreted in the standard way, and unary predicate symbols from Σ are inter-
preted as unary predicates on the reals. We call such structures R-structures. If,
in addition, Σ contains a predicate name Int, interpreted as the set Z of integers,
a structure is called an RZ structure.

It will be convenient for us to use another first-order language which is equiv-
alent to FO[<,+1] over RZ structures. This is the extension of FO[<] by a unary
function symbol bxc - interpreted as the integer part of x, and by the unary func-
tions +c for c ∈ Z. Its terms are defined by the grammar t := x | btc | t+ c for
c ∈ Z. A standard term is a term of the form bxc + c or x + c. It is clear that
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every term is equivalent to a standard term. By abusing notations, this logic will
be also denoted by FO[<,+1].

We use the standard notationM, a1, a2, . . . an |= ϕ(x1, x2, . . . xn) to indicate
that the formula ϕ with free variables among x1, . . . , xn is satisfiable inM when
xi are interpreted as elements ai of M.

2.2 Temporal Logics

In the context of temporal logics the atoms of Σ are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms, and a
set (finite or infinite) B of modality names, where a non-negative integer arity
is associated with each modality M ∈ B.

LTL (Linear Time Temporal Logic) has two modalities strict-Until and strict-
Since. LTL formulas are defined by the following grammar:

F := P | ¬F | F ∨ F | F ∧ F | F Until F | F Since F, where P ∈ Σ.

MTL (Metric Temporal Logic) has four additional unary modalities: MTL syn-
tax extends the syntax of LTL by the following rules: If F is a formula, then
♦(0,1)F, ♦(−1,0)F, 3=1F and ♦=−1F are formulas.

QTL (Quantitative Temporal Logic) is the fragment of MTL which uses only
the modalities Until, Since, ♦(0,1) and ♦(−1,0).
Semantics. The semantics defines when a temporal formula holds at a time-
point (or moment or element of the domain) in a structure M.

The semantics is defined inductively: given a structure M with a domain T
and a ∈ T , define when a formula F holds in M at a - notation: M, a |= F - as
follows:
– M, a |= P iff a ∈ I(P ) for any atom P ∈ Σ.
– M, a |= F ∨G iff M, a |= F or M, a |= G; similarly (“pointwise”) for ∧, ¬.
– M, a |= F Until G iff there is a′ > a such thatM, a′ |= G andM, b |= F for

every b in an open interval (a, a′).
– M, a |= F Since G iff there is a′ < a such thatM, a′ |= G andM, b |= F for

every b in an open interval (a′, a).

MTL is interpreted over the reals with the standard interpretation of +1 and
−1 funcional symbols. It has four additional semantical clauses for modalities:
♦(0,1) - within the next unit of time, ♦(−1,0) - within the last unit of time, 3=1

- exactly after one unit of time, and 3=−1 - exactly before one unit of time.

– M, a |= 3=1F iff M, a+ 1 |= F .
– M, a |= ♦=−1F iff M, a− 1 |= F .
– M, a |= ♦(0,1)F iff there is a′ ∈ (a, a+ 1) such that M, a′ |= F .
– M, a |= ♦(−1,0)F iff there is a′ ∈ (a− 1, a) such that M, a′ |= F .

In RZ structures Σ contains a symbol Int, interpreted as the set Z of integers,
and

– M, a |= Int iff a is an integer.
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We conclude this section by recalling a definition of a temporal logic TLC with
an infinite sets of modalities. Thought TLC is not used directly in our technical
results, it is useful to to explain the role of Z in expressing the modality of TLC
by MTL formulas.

TLC (Temporal Logic with Counting) is the extension of LTL by an infinite

set of modalitues Cn and
←−
C n for n ∈ N - counting modalities. The TLC syntax

extends the syntax of LTL by the following rules: if F is a formula, then Cn(F )

and
←−
C n(F ) are formulas. The semantical clauses for modalities: Cn(P ) - “P will

hold at least at n points within the next unit of time,” and
←−
C n(P ) - “P was

true at least at n points within the previous unit of time” are:

– M, a |= Cn(F ) iff there are a1 < a2 < · · · < an ∈ (a, a + 1) such that
M, ai |= F for i ≤ n.

– M, a |=
←−
C n(F ) iff there are a1 < a2 < · · · < an ∈ (a − 1, a) such that

M, ai |= F for i ≤ n.

Note that C1(P ) (respectively,
←−
C 1(P )) is equivalent to ♦(−1,0)(P ) (respectively,

3=−1(P )).
In [19], we proved that all counting modalities are expressible in MTL over the

expansion of the reals by two monadic predicate: integers and the even integers.
Let us illustrate the role of Int and show how to express all counting modal-

ities Cn(P ) and
←−
C n(P ) (for n ∈ Nat) in MTL over RZ. First, for every k ∈ N,

there is an LTL formula Forwardk(P,Q) which expresses “from the current
moment until the next occurrence of Q there are at least k points in P .”
Similarly, there is an LTL formula Backwardk(P,Q) which expresses “between
the current moment and the previous occurrence of Q (including the moment
of this occurrence) there are at least k points in P .” Finally, Cn(P ) - “P
holds at least at n points within the next unit of time” - is equivalent to the
conjunction of Int → Forwardn(P, Int) and ¬Int → ∨nk=0(Forwardk(P, Int) ∧
3=1Backwardn−k(P, Int)). The dual modality

←−
C n(P ) is expressed similarly.

3 Expressive Equivalence

Equivalence between temporal and first-order formulas with a single free variable
is naturally defined as: F is equivalent to ϕ(x) over a class C of structures iff for
any M∈ C and a ∈M: M, a |= F ⇔M, a |= ϕ(x).

Let L and L′ be temporal logics. L is expressively complete for (or, at least
as expressive as) L′ over a class C, if for every formula F ′ ∈ L′ there is F ∈ L
which is equivalent to F ′ over C. In this case we write L′ �exp L. Similarly, if L′
is a first-order logic, L′ �exp L if for every formula ϕ(x) in L with a single free
variable, there is a formula F ∈ L equivalent to ϕ. L and L′ are expressively
equivalent (notation L =exp L′) over C iff L′ �exp L and L �exp L′ over C.

The fundamental result of Kamp [14,5] implies that a temporal logic with
just two modalities Until and Since has the same expressive power as FO[<] over
the canonical linear time models (N, <), (R, <) and non-negative reals (R≥0, <).
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An influential consequence of Kamp’s result is that LTL has emerged as the
canonical temporal logic.

A technical notion that unifies the canonical linear time models is Dedekind
completeness.

A linear order (T,<) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. The canonical
linear time models (N, <), (R, <) and (R≥0, <) are Dedekind complete, while
the order of the rationals is not Dedekind complete.

Kamp’s theorem states that LTL is expressively equivalent to FO[<] over
Dedekind complete orders.

Theorem 3.1 (Kamp [14]) 1. Given any LTL formula A there is an FO[<]
formula ϕA(x) which is equivalent to A over all linear orders.

2. Given any FO[<] formula ϕ(x) with one free variable, there is an LTL for-
mula Aϕ which is equivalent to ϕ over Dedekind complete orders.
Moreover, ϕA and Aϕ are computable from A and ϕ.

The correspondence between predicate logics and temporal logics becomes con-
siderably more complicated with the introduction of metric specifications.

All logics mentioned in Section 2.2 are less expressive than FO[<,+1] over
the reals. The translation from the formulas of these logics to equivalent formulas
of FO[<,+1] is straightforward.

Their expressive power can be summarized as follows: QTL ≺exp TLC [9,10],
and QTL ≺exp MTL [1]. Moreover, since TLC is decidable, while MTL is unde-
cidable, it follows that TLC cannot express 3=1P . In [10] we proved that MTL
cannot express C2(P ) - “P occurs twice in the next unit interval.” Hence, the
expressive power of MTL and TLC is incomparable.

Actually, the main result of [10] is much stronger. In particular, it implies
that if L is a temporal logic with a finite set of modalities and L �exp FO[<,+1],
then there is n such that a counting modality Cn(P ) is not expressible in L.

As a consequence, in contrast to Kamp’s theorem, no temporal logic with a
finite set of modalities is expressively equivalent to FO[<,+1] over the reals.

Our main result is that over the expansions of (R, <,+1) by a monadic
predicate “the current moment is an integer” FO[<,+1] is expressively equivalent
to a finite base temporal logic MTL.

Theorem 3.2 (Main) 1. Given any MTL formula A there is an FO[<,+1]
formula ϕA(x) which is equivalent to A over RZ.

2. Given any FO[<,+1] formula ϕ(x) with one free variable, there is a MTL
formula Aϕ which is equivalent to ϕ over RZ.
Moreover, ϕA and Aϕ are computable from A and ϕ.

Theorem 3.2 (1) is easily proved by the structural induction. The main technical
contribution of our paper is the proof of Theorem 3.2 (2). The proof is construc-
tive. An algorithm which for every FO[<,+1] formula ϕ(x) constructs a MTL
formula which is equivalent to ϕ is easily extracted from our proof.
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It is a routine exercise to adapt the proof of Theorem 3.2 to the non-negative
reals, and to show that MTL and FO[<,+1] are expressively equivalent over
the non-negative reals expanded by a predicate interpreted as the set of natural
numbers.

4 Proof Outline

The structure of our proof is similar to the proof of Kamp’s theorem in [20].
We first recall the relevant notions and propositions from [6,20]. Then, we state
their generalization to metric setting and prove expressive equivalence of MTL
and FO[<,+1] over RZ.

Definition 4.1 (Decomposition and
−→
∃ ∀-formulas) Let Σ be a set of monadic

predicate names.

– A decomposition formula (D-formula) over Σ is a formula χ(z0, . . . , zm) of
the form:

∃xn . . . ∃x1∃x0 (xn > xn−1 > · · · > x1 > x0)∧
m∧
i=0

zi = xki ∧
n∧
j=0

αj(xj) ∧
n∧
j=1

[(∀y)
<xj

>xj−1
βj(y)] (1)

∧ (∀y)>xn
βn+1(y) ∧ (∀y)<x0β0(y)

where z = {z0, . . . , zm} and x = {x0, . . . , xn} are disjoint lists of variables,
0 ≤ ki < kj ≤ n for i < j and all αj, βj are quantifier free formulas with
one variable over Σ. Observe that χ(z0, . . . , zm) implies ∧m−1i=0 (zi < zi+1).

– An
−→
∃ ∀-formula over Σ is a conjunction of a D-formula as in (1) and∧s

i=0(ui = zh(i)), where u0, . . . , us are variables and h : {0, . . . , s} → {0, . . . ,m}.

The next definition plays a major role in the proof of Kamp’s theorem [6,20].

Definition 4.2 Let M be a structure with the signature including unary predi-
cate names Σ, and L be a temporal logic. We denote by L[Σ] the set of unary
predicate names Σ∪{A | A is an L-formula over Σ }. The canonical L-expansion
of M is an expansion of M to a structure with unary predicate names L[Σ],
where each predicate name A ∈ L[Σ] is interpreted as {a ∈M | M, a |= A}.

Note that if A is an L-formula over L[Σ] predicates, then it is equivalent to an L
-formula over Σ, and hence to an atomic formula in the canonical L-expansions.

The
−→
∃ ∀ formulas are defined as previously, but now they can use as atoms

L definable predicates.
We say that first-order formulas in a signature which includes L[Σ] are equiv-

alent overM (respectively, over a class C of structures) if they are equivalent in
the canonical expansion of M (in the canonical expansion of every M∈ C).

Propositions 4.4-4.5 were proved1 in [20].

1 For the sake of simplicity these propositions were stated for L := LTL. However,
their proofs are sound for any L �exp LTL.
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Proposition 4.3 (From
−→
∃ ∀-formulas to temporal formulas) Let L be a

temporal logic such that L �exp LTL. Then, every
−→
∃ ∀-formula with one free

variable is equivalent (over the canonical L-expansions) to an L formula.

Proposition 4.4 (From first-order formulas to
−→
∃ ∀-formulas) Let L be a

temporal logic such that L �exp LTL. Then every FO[<] formula is equivalent
(over the canonical L expansions of Dedekind complete orders) to a disjunction

of
−→
∃ ∀-formulas.

Setting L := LTL in the next proposition we obtain Kamp’s theorem.

Proposition 4.5 Let L �exp LTL be a temporal logic. Then every FO[<] for-
mula with one free variable is equivalent (over the canonical L-expansions) to
an L formula.

The structure of our proof is similar to that of Kamp’s theorem. Recall that a
substitution σ is a map from variables to terms. We use {t0/z0, . . . , tn/zn} for
the substitution which maps zi to ti. For a formula ψ, the result of replacing
free occurrences of zi by ti is denoted by ψσ (as usual, we have to avoid that the
variables occurring in ti are captured in ψσ). Recall that the standard terms in
FO[<,+1] are variables or of the form z+ c or bzc+ c, where c ∈ Z. Every term
of FO[<,+1] is equivalent to a standard term. From now on we use the word
“term” for “standard term.”

Definition 4.6 A simple (metric) formula is a formula of the form ψσ, where

ψ is an
−→
∃ ∀-formula, and σ is a substitution.

In a simple metric formula no bound variable is in the scope of function sym-
bols b c or +c for c 6= 0, We will prove the next two Propositions which are
adaptations of Propositions 4.4 and 4.3 to the metrical setting:

Proposition 4.7 (From simple formulas to MTL formulas) Every simple
metric formula with one free variable is equivalent (over the canonical MTL-
expansions of RZ) to an MTL formula.

Proposition 4.8 (From first-order formulas to simple metric formulas)
Every FO[<,+1] formula is equivalent (over the canonical MTL expansions of
RZ) to a disjunction of simple formulas.

Propositions 4.8 and 4.7 immediately imply Theorem 3.2 (2) - our main result.

Proof. (of Theorem 3.2 (2).) Let ϕ(x) be a FO[<,+1] formula with one free
variable. By Proposition 4.8, it is equivalent to a disjunction ψi of simple for-
mulas. By Proposition 4.7, ψi is equivalent to a MTL formula Ai. Therefore, ϕ
is equivalent to a MTL formula ∨Ai. ut

Our proofs are organized as follows. The next section presents simple Lem-
mas. Proposition 4.7 is proved in Section 6 and Proposition 4.8 is proved in
Section 7. The proofs of Propositions 4.7 and 4.8 often reuse Propositions 4.4
and 4.3.
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5 Notations and Observations

Notations. As usual, 3=2P abbreviates 3=13=1P , and 3=c for c ∈ Z is defined
similarly. We denote by FreeVar(ϕ) the set of free variables of ϕ.

Let σ := {t0/z0, . . . , ti/zn} be a substitution. We use dom(σ) for {z0, . . . , zn}
and Term(σ) for {σ(z) | z ∈ dom(σ)}. Recall that the terms of FO[<,+1] are of
the form z, bzc+c and z+c, where z is a variable; and in a simple metric formula
no bound variable is in the scope of function symbols b c or +c for c 6= 0,

For a quantifier free formula ϕ we denote by Term(ϕ) the set of terms that
appear in ϕ. For a simple formula ϕ := ψσ we use Term(ϕ) for {σ(z) | z ∈
FreeVar(ψ)}. For a Boolean combination ϕ of simple and quantifier free formulas
ϕi we denote by Term(ϕ) the union of Term(ϕi).

In this section we state simple lemmas which will be used in the proofs of
Propositions 4.7 and 4.8. All these lemmas easily follow from the definitions.

Lemma 5.1 Every atomic FO[<,+1] formula is equivalent to a disjunction of
simple formulas.

Let T be a set of terms. An order constraint Ord over T is a conjunction of
formulas of the form t = t′ and t′ < t for t, t′ ∈ T . An order constraint Ord is
linear if for every t1, t2 ∈ Term(Ord): either Ord implies t1 < t2, or Ord implies
t2 < t1, or Ord implies t1 = t2.

Let ϕ be a simple formula ψσ, where ψ :=
∧s
i=0(ui = zh(i)) ∧ χ(z0, . . . , zm)

is an
−→
∃ ∀-formula as in Definition 4.1. We denote by Ordϕ, the (linear) or-

der constraint generated by ϕ over Term(ϕ), which is defined as
∧s
i=0 σ(ui) =

σ(zh(i)) ∧
∧m−1
j=0 σ(zj) < σ(zj+1).

Lemma 5.2 1. Let Ord be an order constraint. Then Ord is equivalent to a
disjunction of simple formulas, and ¬Ord is equivalent to a disjunction of
simple formulas.

2. If ϕ is a simple formula, then ¬ϕ is equivalent to a disjunction of simple
formulas.

3. A Boolean combination of simple formulas is equivalent to a disjunction of
simple formulas.

Proof. (1) is immediate.

(2) Let ϕ := ψσ, where ψ is an
−→
∃ ∀-formula. Then ¬ϕ is equivalent to ¬Ordϕ∨

(¬ψ)σ. Since, ¬ψ is an FO[<] formula, by Proposition 4.4, it is equivalent to a

disjunction ∨ψi of
−→
∃ ∀-formulas. Therefore, (¬ψ)σ is equivalent to a disjunction

of simple formulas, and ¬ϕ is equivalent to a disjunction of simple formulas.
(3) immediately by (2). ut

Lemma 5.3 1. If Ord is an order constraint, then Ord is equivalent to a dis-
junction of linear order constraints Ord i such that Term(Ord i) = Term(Ord)
for every i.
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2. If ϕ is a simple formula and Ord is an order constraint, then ϕ ∧ Ord is
equivalent to a disjunction of simple formulas ϕi such that Term(ϕi) =
Term(ϕ) ∪ Term(Ord) for every i.

Lemma 5.4 Let χ(z0, . . . , zm) be a D-formula as in (1) (hence, χ implies∧m−1
i=0 (zi < zi+1)).

1. χ is equivalent to a conjunction ∧m−1i=0 χi(zi, zi+1) of D-formulas with two
variables.

2. More generally, if 0 = l0 < l1 < l2 < · · · < ls = m, then χ is equivalent
to a conjunction ∧s−1i=0χi(zli , . . . , zli+1) of D-formulas with free variables as
displayed.

3. Let z be a fresh variable. Then χ ∧ z < z0 is equivalent to a D-formula χ′

with FreeVar(χ′) = {z, z0, . . . , zm}. Similarly, for ϕ ∧ zm < z.
4. A conjunction of D-formulas with the same set of free variables is equivalent

to a disjunction of (other) D-formulas with the same set of free variables.

Lemma 5.5 (Shifting monadic predicates by a constant) Let ϕ(z0, . . . , zn)
be an FO[<,+1] formula, c ∈ Z, and let ϕc be obtained from ϕ when every
monadic predicate P in ϕ is replaced by (a monadic predicate definable by) 3=cP .

1. Then M, a0, . . . , an |= ϕc iff M, a0 + c, . . . , an + c |= ϕ.

2. If ϕ is a D (respectively,
−→
∃ ∀ or simple) formula, then ϕc is a D (respectively,

−→
∃ ∀ or simple) formula.

3. If ψ is an
−→
∃ ∀-formula, then ψσ is equivalent to ψcσ−c, where σ−c(z) :=

σ(z)− c for every z ∈ FreeVar(ψ).

6 From Simple Formulas to MTL Formulas - Proof of
Proposition 4.7

In this section we prove Proposition 4.7 which states that every simple metric
formula with one free variable is equivalent (over the canonical MTL-expansions
of RZ) to an MTL formula. Proposition 4.7 immediately follows from Claims 1
and 2 below.
Claim 1. A simple formula with one free variable z is equivalent to a disjunction
of formulas of one of the following forms:

(A) z = bzc ∧ χ(z0, z1)σ0, where χ is a D-formula as in (1) and
σ0 := {bzc+ c/z0, bzc+ c+ 1/z1}.

(B) bzc < z < bzc + 1 ∧ χ(z0, z1, z2)σ0, where χ is a D-formula as in (1) and
σ0 := {bzc+ c/z0, z + c/z1, bzc+ c+ 1/z2}.

Claim 2. Any formula of the form (A) or (B) is equivalent to an MTL formula.
Proof of Claim 2. The only non-trivial metric constraint in formulas of these
forms is that the distance between two integer points bzc + c and bzc + c + 1
is one. This can be easily formalized in FO[<] using the monadic predicate Int.
Below are formal details.
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We will translate formulas of the form (B) to equivalent MTL formulas (the
translation of formulas of the form (A) is simpler).

If ϕ is of the form (B), then it is equivalent to the conjunction of ¬Int(z)
and

(
∃z0z2(Int(z0) ∧ Int(z2) ∧ z0 < z1 < z2 ∧ (∀u)<z2>z0¬Int(y) ∧ χ)

)
σ, where

σ := {z+c/z1}. Since ∃z0z2(Int(z0)∧ Int(z2)∧z0 < z1 < z2∧ (∀u)<z2>z0¬Int(y)∧χ)
is an FO[<] formula, it is equivalent to an MTL formula A, by Proposition 4.5.
Therefore, ϕ is equivalent to an MTL formula ¬Int ∧3=cA. ut
Proof of Claim 1. We assume that a least term of ϕ w.r.t. Ordϕ is of the form
bzc + c (otherwise, by Lemma 5.3 we can rewrite ϕ as a disjunction of simple
formulas with this property). There is N ∈ N such that Ordϕ implies that all
terms in Term(ϕ) are less than bzc+ c+N .

Let T := {bzc+ c + j | j = 0, . . . , N} ∪ {z + c + j | j = 0, . . . , N − 1}. Note
that Term(ϕ) ( T .

Let Ord i (for i < K ∈ N) be all satisfiable linear orders on T (there are finitely
many such orders). Then ϕ is equivalent to ∨i(ϕ ∧ Ordi). Hence, (by Lemma
5.3), ϕ is equivalent to a disjunction of simple formulas ϕi with Term(ϕi) = T .

Since, z + c, bzc+ c ∈ T , it follows that either Ordϕi
→ z = bzc or Ordϕi

→
z > bzc. If Ordϕi

implies z = bzc, we show that ϕi is equivalent to a disjunction
of formulas of the form (A); if Ordϕi

implies z > bzc, we show that ϕi is
equivalent to a disjunction of formulas of the form (B).

We will show the second assertion (the first one is simpler). Assume Ordϕi →
z > bzc, then there is χ(z0, . . . , z2N ) as in (1) such that ϕi is equivalent to
bzc < z∧χσ where σ(z2j) = bzc+c+j and σ(z2j−1) = z+c+j for j = 0, . . . , N .

By Lemma 5.4(2), χ is equivalent to ∧N−1j=0 χj(z2j , z2j+1, z2j+2) where χj are
D formulas with FreeVar(χj) = {z2j , z2j+1, z2j+2}.

Replace in χj each monadic predicate P by a predicate definable by 3=c+jP ,
and rename its free variables z2j , z2j+1, z2j+2 to z0, z1, z2; the result is a D-
formula ψj(z0, z1, z2). Then by Lemma 5.5, we obtain that χσ is equivalent to
(∧N−1j=0 ψj(z0, z1, z2))σ0, where σ0 := {bzc+ c/z0, z + c/z1, bzc+ c+ 1/z2}.

Finally, ∧N−1j=0 ψj(z0, z1, z2) is equivalent, by Lemma 5.4(4), to a disjunction
of D formulas with free variables z0, z1, z2. Therefore, ϕi is equivalent to a dis-
junction of formulas of the form (B). ut

7 From First-order Formulas to Simple Formulas - Proof
of Proposition 4.8

In this section we prove Proposition 4.8 which states that every FO[<,+1] for-
mula is equivalent (over the canonical MTL expansions of RZ) to a disjunction
of simple formulas.

The main technical result of this section is:

Proposition 7.1 If ϕ is a simple formula, then ∃zϕ is equivalent to a Boolean
combination of simple formulas.

Proposition 4.8 follows (by a straightforward structural induction) from Propo-
sition 7.1 and Lemmas 5.1 and 5.2(3).
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In [17], we proved that for every N ∈ N, every FO[<,+1] sentence (no free
variable) is equivalent to an MTL formula over the class of real intervals of length
< N . The following locality properties of formulas with a single free variable play
a key role in our proof of Proposition 4.7: if ϕ(z) is a simple formula with one
free variable, then there is N ∈ N such that Ordϕ implies that the distance
between t1 and t2 is < N for every t1, t2 ∈ Term(ϕ). This locality property
fails for formulas with several free variables. Yet, for every formula ϕ we can
decompose Ordϕ into local components, as stated in Lemma 7.3.

Definition 7.2 A linear order constraint Ord is local if there is N ∈ N such
that Ord implies that for every t1, t2 ∈ Term(Ord), the distance between t1 and
t2 is less than N (i.e., Ord → (t2 < t1 +N ∧ t1 < t2 +N)).

A linear constraint can be decomposed into local constraints and a linear order
between them.

Lemma 7.3 Let Ord be a satisfiable linear constraint. Then, there are Ord0, . . . ,
Ordk such that:

1. Ord i are local constraints.
2. Term(Ord) = ∪iTerm(Ord i).
3. FreeVar(Ord i) ∩ FreeVar(Ord j) = ∅ for i 6= j.
4. Let tleati be a leat and tgreatesti be a greatest term in Ord i. Then, Ord is

equivalent to
∧k
i=0 Ord i ∧

∧k−1
i=0 (tgreatesti < tleasti+1 ).

Terminology. Ord i and Term(Ord i), as above, are called local components of
Ord . Whenever Ord is clear from the context and z ∈ FreeVar(Ordi), then Ord i
is also called the local component of z.

Proof. Define an equivalence relation ∼ on Term(Ord) as: t1 ∼ t2 if there is
N ∈ N such that Ord implies that the distance between t1 and t2 is less than
N . It is easy to see that ∼ is a convex equivalence relation, i.e., if t1 ∼ t2, and
Ord → (t1 < t < t2), then t1 ∼ t ∼ t2. Let Ti (for i = 0, . . . , k) be the equivalence
classes of ∼. It is clear that FreeVar(Ti) ∩ FreeVar(Tj) = ∅ for i 6= j. Let Ord i
be the order induced by Ord on Ti, i.e., for t1, t2 ∈ Ti: (1) t1 < t2 ∈ Ord i iff
Ord → t1 < t2 and (2) t1 = t2 ∈ Ord i iff Ord → t1 = t2.

It is easy to see that Ord i are local orders which satisfy the conclusion of
Lemma 7.3. ut

Let us proceed with a proof of Proposition 7.1. Given a simple formula ϕ with
z ∈ FreeVar(ϕ). We show that ∃zϕ is equivalent to a Boolean combination of
simple formulas, according to the following cases:

Case 1. Ordϕ has only one local component.
Case 2. The local component of z is the last or the first local component of

Ordϕ.
Case 3. There are local components before and after the local component of

z.
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Let Ord i be the local component of z. For each of the above cases we will
consider two subcases: (A) z is the only variable in FreeVar(Ord i), and (B) There
are other variables in FreeVar(Ord i).

The road map of the proof is as follows:
Subcase 1.A immediately follows from Proposition 4.7. The proof of subcase

1.B is very similar to the proof of Proposition 4.7; however, due to additional
variables, the notations are heavier.

Subcases 2.A and 3.A easily follow from Proposition 4.7.
Subcases 2.B and 3.B are reducible to Case 1, using standard logical equiv-

alences.
Though the proof is lengthy, it is simple.

7.1 Case 1

We consider two subcases:
Subcase A. FreeVar(ϕ) = {z}. In this subcase, by Proposition 4.7, there is

an MTL formula A equivalent to ϕ. Hence, ∃zϕ is equivalent (in the canonical

MTL expansion) to an
−→
∃ ∀-sentence ∃xA(x). It is also equivalent to an MTL

formulaB := 3A∨A∨←−3A, where 3A (respectively,←−3A) abbreviates TrueUntilA
(respectively, TrueSinceA).

Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.
The proof for subcase B is similar to the proof of Proposition 4.7 (see Section

6).
First, we can assume that Ordϕ is satisfiable (otherwise, the formula is equiv-

alent to False). Let T := Term(ϕ). We can assume that buc + c is a least term
and buc + c + N is a greatest term in T , and if t ∈ T and Ordϕ → (buc + c ≤
t+ d < buc+ c+N), then t+ d ∈ T (otherwise, use Lemma 5.3 to rewrite ϕ as
a disjunction of formulas with these properties).

Next, we eliminate all terms of the form bvc+ d for each variable v which is
different from u. Indeed, if such term t occurs in T , then Ordϕ → (bvc + d =
buc+ c+ i) for some i < N . Hence, we can replace t by buc+ c+ i.

Therefore, we can assume that the set of terms T := Term(ϕ) of our formula
ϕ has the following properties:

1. buc+ c is the least and buc+ c+N is the greatest element of T .
2. Let V := FreeVar(ϕ). Then, there are cv ∈ Z for v ∈ V such that T =
{buc+ c+ i | i ≤ N} ∪ {v + cv + i | i = 0, . . . , N − 1}.

Define an equivalence relation ≈ on V as v ≈ v′ if Ordϕ implies that v and v′

have the same fractional part, i.e., if Ordϕ → (v + cv = v′ + cv′) for constants
cv, cv′ defined in (2). Assume that ≈ has l equivalence classes V0, . . . , Vl. Define
v(i) to be a variable in Vi. Furthermore, we can assume that Ordϕ implies that
v(i) + cv(i) < v(j) + cv(j) for i < j.

Now, ϕ is equivalent to the conjunction of E :=
∧l
i=1(

∧
v∈Vi\v(i) v(i)+cv(i) =

v + cv) and χ(z0, . . . , zN×(l+1))σ, where χ is a D formula and σ(zj×(l+1)) :=
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buc+ c+ j for j = 0, . . . , N and σ(zi+j×(l+1)) := v(i) + cv(i) + j for i = 1, . . . , l
and j = 0, . . . , N − 1.

If the first conjunct E has an occurrence of z, i.e., z+d = v+d′ occurs there,
then we can replace all occurrences of z in ϕ by v+d′−d. The resulting formula
ϕ′ does not have free occurrences of z and is equivalent to ϕ. Therefore, ∃zϕ is
equivalent to ϕ′.

If E has no occurrence of z, then ∃zϕ is equivalent to E ∧ ∃z(χσ).
Therefore, it remains to prove that ∃z(χσ) is equivalent to a Boolean com-

bination of simple formulas.
Our strategy is similar to the proof of Proposition 4.7 (see Section 6).
We are going to prove:

Claim 1. χσ is equivalent to a disjunction of formulas of the form:

(C) ψ(z0, . . . zl+1)σ0, where
1. ψ is a D-formula, and Ordψ implies z0 < z1 < · · · < zl+1.
2. σ0(z0) = buc + c, σ0(zl+1) = buc + c + 1 and σ0(zi) = v(i) + cv(i) for
i = 1, . . . , l.

3. All variables v(i) are different from each other.

Claim 2. If ψ and σ are as in (C), then ∃z(ψσ) is equivalent to a simple formula.
Claims 1 and 2 imply that ∃z(χσ) is equivalent to a disjunction of simple

formulas.
The proof of Claim 2 is easy. Indeed, ∃x

(
α{x+ c/xi}

)
is equivalent to ∃xiα,

whenever x is not free in α. Since z is v(i) for some i, we obtain by the above
equivalence that ∃z(ψσ0) is equivalent to (∃ziψ)σ0. Observe that ∃ziψ is an
−→
∃ ∀-formula. Therefore, ∃z(ψσ0) is equivalent to a simple formula (∃ziψ)σ0.

The proof of Claim 1 is similar to the proof of Claim 1 in Section 6.
Namely, we can rewrite χ(z0, . . . , zN×(l+1)) as a conjunction of D-formulas

χ0(z0, . . . , zl+1), . . . , χi(zi×(l+1), . . . , z(i+1)×(l+1)), . . . , χN−1(z(N−1)×(l+1), . . . , zN×(l+1)),
with free variables as displayed. Replace in χi each monadic predicate P by a
predicate definable by 3=c+iP , and rename its free variables zi×(l+1), . . . , z(i+1)×(l+1)

to z0, . . . zl; the result is a D formula ψi(z0, z1, . . . , zl+1).
By Lemma 5.5, χσ is equivalent to (

∧
i ψi)σ0. Finally, since ψi are D-formulas

and FreeVar(ψi) = {z0, . . . , zl+1}, we obtain, by Lemma 5.4, that
∧
i ψi is equiv-

alent to a disjunction of D-formulas, and χσ is equivalent to a disjunction of
formulas of the form (C).

This completes the proof of Claim 2.

7.2 Case 2

Let Ord := Ordϕ and assume that Ord is decomposed as in Lemma 7.3, and
z ∈ FreeVar(Ordk) (the case when z in the first local component is dual).

Let Ord<k be the order induced by Ord on ∪k−1i=0 Ti and Ord ′ be the order
induced by Ord on tgreatestk−1 ∪Tk. Then, ϕ is equivalent to ϕ1∧ϕ2, where ϕ1 and ϕ2

are simple formulas such that Term(ϕ1) = ∪k−1i=0 Ti, Term(ϕ2) = {tgreatestk−1 } ∪ Tk.

and Ordϕ2
= Ord ′. Since z is not free in ϕ1, we obtain that ∃zϕ is equivalent
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to ϕ1 ∧ ∃zϕ2. So, it remains to prove that ∃zϕ2 is equivalent to a Boolean
combination of simple formulas.

ϕ2 has two local components and the first one contains only one term.

We have reduced Case 2 to a slightly simpler version:

Ordϕ has two local components: T0 = {t} and T1 such that z ∈ FreeVar(T1).

We consider two subcases:

Subcase A. z is the only free variable T1.

Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.

Subcase A. Let t1 be a least term in T1. We can assume that it is of the form
bzc+ c. Indeed, otherwise t1 is z + c. From the following equivalence

(t < z + c ∧ z + c 6= bzc+ c)↔ (t < bzc+ c ∨ (bzc+ c < t ∧ t < z + c))

we obtain that ϕ is equivalent to a disjunction of (ϕ ∧ t < bzc + c) and of
ϕ∧z > t > bzc+c. The second disjunct is equivalent to a formula with one local
component. Hence, ∃z(ϕ ∧ t > bzc + c) is equivalent to a Boolean combination
of simple formulas by case 1. The first disjunct has the desirable property that
the minimal term of T1 is bzc+ c.

Next, ϕ is equivalent to ψ(z0, z1, . . . , zm)σ where ψ is an
−→
∃ ∀-formula, σ(z0) =

t, σ(z1) = bzc+ c and σ(zi) ∈ T1 for i > 1.

Hence, ϕ is equivalent to ψ1(z0, z1)σ ∧ ψ2(z1, . . . zm)σ for
−→
∃ ∀-formulas ψ1

and ψ2.

Since ψ2σ contains only one free variable, it is equivalent to an MTL formula
A, by Proposition 4.7.

Hence, ∃zϕ is equivalent to (∃z1θ(z0, z1)){t/z0}, where θ(z0, z1) expresses the
following:

1. ψ1(z0, z1) ∧ Int(z1) and

2. A holds somewhere in the interval [z1−c, z1−c+1), i.e., 3=−c(A∨♦(0,1)A)(z1).

Therefore, θ(z0, z1) is equivalent to an FO[<] formula (in the canonical MTL-

expansions). Hence, ∃z1θ(z0, z1) is equivalent to a disjunction of
−→
∃ ∀-formulas

and ∃zϕ is equivalent to a disjunction of simple formulas.

Subcase B. By standard logical equivalences this subcase is reducible to Case
1 considered in Section 7.1. Below are the details. T1 is a local component (w.r.t.
Ordϕ). Therefore, there is N ∈ N such that buc −N is less than all elements in
T1.

ϕ is equivalent to a disjunction of ϕ1 := t ≥ buc − N ∧ ϕ and ϕ2 := t <
buc −N ∧ ϕ.

Hence, ∃zϕ is equivalent to (∃zϕ1) ∨ (∃zϕ2).

We are going to show that both disjuncts are equivalent to a Boolean com-
bination of simple formulas; hence, so is ∃zϕ.

Indeed, Ordϕ1
has only one local component (since t < t′ for every t′ ∈ T1

and u ∈ FreeVar(T1)). Therefore, by Case 1, ∃zϕ1 is equivalent to a Boolean
combination of simple formulas.
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ϕ2 is equivalent to ψ(z0, z1, . . . , zm)σ where (1) ψ is an
−→
∃ ∀-formula such

that Ordψ → z0 < z1 ∧
∧m
i=2(z1 < zi) and (2) σ(z0) = t, σ(z1) = buc −N and

σ(zi) ∈ T1 for i > 1.

Therefore, ψ is equivalent to ψ1(z0, z1) ∧ ψ2(z1, . . . zm), where ψi are
−→
∃ ∀-

formulas. Now, ψσ is equivalent to ψ1σ∧ψ2σ and (a) z /∈ FreeVar(ψ1σ) and (b)
ψ2σ has only one local component. Hence, ∃zϕ2 is equivalent to a conjunction of
simple formulas ψ1σ and of ∃z(ψ2σ) which is equivalent, by case 1, to a Boolean
combination of simple formulas.

This completes the proof of subcase B of case 2.

7.3 Case 3

First, similarly to Case 2, we can reduce this case to a version with three local
components, where the minimal and the maximal components have one term.

Next, let the local components of Ordϕ be T0, T1 and T2, where T0 = {t0}
and T2 = {t2} and z ∈ FreeVar(T1). Consider two subcases:

Subcase A. z is the only free variable in T1.
Subcase B. There is u ∈ FreeVar(ϕ) such that u is not z.
In subcase A, we can further assume that the least term of T1 is bzc+ c and

the greatest is bzc+ d for some c, d ∈ N.

Then, ϕ is equivalent to ψ(z0, z1, . . . zm, zm+1)σ, where ψ is an
−→
∃ ∀-formula

and

– Ordψ → (z0 < z1 < zm < zm+1 ∧
∧m−1
i=2 (z1 < zi < zm) and

– σ(z0) = t0, σ(zm+1) = t2, and σ(z1) = bzc+ c, σ(zm) = bzc+ d are integers,
and σ(zi) ∈ T1 for i = 2, . . . ,m− 1.

Hence, ψ is equivalent to a conjunction ψ1(z0, z1)∧ψ2(z1, . . . zm)∧ψ3(zm, zm+1)

of
−→
∃ ∀ formulas.
The only free variable in ψ2σ is z, and therefore, by Proposition 4.7, ψ2σ

is equivalent to A(z), where A is an atomic predicate (in the canonical MTL-
expansion).

Therefore, ∃zϕ is equivalent to (∃z1zmθ(z0, z1, zm, zm+1)){t0/z0, t2/zm+1},
where θ(z0, z1, z2, z3) expresses the following:

1. ψ1(z0, z1) ∧ Int(z1) ∧ Int(zm) ∧ ψ3(zm, zm+1) and
2. Int(z1) ∧ Int(zm) ∧ zm = z1 + d− c and
3. A holds somewhere in the interval [z1−c, z1−c+1), i.e., 3=−c(A∨♦(0,1)A)(z1).

The second item states: “there are d − c − 1 integer points in (z1, z2) and
Int(z1) ∧ Int(z2),” and it is expressible by a FO[<] formula over RZ. Therefore,
θ(z0, z1, zm, zm+1) is equivalent to a FO[<].

Hence, ∃z1zmθ is equivalent to a disjunction of
−→
∃ ∀-formulas and ∃zϕ is

equivalent to a disjunction of simple formulas.
By standard logical equivalences, subcase B is reducible to case 1 or case 2.

We skip the details.
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8 Conclusion and Related Works

A major result concerning temporal logics is Kamp’s theorem [14,5] which implies
that the temporal logic with two modalities “P Until Q” and “P Since Q” is
expressively equivalent to First-Order Monadic Logic of Order (FO[<]) over the
standard linear time intended models - the Naturals 〈N, <〉 for discrete time and
the Reals 〈R, <〉 for continuous time.

FO[<] is a fundamental formalism; however, FO[<] cannot express over the
reals properties like “P holds exactly after one unit of time.” Such local metric
properties are easily expressible in FO[<,+1] - the extension of FO[<] by +1
function. In contrast to the Kamp theorem, no temporal logic with a finite set
of modalities is expressively equivalent over the reals to FO[<,+1] [10].

Actually, in [10] a much stronger result is proved. Recall that counting modal-
ities Cn(P ) - “P will hold at least at n points within the next unit of time” are
defined by FO[<,+1] formulas. In [10], we proved that no temporal logic with
a finite or infinite family of modalities which are defined by FO[<,+1] formulas
with bounded quantifier depth can express over R all the modalities Cn(P ).

FO[<,+1] lacks expressive power to specify the natural global metric prop-
erty “the current moment is an integer.”

Surprisingly, our main result states that FO[<,+1] has the same expressive
power as the temporal logic MTL (with only six modalities) over the expansion
of the reals by a monadic predicate “x is an integer.” We could use alternative
notations. Let FO [<,+1, Int] be the expansion of the monadic first-order logic by
a unary function symbol +1 and a unary relation symbol Int interpreted over the
reals as the plus one function and as the set of integers. Let MTL[Int] be obtained
from MTL by adding modality Int defined byM, a |= Int iff a is an integer. Our
main result - Theorem 3.2 - can be rephrased as FO [<,+1, Int] is expressively
equivalent over R to MTL[Int]. (Technically, it is slightly more convenient in our
proof to treat Int as a monadic predicate and not as a modality.)

Our proof uses some techniques from [17], where we proved a result that can
be viewed as an extension of Kamp’s theorem to metric logics over bounded real
time domains: for every N ∈ N, FO[<,+1] and MTL are expressively equivalent
over the class of real intervals of length < N . Note that for every MTL formula
A there is FO[<,+1] formula ψA which is equivalent to A over all real time
intervals2. For every FO[<,+1] formula ψ with one free variable, we constructed
in [17] an MTL formula ANψ which is equivalent to ψ over the real intervals

of length < N ; MTL formulas AN1

ψ and AN2

ψ are different for N1 6= N2. It
can be proved that there is no uniform (independent from N) translation from
FO[<,+1] to an equivalent (over [0, N) interval) MTL formula. Finally, note
that for every N ∈ N, there is a FO[<,+1] formula intN (t) which defines the set
of integers in the interval [0, N). Indeed, let α0(t) be ∀t′(t ≤ t) and αi+1(t) :=
∃t′(αi(t′)∧ t = t′+ 1) for i < N − 1. The unique element which satisfies αi(t) in
[0, N) is i; hence, intN (t) can be defined as ∨N−1i=0 αi(t). Therefore, the expansion

2 Formally, FO[<,+1] over bounded intervals uses a binary relation “x at distance one
from y” instead of +1 function.
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of interval [0, N) by a monadic predicate “x is an integer” does not increase the
expressive power of FO[<,+1].

Our results were obtained in 2012, independently of the result of Paul Hunter
[12] which states that the temporal logic MTLC which in addition to MTL
modalities has all counting modalities is expressively equivalent to FO[<,+1]
(without the need for the additional unary predicate for the integers). Though
MTLC has infinitely many modalities, Hunter’s result implies the main result
of this paper, since one can express the counting modalities in MTL, using the
monadic predicate for the integers, as shown in the last paragraph of Section 2.
On the other hand, Hunter’s result can be proved by a minor modification of
our proof. In particular, Propositions 4.7 and 4.8 hold when MTL is replaced by
MTLC and RZ is replaced by R.

The proof techniques of this paper and of [12] - though possessing common
elements - are quite different.

In [13], the logic FO[<,+Q] was introduced. This logic adds to FO[<,+1] an
infinite family of unary function symbols: +q for each rational q. Every fragment
of FO[<,+Q] which uses only finitely many +q functions is strictly less expressive
than FO[<,+Q]. Therefore, no temporal logic with finitely many modalities
is expressively equivalent to FO[<,+Q]. The main result of [13] states that
FO[<,+Q] is expressively equivalent to MTLQ, where MTLQ is a temporal logic
obtained from MTL by adding modality 3=q, for every rational q, and modalities
3(0,q) and 3(−q,0) for every positive rational q. Recall that a counting modality
C2(P ) - “P will hold at least twice within the next unit of time” is definable by an
FO[<,+1] formula ψ(z0) := ∃x1∃x2(z0 < x1 < x2 < z0 +1)∧P (x1)∧P (x2), and
C2(P ) is not expressible in MTL over the reals [10]. Let us illustrate how C2(P )
was expressed in MTLQ using fractional constants [13]. The idea is to consider
three cases according to whether P is true twice in the interval (z0, z0 + 1

2 ], twice
in the interval [z0 + 1

2 , z0 + 1) or once in (z0, z0 + 1
2 ) and (z0 + 1

2 ), z0 + 1). The
last case is equivalent to an MTLQ formula 3(0, 12 )

P ∧3=1(3(− 1
2 ,0)

P ); an MTLQ
formula 3(0, 12 )

(P ∧3(0, 12 )
P ) holds in the first case and implies C2(P ); an MTLQ

formula 3=1(3(− 1
2 ,0)

(P ∧ 3(− 1
2 ,0)

P ) holds in the second case and also implies

C2(P ). Therefore, C2(P ) is equivalent to a disjunction of these three formulas.

Note that every predicate logic is expressively equivalent to a modal logic with
an infinite set of modalities. For every predicate formula ψ(t) with one free first-
order variable, one can consider the modality with a truth table defined by ψ.
The modal logic with all these modalities and the predicate logic are expressively
equivalent. Hence, if a predicate logic is expressively equivalent to no temporal
logic with a finite set of modalities, one can try to find an equivalent temporal
logic with an infinitely many modalities which are “natural” or “simple” in some
sense.

Table ?? lists predicate logics and corresponding expressively equivalent tem-
poral logics and summarizes our comparison. Note, thought both MTLC and
MTLQ use infinitely many modalities, all modalities in MTLQ are defined by
FO[<,+Q] formulas of quantifier depth at most two, while the MTLC modali-
ties cannot be defined in a fragment of FO[<,+1] of bounded quantifier depth.
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Predicate logic Temporal Logic Models
Cardinality
of the set of
modalities

Reference

FO[<] LTL
All Dedekind
complete lin-
ear orders

finite [14]

FO[<,+1] MTL
intervals
[0, N)

finite [17]

FO[<,+1] MTL RZ finite this paper

FO [<,+1, Int] MTL[Int] R finite this paper

FO[<,+1] MTLC R infinite [12]

FO[<,+Q] MTLQ R infinite [13]

Table 1: Predicate logics and corresponding expressively equivalent temporal
logics
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