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Abstract. Kamp’s theorem states that the temporal logic with modal-
ities Until and Since has the same expressive power as the First-Order
Monadic Logic of Order (FOMLO) over Real and Natural time flows.
Kamp notes that there are expressions which deserve to be regarded
as tense operators but are not representable within FOMLO. The words
‘mostly’ and ‘usually’ are examples of such expressions. We propose a for-
malization of ‘usually’ as a generalized Mostowski quantifier and prove
an analog of Kamp’s theorem.

1 Introduction

Temporal Logic (TL), introduced to Computer Science by Pnueli in [5], is a
convenient framework for reasoning about “reactive” systems. This has made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research in the past 40 years. In T'L we describe basic system properties
by atomic propositions that hold at some points in time, but not at others.
More complex properties are expressed by formulas built from the atoms using
Boolean connectives and Modalities (temporal connectives): A k-place modality
M transforms statements 1, ..., possibly on ‘past’ or ‘future’ points to a
statement M (p1,...,pk) on the ‘present’ point ¢tg. The rule to determine the
truth of a statement M (1, ..., @) at to is called a truth table of M. The choice
of particular modalities with their truth tables yields different temporal logics.
A temporal logic with modalities My, ..., My is denoted by TL(My,..., My).

The simplest example is the one place modality QP saying: “P holds some
time in the future.” Its truth table is formalized by ¢, (xo, X) := Jz(z > 20 A
P(z)). This is a formula of the First-Order Monadic Logic of Order (FOMLO) -
a fundamental formalism in Mathematical Logic where formulas are built using
atomic propositions P(x), atomic relations between elements 1 = xa, 1 < 2,
Boolean connectives and first-order quantifiers 3z and Vz. Two more natu-
ral modalities are the modalities Until (“Until”) and Since (“Since”). XUntilY’
means that X will hold from now until a time in the future when Y will hold.
XSinceY means that Y was true at some point of time in the past and since
that point X was true until (not necessarily including) now.

The main canonical, linear time intended models are the non-negative inte-
gers w := (N, <) for discrete time and the reals (R, <) for continuous time.



Kamp’s theorem [3] states that the temporal logic with modalities Until and
Since and FOMLO have the same expressive power over the above two linear
time canonicaﬂ models. After explaining his main theorem, Kamp writes:

This still leaves open the question whether all English tense operators are
representable in a language like T'L. ... One easily verifies that indeed a
very large number of expressions which are naturally classified as tense
operators because of their function have first order definable tenses as
their meanings. Yet there are expressions which deserve to be regarded
as tense operators but which are nonetheless not representable within
TL. The words ‘mostly’” and ‘usually’ are examples of such expressions.
The impossibility of representing these particular expressions stems from
the fact that their meanings involve a measure on time in an essential
manner.

In this paper we suggest a formalization of “usually” over the standard discrete
time w := (N, <) and prove a generalization of Kamp’s theorem.
Here are three natural possibilities to formalize “P is unusual.”

1. If P is finite.
2. If limsup,,_, o,

n
3. I > ﬁ finite, where pg < p; < --+ < p; < --- is the enumeration of the
elements of P.

the cardinality of Pnjo,n] _ 0

P C N is usual if its complement is unusual. Note that “P is finite” is definable
in FOMLO (over w); however, formalizations (2)-(3) of “P is unusual” are not
first-order definable.

A. Mostowski [4] initiated a study of so-called generalized quantifiers. Gener-
alized quantifiers are now standard equipment in the toolboxes of both logicians
and linguists.

The first-order logic with a (unary) generalized quantifier @) is obtained by
extending the syntax of first-order logic by the rule if ¢ is a formula then (Qz)p
is a formula. A (unary) generalized quantifier @) in a structure M is defined as
a set Q of subsets of the domain of M. The corresponding semantical clause for
(Qu)p is M = (Qa)p(@,B) if {a | M = p(a,b)} is in Q.

For a family of subsets Q of N, we define a temporal modality (Q) as follows:
(@) holds iff the set of points where ¢ holds is in Q.

Each of the above formalizations of unusual has the following properties:

1. If P, € Q and P, C P; then P, € Q, i.e., if P; is unusual and P, C Py, then
so is Ps.

2. If P, P, € Qthen PLUP, € Q, i.e., if both P; are unusual then their union
is also unusual.

3. If P, € Q and P, is finite then P, U P, € Q, i.e., if a finite set is added to
an unusual event then the new set is still unusual.

! the technical notion which unifies (N, <) and (R, <) is Dedekind completeness.



Our main theorem states that for every family Q of subsets of N with properties
(1)-(3) the temporal logic with modalities Until and Since and (Q) is expressively
equivalent over w := (N, <) to the extension of FOMLO by the generalized
quantifier Q. Moreover, our meaning preserving translations between these logics
are computable and independent of Q.

The rest of the paper is organized as follows. In Section [2| we recall the
definitions of the monadic logic, the temporal logics and state Kamp’s theorem.
In Section [3] we provide a formalization of unusual as a Mostowski generalized
quantifier and state our main result. In Section 4| we prove the main theorem.
This proof is based on our simple proof of Kamp’s theorem [6]. The proof of one
proposition is postponed to Section [5} Section [f] states further results and open
questions.

2 Kamp’s Theorem

In this section we recall the definitions of the first-order monadic logic of order,
the temporal logics and state Kamp’s theorem.

Fix a set X' of atoms. We use P, R, S ... to denote members of X'. The syntax
and semantics of both logics are defined below with respect to such X.

First-Order Monadic Logic of Order In the context of FOMLOQO, the atoms
of X are referred to (and used) as unary predicate symbols. Formulas are built
using these symbols, plus two binary relation symbols: < and =, and a set of
first-order variables (denoted: z,y, z, ... ). Formulas are defined by the grammar:

pu= x<y | z=y | Plx) | ~o1 | ¢ Vo | w1 Ap2 | Tz | Vopr

where P € Y. We will also use the standard abbreviated notation for bounded
quantifiers, e.g., (3r)s.(...) denotes Jz((x > 2) A (...)), and (Vz)<*(...)
denotes Vz((z < z) — (...)), and ((V2)SZ3(...) denotes Vz((z1 < z < z2) —
(...)), ete.

Semantics. Formulas are interpreted over labeled linear orders which are called
chains. A X-chain is a triplet M = (7,<,7) where 7 is a set - the domain
of the chain, < is a linear order relation on 7, and Z : ¥ — P(T) is the
interpretation of X (where P is the powerset notation). We use the standard
notation M, tq,ts,...,t, E @(x1,z2,...,2,) to indicate that the formula ¢ with
free variables among x4, ...,x, is satisfiable in M when x; are interpreted as
elements t; of M. For atomic P(x) this is defined by: M, t |= P(z) iff t € Z(P);
the semantics of <,=,-,A,V,3 and V is defined in a standard way.

Temporal Logics In the context of temporal logics the atoms of X' are used as
atomic propositions (also called propositional atoms). Formulas are built using
these atoms, and a set (finite or infinite) B of modality names, where a non-
negative integer arity is associated with each M € B. The syntax of TL with the
basis B over the signature X, denoted by T'L(B), is defined by the grammar:

F.:= P | _|F1 | Fl\/FQ | Fl/\Fg ‘ M(Fl,F27...7Fn)



where P € X and M € B is an n-place modality. As usual, True denotes PV —P
and False denotes P A —P.

Semantics. The semantics defines when a temporal formula holds at a time-
point (or moment or element of the domain) in a chain.

The semantics of each n-place modality M € B is defined by a ‘rule’ specifying
how the set of moments where M(F},..., F},) holds (in a given structure) is
determined by the n sets of moments where each of the formulas F; holds. Such
a ‘rule’ for M is formally specified (over time flow (7, <)), by an operator Oy :
(P(T))* — P(T), which assigns to each n tuples of subsets of 7 a subset of
T.

The semantics of TL(B) formulas is then defined inductively: Given a struc-
ture M = (7,<,Z) and a moment t € M (read t € M ast € T), define when a
formula F' holds in M at t - notation: M, ¢ |= F - as follows:

— M.t Piff t € Z(P) for any propositional atom P.

- Mt EFVGiff Mt F or M,t = G; similarly (“pointwise”) for A, —.

- M.t = M(Fy,...,F,)iff t € Ou(Ty,...,T,,) where M € B is an n-place
modality, F,...,F, are formulas and T; := {s € T : M, s = F;}.

Truth tables: Practically, most standard modalities studied in the literature
can be specified in FOMLO: A FOMLO formula ¢(z, Py, ..., P,) (with a single
free first-order variable 2 and with n predicate symbols P;) is called an n-place
first-order truth table. Such a truth table ¢ defines an n-ary modality M
whose semantics is given by an operator Oy such that for any time flow (7, <),
for any T3,...,T,, €T and for any structure M = (T, <,Z) where Z(P;) = T;:

OM(Ty,... . T) = {t € T: Mt = p(a, Py, .., Pu)}

Example 2.1. Below are truth-table definitions for the well known “Eventu-
ally”, the (binary) strict-Until and strict-Since of [3][1)].

— O (“Bventually”) is defined by: ¢, (z, P) := (') P(a’)
— Until is defined by : ¢, (x, P1, P2) := (32")s 2 (Pa(a’) A (Vy)iﬁlPl(y))
— Since is defined by: ¢q,. (x, P, Pp) := (3a')<"(Py(z') A (Vy)SZ Pi(y))

Example 2.2 (Modality (Q)). Let Q be a family of subsets of the domain T of
a structure M. We can define a unary modality (Q) by the operator

L T ile € Q
- o) = {(Z) otherwise.

In the next section we will formalize “usually” by special families of subsets of
N. It is clear that there are Q such that the corresponding modality (@) has no
first-order truth table.

Kamp’s Theorem Equivalence between temporal and monadic formulas is
naturally defined: F' is equivalent to ¢(x) over a class C of structures iff for any
MeCandte M: Mt EF & M,t | p(x). If C is the class of all chains, we
will say that F' is equivalent to .



A linear order (T, <) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. The canonical
linear time models w := (N, <) and (R, <) are Dedekind complete, while the
order of the rationals is not Dedekind complete. A chain is Dedekind complete
if its underlying linear order is Dedekind complete.

The fundamental theorem of Kamp’s states that TL(Until, Since) is expres-
sively equivalent to FOMLO over Dedekind complete chains.

Theorem 2.3 (Kamp [3]). 1. Given any TL(Until, Since) formula A there is a
FOMLO formula pa(x) which is equivalent to A over all chains.

2. Given any FOMLO formula p(x) with one free variable, there is a TL(Until, Since)
formula which is equivalent to ¢ over Dedekind complete chains.

3 An Unusual Quantifier and Modality

3.1 Generalized Quantifier

The syntax of the first-order logic with a unary generalized quantifier @ (nota-
tion F'O[Q]) is obtained by extending the usual first-order syntax by the new
quantifier.

The formulas of FO[Q] are built by the usual formation rules and the fol-

lowing new (variable-binding) formation rule:
— if = is a variable and ¢ is a formula of FOI[Q)], then so is (Qz)p, and Qx

binds all free occurrences of x in .
The semantics of FO[Q] is provided by enriching the domain of first-order struc-

tures with a set Q of subsets of its domain and extending the usual definition of
satisfaction by a clause for (Qz)¢:

M by, ... by E(Qx)e(x,y1, .. yn) i {a | M,a,by,....b, E @(x,y1,...,y,)} isin Q.

FOMLOIQ)] denotes the extension of FOMLO by a generalized quantifier Q.

For a generalized quantifier @ we also introduce modality (Q), defined by
Mt = (@ iff {a | M,a = ¢} € Q. Note that if M,t = (Q)p, then M, t’ |=
(@) for every t'.

3.2 Usual and Unusual over N

Let us start with some intuitive requirements on unusual sets. If P never happens
(respectively, always holds) then P is unusual (respectively, is not unusual). If
P; is unusual and P, C P;, then P» is unusual. If both P; and P, are unusual,
then their union is also unusual. It is also natural to require that a finite subset
of an infinite set is unusual. These lead to the following definition.
Given a set X, an unusual family on X is a set Q consisting of subsets of
X such that
1. e Qand X ¢ Q.
2. If A and B are subsets of X, A is a subset of B, and B is an element of Q,
then A is also an element of Q.



3. If A and B are elements of Q, then so is the union of A and B.
4. If A is finite then A is in Q.

In model theory, an ideal Q on a set X is a family of subsets of X which satisfies
(1)-(3). A filter is a dual notion to an ideal. Hence, a family Q of subsets of
X is a filter, if it is a non-empty proper subset of P(X) and it is closed under
superset and finite intersection. In model theory ideals (respectively, filters) are
considered as families of small (respectively, big) subsets of X.
Several collections of “small” subsets of N are presented below:
1. Qp:={P | P is finite}.

2. Qg :={P |limsup,,_, -
3. Van der Waerden ideal is the family {P | P does not contain an arithmetic
progression of arbitrary length}.

the cardinality of Pnjo,n] _ 0}

Let pg < p1 < --- < p; <--- be the enumeration of the elements of P.

4. Q4 :={P|> ﬁ is finite }.

5. P is 1-sparse if for every n there is N such that [m, m + n] contains at most
one element from P for every m > N.

6. P is 1-thin if lim,,_, o pf:l =0

7. P is almost 1-thin if limsup,,_,

Pn
Pn+1

Note that 1-sparse (respectively, 1-thin, or almost 1-thin) sets are not closed
under union. Hence, these families of sets are not ideals.

A set is sparse (respectively, thin or almost thin) if it is finite or a finite
union of l-sparse (respectively, 1-thin, or almost 1-thin) sets. The family of
sparse (respectively, thin or almost thin) is an ideal.

The families defined in examples (1)-(4), as well as the families of sparse,
thin and almost thin sets are unusual. The family {P | the set of even elements
of P is finite} is also unusual.

A generalized quantifier ) is unusual if its corresponding family of subsets
of N is unusual. Dually, we say that a family Q of sets is usual if {N\ P | P €
Q} is unusual. The corresponding quantifier and modality are usual. The next
Lemma states some immediate equivalences:

Lemma 3.1. If Q is an unusual quantifier. Then:

1. (Qz)(p1 V p2) is equivalent to ((Qx)p1) A (Qx)pa.

2. (Qr)(p Az < z) is equivalent to True.

3. If x does not occur free in @, then (Qx)(p A1) is equivalent to - V (Qx)1,
4. Assume that x does not occur free in . Then (Qx)p is equivalent to —.

3.3 Expressive Equivalence

Theorem 3.2 (Main). Let Q be an unusual family of subsets of N. Let Q and
(Q) be the corresponding generalized quantifier and modality. Then



1. Given any TL(Until, Since, (Q)) formula A there is a FOMLO[Q)] formula
pa(x) which is equivalent (over w-chains) to A.

2. Given any FOMLOI|Q) formula ¢(x) with one free variable, there is a TL(Until, Since, (Q))
formula A, which is equivalent (over w-chains) to .

Moreover, ¢4 and A, are computable from ¢ and A and independent of Q.

The meaning preserving translation from TL(Until, Since, (Q)) to FOMLO|Q)]
is easily obtained by structural induction. The main technical contribution of
our paper is a proof of Theorem [3.2] (2). The proof is constructive. An algorithm
which for every FOMLO|[Q)] formula ¢(x) constructs a TL(Until, Since, (Q)) for-
mula which is equivalent to ¢ is easily extracted from our proof.

4 Proof of the Main Theorem

First, we introduce ?V formulas which are instances of the Decomposition for-
mulas of [216].

Definition 4.1 (?V—formulas). Let X be a set of monadic predicate names. An

V-formula over X is a formula of the form:

V(205 -y 2m) = 2y ... Jx1 T

m
(/\ 2k = xzk> A(Tp > Tp—1 > - > 21 >20) “ordering of x; and z;”
k=0

“Each «; holds at x;”

>

~.
2
S

7=0

A <z; « 9
A /\ (YY) sz, B (y)] Each 3; holds along (z;-1,2;)

j=1
AN (YY)>a, Bnr1(y) “Bpy1 holds everywhere after x,”
A (Vy) <™ Bo(y) “Bo holds everywhere before xy”

with a prefix of n + 1 existential quantifiers and with all oy, B; quantifier free
formulas with one variable over X. (v has m + 1 free variables z, ..., zy and
m+1 < n+1 existential quantifiers are dummy and are introduced just in order
to simplify notations.)

Definition 4.2 (\/?V—formulas). A formula is a \/?V formula if it is equivalent
to a disjunction of ?V-formulas.

The set of \/?V formulas is closed under disjunction, conjunction and ex-
istential quantification. The set of V 3V formulas is not closed under negation.
However, the negation of a \/?V formula is equivalent to a vV 3V formula in the
expansion of chains by all TL(Until, Since) definable predicates (see Proposition

%)

The next definition plays a major role in the proof of Kamp’s theorem [26].



Definition 4.3. Let M be a X chain and L be a temporal logic. We denote by
L[X] the set of unary predicate names XU {A | A is an L-formula over X }.
The canonical L-expansion of M is an expansion of M to an L[X]-chain, where
each predicate name A € L[X] is interpreted as {a € M | M,a = AP We
say that first-order formulas in the signature L[X]U{<} are equivalent over M
(respectively, over a class of X-chains C) if they are equivalent in the canonical
expansion of M (in the canonical expansion of every M € C).

Note that if A is a £ formula over £[X] predicates, then it is equivalent to a £
formula over Y/, and hence to an atomic formula in the canonical £-expansions.

The ?V and \/?V formulas are defined as previously, but now they can use
as atoms L definable predicates.
The next Proposition was proved in [6].

Proposition 4.4. Let L be a temporal logic which contains modalities Until and
Since. Fvery FOMLO formula is equivalent (over the canonical L expansions of
w-chains) to a disjunction of ?V—formulas.

The \/?V formulas with one free variable can be easily translated to temporal
formulas.
Proposition 4.5 (From \/?V—formulas to L formulas). If £ contains modalities

Until and Since, then every \/?V formula with one free variable is equivalent
(over the canonical L-expansions) to an L formula.

The proof of the next proposition is postponed to Sect.

Proposition 4.6. (Closure under unusual quantifier) Let QQ be an unusual quan-
tifier on N and L be a temporal logic which contains modalities Until, Since and

(Q). If ¥ is an ?V—formula, then (Qx)Y is equivalent (over the canonical L
expansions of w-chains) to a disjunction of 3V-formulas.

As a consequence we obtain:

Proposition 4.7. Let Q be an unusual quantifier on N and L be a temporal logic
which contains modalities Until, Since and (Q). Every FOMLO[Q)] is equivalent

(over the canonical L expansions of w-chains) to a disjunction of 3V-formulas.
Now, we are ready to prove the unusual version of Kamp’s Theorem:

Theorem 4.8. Let QQ be an unusual quantifier on N. For every FOMLO[Q)
formula o(x) with a single free variable, there is a TL(Until, Since, (Q)) formula
which is equivalent (on w-chains) to .

Proof. By Proposition () is equivalent to a disjunction of ?V formulas. By

Proposition an 3V formula is equivalent to a TL(Until, Since, (@)) formula.
Hence, ¢(z) is equivalent to a TL(Until, Since, (@)) formula. O

This completes the proof of our main theorem, except for Proposition
which is proved in the next section.

2 We often use “a € M” instead of “a is an element of the domain of M”



5 Proof of Proposition [4.6

In this section we say that “formulas are equivalent in a chain M” instead of
“formulas are equivalent in the canonical L-expansion of M.” We also say that
“formulas are equivalent” instead of “formulas are equivalent in the canonical
L-expansions of chains over w.”

If ) has at most one free variable then, by Proposition 1 is equivalent
to a TL(Until, Since, (Q)) formula A. Hence, (Qx)v is equivalent to a temporal
logic formula (Q)A.

Let (20, ..., 2m) be an ?V—formula as in Deﬁnitionwith m > 1. W.Lo.g.

assume that ¢ — /\;’;_Olzi < Ziy1-

If x is not free in v then, by Lemma [3.1} (Qx)v is equivalent to a —) and
hence to a \/ﬁv formula by Proposition

If © € {20,...,2m—1}, then there are at most finitely many = which satisfy
1, therefore (Qx)1 is equivalent to True.
If x is z,, then 1 is equivalent to the conjunction of an ?V—formula 1(20y -y Zm—1)

and an ?V—formula Yo (2Zm—1,2m) with two free variables z,_1 and z,,. By
Lemma (Qzm)¥ is equivalent to —th1 V (Qzm)2(2m—1,2m). By Proposi-
tion , it is sufficient to show that (Qzm )¥2(2m—1, 2m) is equivalent to a vV IV
formula.

It is easy to show that any ?V formula with the free variables zg,z; is
equivalent to a formula of the following form:

n

Jrg... Jxn[(zo =20 < -+ < Ty =21) A /\ aj(z;) A /\(Vy)iij_lﬂj(y)] (1)
§=0 j=1

where «ay, B; are quantifier free.

Therefore, to complete our proof it is sufficient to prove the following lemma:
Lemma 5.1. Let ¥(zo,21) be a formula as in . Then (Qz1) is equivalent to
a V 3V formula.

In the rest of this section we prove Lemma Our proof is organized as
follows. In Lemma we prove an instance of Lemma [5.1] where all 3; are
equivalent to True. Then we derive a more general instance (Corollary [5.5)) where

1 () holds for all > zo. Finally, in Lemma [5.6[2) we prove the full version of
Lemma 5.1} First, we introduce some helpful notations.

Notation 5.2. We use the abbreviated notation [ag,f1 - .., Qn—1, Bnom](20, 21)
for the ﬁV—formula as in ,

In this notation Lemmacan be rephrased as (Qz1)[co, 81 - -+, @n—1, Bnnl(20, 21)

is equivalent to a \/?V formula.
We start with the instance of Lemma [5.1] where all 3; are True.

Lemma 5.3. (Qz1)3zoIxy ... 3z, (20 = 20 < 21 < -+ < &y = 21)A Nj_g Pi(i)

1s equivalent to a V 3V formula.



Proof. This formula is equivalent to the disjunction of (Qz1)Pn(21) and

=3zoIx1 ... Irp_1 (20 =20 <21 < -+ < Tp—1)A Ny Pi(x;). The first disjunct
is equivalent to (Q)P,,. The second disjunct is equlvalent to a \/?V formula by
Proposition Hence, this formula is equivalent to a \/?V formula. O

The next Lemma does not deal with generalized quantifiers.

Lemma 5.4. ((Yy)s2,01) Ao, B1, @1, B2y -+ s 1, Brs @n) (20, 21) is equivalent
0 (VY)>261) ATzoIzy ... 3zn (2o =20 < a1 < -+- < Ty = 21) A N (i),
where o, are atoms.

As a consequence we obtain:

Corollary 5.5. Let ¥(zo,21) be ((Vy)>z,51(y)) Ao, B, a1, B2, -+« Qn—1, B,y ain] (20, 21)-
Then (Qz1)v is equivalent to a V IV formula.

Proof. Immediately by Lemmas |3 -(3 E, and [5 . O

Now we are ready to prove Lemman 5.1} i.e., (Qz1)[a0, 81 - -+, Bn-1, @n—1, Bn, @) (20, 21)
is equivalent to a Vv 3V formula.

Lemma 5.6. 1. Let1(z0,21) be ((3y)>z,81(y))Alaw, Br, ax, Bay - -y a1, By n](20, 21)-
Then (Qz1)v is equivalent to a \/?V formula.
2. (Qz1)[a, 1,01, B2y -« A1, B, an)(20, 21) is equivalent to a \/?V formula..

Proof. We prove (1) and ( ) simultaneously by induction on n. Observe that A
is equivalent to (((Fy)>2,261(¥)) AA)V ((Vy)> 2501 (y)) A A). Hence, if (1) holds
for n, then by Corollary [5.5, Lemma 1) and the closure of vV 3V formulas
under conjunction we obtain that (2) holds for n. Therefore, for the inductive
step it is sufficient to prove that if (1) and (2) hold for n then (2) holds for n+1.

Note that (Jy)s.,—S1(y) implies that there is at most one z such that
[Oéo, ﬂla al](z()’ Z) and _‘(Ely)>z[a05 517 Oél](Zo, y)

If there is no such z, then (Qz1)% is equivalent to True.

So, we assume that there is a unique such z. It is definable by the formula

def (20, z) := a0, B1, 1] (20, 2) A =(Fy)> [, Br, en](20, ). (2)
It is sufficient to show that (32)s ., def (2)A(Qz1)[c0, B1, 01, - - -y Brnt1, Ont1](20, 21)
is equivalent to a V 3V formula ¢’. Then (Qz%is equivalent to (Vy)s.,01(y) V
4

(=3zdef) V (3zdef A'), and by Proposition 4.4} to a vV 3V formula.
We prove this by induction on n. The basis is trivial.
Inductive step n — n + 1. Define:

A;(zo, z) :=[ag, B, - -, Bi, i) (20, 2) i=1,....,n
Af (2, 21) :=[ai, Bit1, - - Bot1oms1](2, 21) i=1,....,n
(zo,z z1) =A; (20,2) N Af (2, 21) i=1,...,n
B[ (20,2) =[aofh, ..., Bi—1, -1, Bi, Bil (20, 2) i=1,....,n+1
B (z,21) :=[Bs, Bi, @iBis10is1, - - By1,amia)(z,21)  i=1,...,n+1
(zo,z z1) :=B; (20,2) A Bff (2, 21) 1=1,...,n+1



If the interval (zg, z1) is non-empty, these definitions imply
n+1
[0, B1, a1, -+ s Bngt, anga] (20, 21) & (V2) 325 ( \/A v \/

n+1
[0, B, a1y -, Byt anga](20, 21) & (32) 32 ( \/A v \/ B;)

Hence, for every ¢(zo, 2):
((Hz)széQO(Zoa )) A [aO, ﬁla Qp,y... 7/811—0—17 Oén+1](zo, Zl)

is equivalent to (32)SZ (¢ (z0,2) A (Viey Ai V Vit B B;)). In particular,

(32);;1) def<Z07 Z) A [Oéo, 51) Qpy... 7ﬁn+1; Oén+1](ZQ, Zl)
is equivalent to (3)

(32)5% (def (20, 2) A (Vimy Ai vV V2L BY)),

where def was defined in equation . To proceed we use the following simple
properties of the unusual quantifier:

Lemma 5.7. Assume that z; does not occur free in ¢, and 3'zp. Then

1. (Qz1)(32)<*(p A C) is equivalent to (3z)(p A (Qz1)C)
2. (Qz1)3z(p A Cy) is equivalent to N\ 3z(o A (Q21)C})

Now (32)s ., def (20, 2) AN(Qz1) [0, B1, 1y - - -, Prt1, @nt1](20, 21) 1S equivalent
(by Lemmal5.7(1)) to (Qz1)(32)SZ def (20, 2) Ao, B1, o1, - - -, Brt1, ang1](20, 21)
is equivalent, by 1; to (Qz1)((32)S2 def (20, 2) A (Vi) A VT By)) is equiv-

alent (by Lemma 2)) to
n+1
/\ (32)Sihdef (20, 2) A (Qz1)Ai) A ( /\ (32)Siidef (20,2) A (Qz1)B;)  (4)
=1 i=1

We are going to show that (Qz1)A; (i=1,...,n) and (Qz1)B; (i =2,...,n+1),
and (32)SE def (zo7 z) A (Qz1)Bj are equwalent to v 3V formulas and therefore,
by Proposition we obtain that (4)) is equivalent to a \/?V formula.

Recall that A = A; (20,2) NAS (z z1) and B; := B; (20,2) A Bf (z,21). By
Lemma (3) we obtain that (Qz1)A; is equivalent to ﬁA V (Qz1)AF. By the
inductive assumption (Qzl)A"' is equivalent to a \/?V formula for i = 1,...,n.
Hence, by Proposition 4.41 (Qz1)A; is equivalent to a \/?V formula. Similar
arguments show that (Qzl)Bi is equivalent to a \/?V formula fori =2,...,n+1.

Finally, def(zg,2) implies that there is no > z such that «;(z) and §;
holds on [z, z). Therefore, B; is equivalent to False and (Qz1)B; is equivalent
to True. Hence, (32)SZldef(z0,2) A (Qz1)Bi is equivalent to a V3V formula
(32)S2 def (20, 2).

This completes our proof of Lemma [5.1] and of Proposition [4.6] O



6 Further Results and Open Questions

We provided a natural interpretation of usual/unusual over N and proved an ana-
log of Kamp’s theorem. We can consider several unusual quantifiers Qg, ... Qy
and prove that FOMLO[Q,...,Q] and TL(Until, Since, (Q1),...,{Qk)) have
the same expressive power over w. Our result can be easily extended to the time
domain of integers; however, in this case we have to require that if Q is a family
of unusual sets over integers and P € Q, then neither (—oo, k] nor [k, o) is a
subset of P. It is open how to formalize “usually /unusually” over the reals.

Standard notions of “fairness” are based on the ideal of finite sets. For ex-
ample, strong fairness is formalized as: if P; occurs infinitely often, then P,
occurs infinitely often. It is natural to base fairness on an unusual modality (@),
and define Q-fairness as Fairg(P1, P2) := (Q)P, — (Q)P;. More general no-
tions of “fairness” can be introduced by using several unusual quantifiers; e.g.,
FairQl,QQ (Pl,Pg) = <Q2>P2 — <Q1>P1.

Unfortunately, in our extension a phrase like “It is unusual that the weather
is sunny when it rains” is not expressible, and further extensions are needed to
express such a binary unusual modality.

We can show that under each of the seven interpretations of unusual described
in Section the problem whether a TL(Until, Since, (Q))) formula is satisfiable
is PSPACE-complete. Moreover, the interpretations (2)-(7) of unusual give the
same set of satisfiable TL(Until, Since, (Q)) formulas.
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