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Abstract. We study, in this work, the maximum principle for the Beltrami color flow and
the stability of the flow’s numerical approximation by finite difference schemes. We discuss, in the
continuous case, the theoretical properties of this system and prove the maximum principle in the
strong and the weak formulations. In the discrete case, all the second order explicit schemes, that are
currently used, violate, in general, the maximum principle. For these schemes we give a theoretical
stability proof, accompanied by several numerical examples.
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1. Introduction. The maximum principle in its various forms is a powerful
and instrumental tool for establishing results concerning existence, uniqueness and
other qualitative properties of linear and nonlinear partial differential equations. A
complete overview of this subject until 1967 can be found in [16].

We are interested in the property of maximum principle for Beltrami color flow
in the context of Scale-Space theory. This theory claims that significant informa-
tion exists in all levels of resolution/scale of the image. It is important to create
a simplification process, called a “Scale-Space”, from which the information can be
extracted.

The notion of causality, in the context of image processing and especially in
scale-space and de-noising was put forward in the work of Koenderink [12] . In the
one-dimensional case it is desirable that the simplification process of the signal will
not create new maxima. This demand, together with homogeneity, lead to filtering
with a Gaussian kernel. The convolution of this kernel with the initial image is the
solution of the linear diffusion equation with the initial image as initial condition. For
higher dimensional signals the non-creation of new maxima can not be achieved. It
is usually replaced by a new principle – the non creation of new level sets. This new
principle is called, in the scale-space literature “the causality principle”. It is directly
related, in the scalar case, to the extremum principle as observed by Hummel [8]. The
extremum principle is taken as the natural generalization of the causality principle to
the vectorial case.

Moreover, the relevance of investigating the maximum principle for the Beltrami
flow and other PDEs based models can be seen through the work of Alvarez et al.
[1]. In this paper, the authors propose a rigorous connection between scale space
analysis and PDEs. They start from a very natural set of filtering axioms and show
that the resulting filtered image must necessarily be the solution of a second order,
fully nonlinear parabolic PDE. The maximum principle is one of their axioms, which
is imposed so that smoothing of the original image is made with no enhancement.

The problem of the discrete maximum principle was studied in many works. This
issue is important as it ensures that intensity values in the evolving image are con-
strained by the initial image values and do not grow without bounds. Perona and
Malik [14] proposed a numerical scheme which satisfies this property as proved in
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[24]. Also the PDE introduced by Catte et al. [3] was proven to satisfy the discrete
maximum principle [24].

In this paper we treat the Beltrami flow for color images and study two aspects of
the maximum principle (continuous and discrete). First we deal with the continuous
formulation of the maximum principle and prove it for both the strong and the weak
formulations. The motivation for considering these two formulations is threefold:
First, the strong formulation is presented here in order to check the validity of the
maximum principle for a smooth solution. Second, this property is generalized for a
class of non-regular functions via a weak formulation of the maximum principle. In
what concerns the weak formulation, we follow Florack’s [6], and later Mumford and
Gidas’ [13] duality approach. In these works the image is conceived as a generalized
function. The duality approach describes the sensor space (also called “device space”)
as a functional space. The data we usually process, which result from the interaction
of the physical/optical data and the sensor, are modelled as an inner product of the
sensor function and the “true image”. In this context, the set of images is equivalent
to the set of linear functionals on the sensor functional space. It is natural from this
point of view to study the flow equations on the image space directly. We are able
to do so by defining generalized (weak) solutions to our flow equations. The third
reason lies in the fact that to achieve a proper analysis of images, we must consider
functions with less regular structure than the smooth functions we dealt with in the
strong formulation. This again leads to the study of weak solutions.

To the best of our knowledge, for highly nonlinear and strongly coupled systems
as the one we describe here, no mathematical analysis has been performed even for
smooth functions. In previous works [4], [2] well-posedness and the maximum principle
were treated for scalar valued functions only and for initial data of Lipschitz type,
which excludes discontinuous functions.

In the last part of the paper we study the discrete maximum principle for a
certain explicit difference scheme by which the nonlinear differential equation is ap-
proximated. We show that to approximate the various derivatives to a given order is
not enough to guarantee the maximum principle. This scheme can violate the max-
imum principle. We present, though, a proof of the stability of this scheme along
with examples that clearly demonstrate stability, while failing to obey the maximum
principle.

The paper is organized as follows: In section 2 we review the Beltrami framework.
In section 3 we deal with the continuous formulation of the maximum principle. We
prove the extremum principle for the strong solution of the parabolic quasi-linear
system that characterizes the Beltrami color flow. In section 4 we introduce a weak
(generalized) solution for this system and prove the extremum principle in a weak for-
mulation. In section 5 we discuss the properties of the second-order central difference
scheme, which in general violates the maximum principle. For this scheme we give a
theoretical stability proof. In section 6 we present numerical results. We summarize
and conclude in section 7.

2. The Beltrami Framework. Let us briefly review the Beltrami framework
for non-linear diffusion in computer vision [9, 20, 21].

The space of interest in computer vision such as images, texture, disparity in
stereo-vision, optical flow, distortion in registration and more, is represented as a
fiber bundle. The base manifold is the image domain. We consider in this work a
flat and compact domain. A non-flat domain is treated, for example, in [19]. The
feature space, be it gray-values, color, optical flow, texture, etc, is the fiber space.
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Any particular image, or vector field, is a section of this fiber bundle. We assume
that the Riemannian structure can be defined for the base manifold and for the fiber
bundle. Thus, we represent an image and other local features as an embedding map of
a Riemannian manifold in a higher dimensional space-the fiber bundle. The simplest
example is a gray-level image which is represented as a 2D surface embedded in IR3.
We denote the map by X : Σ → IR3, where Σ is a two-dimensional surface, and we
denote the local coordinates on it by (σ1, σ2). The map U is given in general by
(U1(σ1, σ2), U2(σ1, σ2), U3(σ1, σ2)). In our example we represent map U as follows:
(U1 = σ1, U2 = σ2, U3 = I(σ1, σ2)). We choose on this surface a Riemannian struc-
ture, namely, a metric. The metric is a positive definite and a symmetric 2-tensor
that may be defined through the local distance measurements:

ds2 = g11(dσ1)2 + 2g12dσ1dσ2 + g22(dσ2)2.

The canonical choice of coordinates in image processing is Cartesian. For such choice,
which we follow in the rest of the paper, we identify σ1 = x1 and σ2 = x2. We
use below the Einstein summation convention in which a pair of upper and lower
identical indices is summed over. With this convention, the above equation is written
as ds2 = gijdxidxj . We denote the elements of the inverse of the metric by superscripts
gij = (g−1)ij , and the determinant by g = det(gij).

Once the image is defined as an embedding mapping of Riemannian manifolds it
is natural to look for a measure on this space of embedding maps.

2.1. Polyakov Action: A Measure on the Space of Embedding Maps.
Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-feature
manifold and its metric. Then the functional S[U ] attaches a real number to a map
U : Σ → M :

S[Ua, gij , hab] =
∫

dV ||dU ||2g,h,

where dV is a volume element that is expressed in a local coordinate system as dV =√
gdxdy. The integrand ||dU ||2g,h is the Riemannian Frobenius norm of the tangent

map. It is expressed in a local coordinate system by ||dU ||2g,h = (∂xiU
a)gij(∂xj U

b)hab.
This functional, for m = 2 and hab = δab, was first proposed by Polyakov [15] in the
context of high energy physics, and the theory is known as the string theory.

Let us formulate the Polyakov action in matrix form: (Σ, G) is the image manifold
and its metric as before. Similarly, (M,H) is the spatial-feature manifold and its
metric. Define

Aab = (~∇Ua)tG−1~∇U b.

The map U : Σ → M has a weight

S[U,G, H] =
∫

dmσ
√

g Tr(AH),

where m is the dimension of Σ and g = det(G).
Using standard methods in the calculus of variations, the Euler-Lagrange equa-

tions with respect to the embedding (assuming Euclidean embedding space) are (see
[20] for explicit derivation):

0 = − 1
2
√

g
hab δS

δU b
=

1√
g
∂xi(

√
ggij∂xj U

a), (2.1)
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or in matricial form

0 = − 1
2
√

g
hab δS

δU b
=

1√
g
div (D∇Ua)

︸ ︷︷ ︸
∆gUa

. (2.2)

(where the matrix D = (dij)i,j=1,2 =
√

gG−1). The extension for non-Euclidean
embedding space is treated in [10, 21, 22]. The elements of the induced metric for
color images with Cartesian color coordinates are:

gij = δij + β2
3∑

a=1

Ua
xi

Ua
xj

, (2.3)

where β > 0 is the ratio between the spatial and color distances, and the subscript
of U denotes partial derivation. Note that this metric is different from the Di Zenzo
matrix [26] (which is not a metric since it is not positive definite). A generaliza-
tion of Di Zenzo’s gradient for color images was investigated in [25] by constructing
an anisotropic vector-valued diffusion model with a common tensor-valued structure
descriptor.

The value of the parameter β, present in the elements of the metric gij , is very
important and determines the nature of the flow. In the limit β → 0, for example,
the flow degenerates to the decoupled channel by channel linear diffusion flow. In the
other limit β →∞ we get a new nonlinear flow. The gray-value analogue of this limit
is the Total Variation flow of [17] (see details in [21]).

Since (gij) is positive definite, g ≡ det(gij) > 0 for all σi. This factor is the
simplest one that does not change the minimization solution while giving a reparame-
terization invariant expression. The operator that acts on Ua is the natural generaliza-
tion of the Laplacian from flat spaces to manifolds and is called the Laplace-Beltrami
operator, denoted by ∆g.

The non-linear diffusion or scale-space equation emerges via the gradient descent
minimization:

Ua
t =

∂

∂t
Ua = − 1

2
√

g
hab δS

δU b
= ∆gU

a. (2.4)

The mathematical properties of this system, together with the initial and bound-
ary conditions which will be detailed below, are studied in the rest of the paper with
an emphasis on the extremum principle.

3. The Extremum Principle in the Strong Formulation. Here we establish
the maximum principle for the strong solution of the initial boundary-value problem
which characterizes the Beltrami color flow. We refer to the term ’strong solutions’
when we talk about solutions which are functions with some smoothness criteria that
we detail below. Let us first introduce some notations: We denote the image domain
by Ω. It is a bounded open domain in IR2. We denote by ∂Ω the boundary of Ω.
We define the space-time cylinder QT = Ω× (0, T ), and denote its lateral surface by
ST = {(x, t)|x ∈ ∂Ω, t ∈ (0, T )}. We also define the parabolic boundary by the union
of the bottom and the lateral boundaries of the cylinder ΓT = Ω

⋃
ST .

The PDE is the gradient descent equation for the Polyakov action as was described
in the previous section. We rearrange the equation by explicitly carrying out the
calculation of the derivation operator div. The result is the sum of two terms: The
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first term results from applying the div to
√

gG−1, and the second from applying the
div to the gradient’s components Ua

xi
. Remember that the metric, and consequently

its inverse and its determinant, depends on first order derivatives. Applying the div
operator to it gives rise to second order derivatives of the different channels as well.
Rearranging the right hand side of Eq. (2.4) according to the second order derivatives,
and the coefficients thereof, we arrive at the following coupled system of PDEs:

Ua
t = (F a

b)
ijU b

xixj
, (x, t) ∈ QT , (3.1)

where a, b = 1, 2, 3 are indices in color space, i, j = 1, 2 are spatial indices and summa-
tion is applied to all repeated indices. Note that (F a

b) are nine 2x2 matrices. Denote
by Ha = (Ua

xixj
)2ij=1 the Hessian of Ua. This system of PDEs can be written in terms

of a trace in the spatial domain as

Ua
t = Trace

(
F a

bH
b
)

, (x, t) ∈ QT , (3.2)

where, as before, the repeated b index implies a summation over the color indices.
The system of PDEs for which we establish the extremum principle is

Ua
t = ∆gU

a =
1√
g
div(D∇Ua), Ua = R,G, B, (3.3)

where D is defined as before: D =
√

gG−1.
The initial and boundary conditions are

Ua(x, 0) = Ua
0 (x), x ∈ Ω (3.4)

D~∇Ua · ~n
∣∣∣
ST

= 0, (3.5)

where ~n is the outer normal to ∂Ω and the dot product denotes, as usual, the Euclidean
scalar product on IR2.

Lemma 3.1. The nine 2x2 matrices (F a
b) are symmetric, positive definite, and

their elements (F a
b)

ij are rational functions of the first derivatives of the different
channels. These matrix elements are, moreover, uniformly bounded functions on QT .

Proof. The proof is by direct calculation. One finds for example:

(
F 2

1

)11
= −RxGx

g2
22

g2
+ (RxGy + RyGx)

g12g22

g2
− RyGy

g

(
1 +

g2
12

g

)

(
F 2

1

)12
=

(
F 2

1

)21
=

RxGy + RyGx

g
− RxGy + RyGx

g2
g11g22−

RxGy + RyGx

g2
g2
12 + 2

RxGxg22 + RyGyg11

g2
g2
12

(
F 2

3

)22
= −RyGy

g2
11

g2
+ (RxGy + RyGx)

g11g12

g2
− RxGx

g
(1 +

g2
12

g
) (3.6)

(here we denoted by R, G,B the three components of the color vector
−→
U ).

These are rational functions of the first derivatives. The diagonal elements of (F a
b)

are strictly positive (by a direct check), and the negativity of the discriminant implies
the positive definiteness of these matrices. One can verify directly that the coefficients
are bounded functions of the first derivatives. These properties are verified, along the
same lines for all matrices.
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Next we state the maximum principle for the strong solutions of the coupled
system of PDEs (3.3), with initial data (3.4) and boundary condition (3.5).

Theorem 3.2. Let
−→
U0 ∈ C2(Ω). Then a solution

−→
U ∈ C2,1(Q̄T ) satisfies the

following maximum principle:

1) max
Q̄T

3∑
a=1

Ua = max
Ω

3∑
a=1

Ua
0

2) max
Q̄T

Ua = max
Ω

Ua
0 . (3.7)

Proof.
Note that assertion 2 does not imply, in principle, assertion 1. We start by proving

assertion 1. Consider the following system of inequalities

V a
t < (F a

b)
ijV b

xixj
, (x, t) ∈ QT , (3.8)

where F a
b = F a

b(∇~V ).
We now show that a smooth solution of this system of inequalities satisfies

max
Q̄T

3∑
a=1

V a = max
ΓT

3∑
a=1

V a. (3.9)

Let V̄ =
∑3

a=1 V a and suppose on the contrary that the maximum of V̄ is attained
at an interior point (x0, t0) ∈ Q̄T − ΓT . This assumption leads to a contradiction as
follows: The maximality at the point (x0, t0) implies:

V̄t|(x0,t0) ≥ 0 (V̄t|(x0,t0) = 0 if 0 ≤ t0 < T ). (3.10)

Based on (2.1), the system of inequalities (3.8) is equivalent to

V a
t <

1√
g
∂xi(g

ij√g∂xj V
a), (x, t) ∈ QT . (3.11)

Since the Laplace-Beltrami operator that acts on the components depends only on
the geometry, the sum of components obeys the same inequality:

V̄t <
1√
g
∂xi(g

ij√g∂xj V̄ ). (3.12)

On the other hand carrying out the div computation explicitly we rewrite this
inequality as

1√
g
∂xi(g

ij√g∂xj V̄ ) = gij V̄xixj + ωj V̄xj .

The functions ωj depend on the first and second derivatives of each of the components
of the color vector. They are bounded on QT by the smoothness of

−→
V ∈ C2,1(Q̄T ).

The positive definiteness of the matrix gij and the maximality at the point (x0, t0)
imply

1√
g
∂xi(g

ij√g∂xj V̄ )|(x0,t0) = gij V̄xixj |(x0,t0) < 0. (3.13)
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Clearly (3.10) and (3.13) contradict (3.12). We conclude that (3.9) holds for a
solution of the system of inequalities (3.8).

Using the result for the solution of the system of inequalities, we prove the result
concerning the solution ~U of our system (3.3). We define W a = Ua − εt and W̄ =∑3

1 W a, Ū =
∑3

1 Ua . Then ∇W a = ∇Ua, gij( ~W ) = gij(~U) and we obtain the
following inequalities:

W a
t −

1√
g
∂xi(g

ij√g∂xj
W a) = Ua

t −
1√
g
∂xi(g

ij√g∂xj
Ua)− 3ε < 0, (3.14)

Since ~W = (W a)a=1,2,3 satisfies (3.14), it follows that

max
Q̄T

W̄ = max
ΓT

W̄ .

Letting ε → 0 we establish that

max
Q̄T

Ū = max
ΓT

Ū .

Due to the boundary condition (3.5), the maximum cannot be attained on ST (see
[16]). Therefore assertion 1 is proved.

Next we prove assertion 2. Observe first that the off-diagonal matrices F a
b with

a 6= b can be written as Ua
xi

times a bounded function. Taking, for example, (a, b) =
(1, 2), one finds by rearranging the terms in (3.1) that

(F 1
2 )ij = U1

x1
· f ij

1 (∇−→U ) + U1
x2
· f ij

2 (∇−→U ); (3.15)

So if i = 1, j = 1, for example, then

f11
1 = −U2

x1

g2
22

g2
+ U2

x2

g12g22

g2
, f11

2 = U2
x1

g12g22

g2
+ U2

x2
(
g2
22

g2
+

1
g
).

One can write the other off-diagonal matrices similarly. For the structure of the
induced metric, we can easily see that:

g ≥ 1,
gij

g
≤ 1, for all i, j = 1, 2. (3.16)

Since the solution
−→
U is in C2,1(Q̄T ) one can readily establish, using (3.16), that the

functions f ij
1 , f ij

2 are bounded on QT . We can, therefore, write the first equation of
the system (3.1),(3.4),(3.5) in the following form:

U1
t = (F 1

1 )ijU1
xixj

+ U2
xixj

(U1
x1

f ij
1 + U1

x2
f ij
2 ) + U3

xixj
(U1

x1
gij
1 + U1

x2
gij
2 ), (3.17)

where gij
1 , gij

2 are, as above, bounded functions depending on the first derivatives of
the vector solution

−→
U . We rewrite this equation:

U1
t = (F 1

1 )ijU1
xixj

+ T iU1
xi

,

where T i are continuous functions on a compact domain and therefore bounded func-
tions. Again using the maximality of the point (x0, t0), the positive definiteness of
the matrix F 1

1 and similar reasoning to the proof of assertion 1, we can conclude that
7



max
Q̄T

U1 = max
Ω

U1
0 .

For the other two components the proof is the same, mutatis mutandis. Thus assertion
2 is proven.

In the next section we define a weak solution for the Beltrami color flow and prove
that it obeys the extremum principle if it exists.

4. Weak Formulation of the Extremum Principle. In this section we define
a weak solution of the system (3.3), (3.4),(3.5) under the smoothness assumptions that
are detailed below. We further prove the extremum principle for this type of solution.

Let us introduce the following notations:
Denote by V (QT ) the space of functions which belong to L2(QT ) and have first

weak derivatives satisfying: ∇u ∈ L∞(QT ), ut ∈ L∞(QT ).
The Sobolev space W p,q

r is the space of functions, for which the Lr norm of their
first generalized p spatial derivatives and q time derivatives, is finite (below we omit
the second superscript for functions on the spatial domain only).

First we define a weak solution as follows:
Definition 4.1. A weak solution of the system (3.3), with initial and bound-

ary conditions (3.4),(3.5), is a vector function ~U ∈ V (QT ) such that for any vector
function ~η ∈ V (QT ) (i.e. each of the components of the vector are in V (QT )), the
following integral identities hold for almost all t ∈ [0, T ]:

∫

QT

Ua
t ηa√g dxdt +

∫

QT

gijUa
xi

ηa
xj

√
g dxdt = 0. (4.1)

Remark 4.1. The integral
∫
Ω

√
g dx means the area of the two dimensional

manifold embedded in R5.
Remark 4.2. Florack [6], in viewing an image as a tempered distribution (see

[18]), adopted the space of the so called ”slow growth” functions (smooth functions of
rapid decay) as the sensor space. In this paper we take V (QT ) as the sensor functional
space, which we choose in accordance with the weak formulation of our problem.

Next we prove that if a weak solution exists and it satisfies ∇(~Ut) ∈ L∞(QT ), the
following weak extremum principle holds:

Theorem 4.1. Assume the initial data ~U0 ∈ W 1
2 (Ω).

For a weak solution of the system (3.3),(3.4),(3.4) such that ∇(~Ut) ∈ L∞(QT )
we have for almost all (x, t) ∈ QT :

ess inf
Ω

Ua
0 (x) ≤ Ua(x, t) ≤ ess sup

Ω
Ua

0 (x). (4.2)

Proof. We prove (4.2) for one of the components.
We divide the cylinder QT into a finite number of cylinders of equal height Qts =

Ω× (ts−1, ts) where ts =
Ts

N
and s = 1, 2, ...N.

For the cylinder Qt1 we denote
ka = ess sup

Ω
Ua

0 (x) and (Ua)ka = max{0, Ua − ka} for (x, t) ∈ Ω× (0, t1).

Choose the test function η1 = Rk1 . Note that by the hypothesis, ~U ∈ V (QT ),
and therefore the choice of such η is justified. Identity (4.1) for component R is now:
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∫

Qt1

RtR
k1
√

gdxdt +
∫

Qt1

dijRxiR
k1
xj

dx dt = 0. (4.3)

Since the matrix D (D =
√

gG−1) depends on the gradient ∇~U and ∇~U ∈
L∞(Qt1), we have that D is a uniformly positive definite matrix, so there exists a
constant ν > 0 such that

dij(∇Ū)Rxi
Rk1

xj
≥ ν|∇Rk1 |2 a.e. (x, t) ∈ Qt1 .

Therefore, (4.3) for the component R becomes:
∫

Qt1

RtR
k1
√

gdxdt + ν

∫

Qt1

|∇R|2 dx dt ≤ 0. (4.4)

Since for almost all t ∈ (0, t1) :
∫

Ω

Rt(x, t)Rk1(x, t) dx =
1
2

d

dt

∫

Ω

(
Rk1(x, t)

)2

dx,

we get

∫

Qt1

RtR
k1
√

g dx dt=
1
2

∫

Qt1

((Rk1)2)t
√

g dx dt

=
1
2

( ∫

Ω

(Rk1)2
√

g
∣∣∣
t1

0
dx−

∫

Qt1

(Rk1)2(
√

g)t dx dt
)

, (4.5)

and using 4.4 we get

1
2

∫

Ω

(
Rk1(x, t)

)2∣∣∣
t=t1

dx + ν

∫

Qt1

|∇Rk1 |2dxdt ≤1
2

∫

Qt1

(Rk1)2(
√

g)t dx dt

+
1
2

∫

Qt1

(Rk1
0 )2

√
g0 dx. (4.6)

Since ~U0 ∈ W 1
2 (Ω) and Rk1(x, 0) = Rk1

0 = 0, then
∫

Qt1
(Rk1

0 )2
√

g0 dx = 0 and
(4.6) becomes:

1
2

max
0≤t≤t1

∫

Ω

(
Rk1(x, t)

)2

dx + ν

∫

Qt1

|∇Rk1 |2 dx dt ≤ 1
2

∫

Qt1

(Rk1)2(
√

g)t dx dt. (4.7)

Denote by || · ||V (QT ) the norm on the space V (QT ), where

||u||V (QT ) = max
0≤t≤T

||u||L2(Ω) +

√∫

QT

u2
x(x, t) dx dt.

By assumption ~Utx ∈ L∞(QT ) and then there exists a positive constant C such
that C = sup

QT

(
√

g)t.

The Cauchy-Schwartz inequality leads us to:
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∫

Qt1

(Rk1)2(
√

g)t dx dt≤ C

∫

Qt1

(Rk1)2 dx dt

≤ Ct1( max
0≤t≤t1

||Rk1 ||L2(Ω))2 ≤ Ct1||Rk1 ||2V (Qt1 ) (4.8)

Therefore (4.7) becomes:

min{1
2
, ν}||Rk1 ||2V (Qt1 ) ≤

C

2
t1 ||Rk1 ||2V (Qt1 ).

Then for sufficiently small t1 such that

C

2
t1 < min{1

2
, ν}, (4.9)

we obtain ||Rk1 ||V (Qt1 ) = 0, which implies that for a.e. (x, t) ∈ Ω× (0, t1) we have

R(x, t) ≤ ess sup
Ω

R0(x).

The same argument is valid for the cylinders Qts = Ω× (ts−1, ts), 2 ≤ s ≤ N , as
long as their height satisfies the requirement analogue of (4.9). Thus, after a finite
number of steps we obtain for the component R the estimate (4.2), for a.e. (x, t) ∈ QT .

In a similar way we can proceed with the other components.

5. The Discrete Maximum Principle and Stability. In this section we show
that the commonly used central difference second order explicit schemes in general,
violate the discrete maximum principle. Nevertheless, for these schemes, we give a
theoretical proof of stability.

We work on a rectangular grid

xi = i∆x, yj = j∆y, tm = m∆t,

i, j = 0, 1, 2, ...M ; m = 0, 1, 2, ...[T/∆t].

The spatial units are normalized such that ∆x = ∆y = 1. The approximate
solution (Rm

ij , Gm
ij , Bm

ij ) samples the functions:

Rm
ij ≡ U1(i∆x, j∆y,m∆t),

Gm
ij ≡ U2(i∆x, j∆y, m∆t),

Bm
ij ≡ U3(i∆x, j∆y, m∆t).

On the boundary we impose the Neumann boundary condition. This corresponds to
a prolongation by reflection of the image across the boundary.

We replace the second spatial derivatives and the first time derivative by a central
difference and forward difference, respectively. Based on (2.4), the first element R of
the color vector satisfies the following equation:

Rt =
1√
g
Div(D∇R) . (5.1)
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The diffusion matrix is written here as

D =
(

a b
b c

)
,

where the coefficients are given in terms of the image metric: a = g22/
√

g ; c =
g11/

√
g ; b = −g12/

√
g. With this notation, equation (5.1) is thus written as

Rt =
1√
g
((aRx + bRy)x + (bRx + cRy)y) . (5.2)

We approximate Eq. (5.2) by the following central difference explicit scheme :

Rm+1
ij = Rm

ij + β∆tOij(Rm, Gm, Bm), (5.3)

where Oij(Rm, Gm, Bm) is the discrete version of the right side of Eq. (5.1) and is
given explicitly, in the central difference framework, by

Oij=
1√
gm

i,j

[
am

i+ 1
2 ,j(R

m
i+1,j −Rm

i,j)− am
i− 1

2 ,j(R
m
i,j −Rm

i−1,j)

+cm
i,j+ 1

2
(Rm

i,j+1 −Rm
i,j)− cm

i,j− 1
2
(Rm

i,j −Rm
i,j−1)

+
1
4
bm
i,j+1(R

m
i+1,j+1 −Rm

i−1,j+1)−
1
4
bm
i,j−1(R

m
i+1,j−1 −Rm

i−1,j−1)

+
1
4
bm
i+1,j(R

m
i+1,j+1 −Rm

i+1,j−1)−
1
4
bm
i−1,j(R

m
i−1,j+1 −Rm

i−1,j−1)
]

, (5.4)

where the half indices are obtained by linear interpolation. The equations for the two
other color components are discretized in the same manner. This scheme is stable
under CFL-like bound requirements of the time step. The stability, as well as the lack
of extremum principle property, can be seen in the following theorem:

Theorem 5.1. If for all m = 0, 1, 2, ..., [ T
∆t ], ∆t satisfies the condition :

∆t ≤ 1

8βmax
i,j
{
am

i+ 1
2 ,j√

gm
i,j

,
am

i− 1
2 ,j√

gm
i,j

,
cm
i,j+ 1

2√
gm

i,j

,
cm
i,j− 1

2√
gm

i,j

}
, (5.5)

then the solution satisfies:

|Rm
i,j | ≤ eS β

2 tm max
i,j

|R0
i,j |,

|Gm
i,j | ≤ eS β

2 tm max
i,j

|G0
i,j |,

|Bm
i,j | ≤ eS β

2 tm max
i,j

|B0
i,j |, (5.6)

where

S = max
0≤p≤m

Sp, and, Sp = max
i,j

|bp
i,j+1|√

gp
ij

+ max
i,j

|bp
i,j−1|√

gp
ij

+ max
i,j

|bp
i+1,j |√

gp
ij

+ max
i,j

|bp
i−1,j |√

gp
ij

.

(5.7)
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Proof. We give only the proof for one of the components, since for the other two,
the proof is the same. We introduce the following notations:

Lm
ij = am

i+ 1
2 ,j(R

m
i+1,j −Rm

i,j)− am
i− 1

2 ,j(R
m
i,j −Rm

i−1,j) (5.8)

Mm
ij = cm

i,j+ 1
2
(Rm

i,j+1 −Rm
i,j)− cm

i,j− 1
2 ,j(R

m
i,j −Rm

i,j−1) (5.9)

Nm
ij =

1
4

[
bm
i,j+1(R

m
i+1,j+1 −Rm

i−1,j+1)− bm
i,j−1(R

m
i+1,j−1 −Rm

i−1,j−1)
]

(5.10)

Pm
ij =

1
4

[
bm
i+1,j(R

m
i+1,j+1 −Rm

i+1,j−1)− bm
i−1,j(R

m
i−1,j+1 −Rm

i−1,j−1)
]

. (5.11)

Therefore, using (5.3) and (5.4) we can write :

∣∣∣Rm+1
ij

∣∣∣ ≤ 1
2

∣∣∣Rm
ij

∣∣∣ +
∣∣∣1
4
Rm

ij + β
∆t√
gm

ij

Lm
ij

∣∣∣ +
∣∣∣1
4
Rm

ij + β
∆t√
gm

ij

Mm
ij

∣∣∣ +

+
∣∣∣β ∆t√

gm
ij

Nm
ij

∣∣∣ +
∣∣∣β ∆t√

gm
ij

Pm
ij

∣∣∣ . (5.12)

If ∆t ≤ 1

8βmax
i,j

am
i+ 1

2 ,j√
gm

i,j

for all m = 0, 1, 2, ..., [ T
∆t ], then

∣∣∣1
8
Rm

ij +β
∆t√
gm

ij

am
i+ 1

2 ,j(R
m
i+1,j−Rm

i,j)
∣∣∣ ≤ max(|Rm

i,j |, |Rm
i+1,j |)

(1
8
− ∆t√

gm
ij

am
i+ 1

2 ,j+
∆t√
gm

ij

am
i+ 1

2 ,j

)
,

which implies
∣∣∣1
8
Rm

ij + β
∆t√
gm

ij

am
i+ 1

2 ,j(R
m
i+1,j −Rm

i,j)
∣∣∣ ≤ 1

8
max

i,j
|Rm

ij | .

So we can get the estimate:
∣∣∣2 · 1

8
Rm

ij + β
∆t√
gm

ij

Lm
ij

∣∣∣ ≤ 1
4

max
ij

|Rm
ij | if ∆t ≤ 1

8βmax
i,j
{
am

i+ 1
2 ,j√

gm
i,j

,
am

i− 1
2 ,j√

gm
i,j

}
. (5.13)

In the same way we obtain:
∣∣∣2 · 1

8
Rm

ij + β
∆t√
gm

ij

Mm
ij

∣∣∣ ≤ 1
4

max
ij

|Rm
ij | if ∆t ≤ 1

8βmax
i,j
{
cm
i,j+ 1

2√
gm

i,j

,
cm
i,j− 1

2√
gm

i,j

}
. (5.14)

Let

Nm,1
i,j = β

∆t

4
√

gm
ij

bm
i,j+1(R

m
i+1,j+1 −Rm

i−1,j+1)

and

Nm,2
i,j = β

∆t

4
√

gm
ij

bm
i,j−1(R

m
i+1,j−1 −Rm

i−1,j−1).

12



Then we obtain for Nm,1
i,j

|Nm,1
i,j | ≤ 2 · β ∆t

4
√

gm
ij

|bm
i,j+1|max

ij
|Rm

i,j | . (5.15)

A similar inequality can be written for |Nm,2
i,j |, and for |Pm

i,j |. Thus we have:

|Nm
ij | ≤ β

∆t

2
√

gm
ij

(|bm
i,j+1|+|bm

i,j−1|)max
ij

|Rm
i,j | ≤

β

2
∆t(max

i,j

|bm
i,j+1|√
gm

ij

+max
i,j

|bm
i,j−1|√
gm

ij

)max
ij

|Rm
i,j | ,

(5.16)
and

|Pm
ij | ≤ β

∆t

2
√

gm
ij

(|bm
i+1,j |+|bm

i−1,j |)max
ij

|Rm
i,j | ≤

β

2
∆t(max

i,j

|bm
i+1,j |√
gm

ij

+max
i,j

|bm
i−1,j |√
gm

ij

)max
ij

|Rm
i,j | .

(5.17)
¿From (5.13)–(5.17) it follows that

|Rm+1
ij | ≤ max

i,j
|Rm

ij |
(
1+

β

2
∆t(max

i,j

|bm
i,j+1|√
gm

ij

+max
i,j

|bm
i,j−1|√
gm

ij

+max
i,j

|bm
i+1,j |√
gm

ij

+max
i,j

|bm
i−1,j |√
gm

ij

)
)

,

(5.18)
if

∆t ≤ 1

8βmax
i,j
{
am

i+ 1
2 ,j√

gm
i,j

,
am

i− 1
2 ,j√

gi,j
,
cm
i,j+ 1

2√
gm

i,j

,
cm
i,j− 1

2√
gm

i,j

}
. (5.19)

Let

Mm
1 = max

i,j

|bm
i,j+1|√
gm

ij

,Mm
2 = max

i,j

|bm
i,j−1|√
gm

ij

and

Mm
3 = max

i,j

|bm
i+1,j |√
gm

ij

,Mm
4 = max

i,j

|bm
i−1,j |√
gm

ij

.

Next, applying (5.18) repeatedly we find that if condition (5.19) is satisfied, then:

|Rm
ij | ≤ (1 +

β

2
∆tSm−1)(1 +

β

2
∆tSm−2) . . . (1 +

β

2
∆tS0)max

i,j
|R0

i,j |

≤ (1 +
β

2
∆tS)m max

i,j
|R0

i,j | ≤ e
β
2 tmS max

i,j
|R0

i,j | ,

where S is given in (5.7).
The inequalities (5.6) clearly show that the maximum principle can be violated,

but we still have stability. The inequalities in Theorem 5.1 show that the numerical
solution is bounded in each iteration by the maximum value of the initial image
multiplied by a factor. It guarantees that the flow does not blow up in finite time
and ensures its stability. At the same time it is clear from the positivity of β that the
maximum principle can be violated. One can actually see it in practice (see Figs. 5.1,
5.2 and 5.3). We note that this does not indicate that the scheme is not accurate. This
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Fig. 5.1. Top-left: Noisy Camila image. Top-right: Result of the Beltrami flow after 90 itera-
tion. Bottom: Plot of maximum of each of the channels versus number of iterations. Parameters:
β2 = 100, ∆t = 0.0091.

situation is not unprecedented. the Crank-Nicolson scheme for the 1D heat equation,
for example, is also known not to obey the maximum principle while being a useful
and accurate scheme.

The reason for this discrepancy between the continuous and the discrete setting
is that this second order approximation is not a non-negative one. Indeed, the mixed
derivatives in (5.2) can create negative weights in certain pixels. One can easily
show that a scheme which is based on a nonnegative discretization does satisfy the
discrete maximum principle. Based on this result, the problem of proving the discrete
maximum principle boils down to the problem of finding a nonnegative second order
difference approximation. In [24], Weickert proposed a way to build a nonnegative
scheme. The nonnegativity of his proposed scheme depends, however, on the condition
number of the diffusion tensor D. Only in pixels where the condition number is smaller
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Fig. 5.2. Top-left: Noisy Claudia image. Top-right: Result of the Beltrami flow after 100
iterations. Bottom-(a): Plot of maximum of each of the channels versus number of iterations.
Bottom: Detail of the previous graph (the first 4 iterations). Parameters: β2 = 100, ∆t = 0.01.
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Fig. 5.3. Top-left: Noisy windmill. Top-right: Denoised image by the Beltrami flow with
after 80 iterations. Bottom: Plot of maximum of each of the channels versus number of iterations.
Parameters: β2=3, ∆t = 0.0091.

Fig. 5.4. Camila image. Left: Ellipsoid -initial noisy data. Right: Ellipsoid- after applying
Beltrami -90 iterations, β=10

than 3 + 2
√

2, the weights are nonnegative. This limits the application of the scheme
since in many images the condition number is higher than this limit in many pixels.
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Fig. 5.5. For Camila Image (β=10). Left: Distribution of the initial noisy data. Right:
Distribution of the data after 100 iterations.

6. Details of the Implementation and Results . In this section we present
results that represent the numerical behavior of the above described numerical scheme.
The initial data are given in three channels r, g and b in the range 0 to 255. We first
transfer the images to the more perceptually adaptive coordinates R = log(1+r), G =
log(1 + g), B = log(1 + b). The dynamic range of these variables is 0 to 8 and these
adaptive coordinates do not limit the generality of our analysis. In the two examples
presented below we corrupt the images with random noise, and denoise it using the
scheme mentioned above. In the implementation, the parameters β and ∆t were
chosen to satisfy the stability condition (5.5).

Figures 5.1, 5.2, 5.3 all demonstrate stability of the process on one hand and the
violation of the maximum principle on the other. In Figs. 5.2, 5.3, one notices that
after a certain small number of iterations the maximum principle is satisfied. This is
not the case in Fig. 5.1, where the violation of the maximum principle is stable and
is observable over the whole evolution. The stability can also be explained by the
experiments presented in Figs. 5.4 and 5.5.

Fig. 5.5 depicts the distribution of colors in the Camila image before and after the
Beltrami color flow. In Fig 5.4 the ellipsoids have as principle axes the eigenvectors of
the covariance-matrix of the color image. The contracting form of the ellipsoid after
applying the Beltrami flow indicates a stable denoising process.

7. Concluding Remarks. In this paper, we studied the extremum principle
property for the Beltrami color flow. We adapted the duality paradigm of Florack
and considered “true images” as generalized functions. We therefore investigated,
besides the strong solutions, also the generalized (weak) solutions. We proved the
extremum principle in both the strong and the weak formulations.

We also addressed the problem of the discrete maximum principle and its close
relationship with stability. In contrast to the continuous case, the discrete maximum
principle cannot automatically be guaranteed. The central difference scheme does
not necessarily satisfy the extremum principle. Though this property is violated, we
proved the stability of the scheme. Numerical examples show, nevertheless, that this
scheme is a useful tool in denoising.

Questions of existence and uniqueness as well as analysis of more elaborated
numerical schemes are currently being studied .
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