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Abstract

The linear and nonlinear scale spaces, generated by the inherently real-valued diffusion equation,

are generalized to complex diffusion processes, by incorporating the free Schrödinger equation. A

fundamental solution for the linear case of the complex diffusion equation is developed. Analysis of its

behavior shows that the generalized diffusion process combines properties of both forward and inverse

diffusion. We prove that the imaginary part is a smoothed second derivative, scaled by time, when

the complex diffusion coefficient approaches the real axis. Based on this observation, we develop two

examples of nonlinear complex processes, useful in image processing: a regularized shock filter for

image enhancement and a ramp preserving denoising process.

Keywords: scale-space, image filtering, image denoising , image enhancement, nonlinear dif-

fusion, complex diffusion, edge detection, shock filters.

I. INTRODUCTION

Two basic approaches to the implementation of PDEs in low level vision have been previously

presented. The first is the axiomatic approach, formalized in the fundamental contribution of

Alvarez et al [1]. In this and related studies (see for example [22] and references therein) a set

of assumptions about the nature of the image and the required filtering is incorporated at the

axiomatic level. The second approach is based on variational calculus, whereby the diffusion-

like PDE is derived by a functional minimization process (see [3] and references therein).

In our study we take a fresh look at the application of PDEs in image processing and computer

vision and propose a new, more general, framework. In various areas of physics and engineer-

ing, it was realized that extending the analysis from the real axis to the complex domain is very

useful, even if the variables and/or quantities of interest are real. The analytical structure, in

many cases, reveals important features of the system, which are difficult to account for by dif-

ferent means. Examples to this effect can be found in such unrelated subjects as the S-matrix

elements in high-energy physics, and in the bread and butter of signal processing - the Fourier

transform. Similarly the Gabor [8] the Gabor-wavelets [37], and Morlet-wavelet [16], [17] are

complex-valued transforms. The latter is relevant to our study in that it incorporates a discrete set

of scaled Gaussian filters and a set of scaled approximations of the Gaussian second derivative.

All of these are examples of complex filters used in the processing of real signals.

Diffusion-like PDEs generalize filter theory. Relations between PDEs and filters, morpholog-

ical and others, were pointed out recently by several groups [18], [23]. We follow in this paper
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the idea of complexification and generalize it from filters to PDEs.

We generalize the linear scale spaces in the complex domain, by combining the diffusion equa-

tion with the free Schrödinger equation. A fundamental solution for the linear case is developed.

Analysis of the linear complex diffusion shows that the generalized diffusion has properties of

both forward and inverse diffusion. We thus obtain a stableflow that violates the maximum prin-

ciple, while preserving other desirable mathematical and perceptual properties. The example of

this flow may pave the way to a new class of diffusion like processes.

An important observation, supported theoretically and numerically, is that the imaginary part

can serve as an edge detector (smoothed second derivative scaled by time), when the complex

diffusion coefficient approaches the real axis. Based on this observation, we develop two exam-

ples of nonlinear complex processes for the denoising and the enhancement of images.

The paper is organized as follows: Various scientific domains that deal with, or are based on,

complex-valued PDEs, are presented in Section 2 as motivating examples and as special cases

of our framework. Previous studies in vision and signal processing using variants of complex-

valued PDEs are reviewed in this section as well. The analysis of linear complex diffusion is

presented in Section 3. Two non-linear cases are studied in Sections 4 and 5, taking advantage of

the intuition gained from the analysis of the linear case, to construct nonlinear complex schemes

for denoising of ramps and for enhancement by regularized shock filters. The advantages over

known real-valued PDE-based algorithms, such as [2] and [21] are demonstrated in one- and

two-dimensional examples.

II. PREVIOUS RELATED STUDIES

I this section we give some brief background on motivation for adopting the PDE-based ap-

proach to image processing, indicating how our new approach fits within this framework.

According to the axiomatic approach, a set of proper axioms leads to a PDE which is used, in

turn, in denoising or for obtaining a scale-space. The axioms are of structural and morphological

type. An important additional axiom is the maximum principle. Roughly speaking, the structural

axioms ensure that the process be a sufficiently smooth semi-group. The maximum principle is

the non-linear analog of filter positivity in linear filtering theory. The morphological axioms

require commutativity of the semi-group flow with respect to a Lie group of interest. In their
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original paper the authors analyze monotone transformations of gray value, and spatial affine

transformations (and their sub-groups) [1].

The second method originates from the variational calculus approach to image processing

and computer vision [3]. The diffusion-like PDE is accordingly derived using a functional

minimization process. The canonical examples are the L2 norm of the gradient, that leads to

linear scale-space, and the L1 norm of the gradient which leads to the total variation flow [34].

Whereas one cannot give a full account of the equations that results from this approach, it has

been applied successfully in denoising, segmentation, stereo, optical flow, to name a few impor-

tant applications [3]. This approach offers several important advantages. In particular, one can

usually prove convergence as well as a relation to a systematic probabilistic approach, mainly to

the Bayesian framework. The disadvantages are the possibility of convergence to a local mini-

mum, and the fact that the set of PDEs, derived from a functional, is much smaller than the set

of all possible diffusion- like PDEs. It is also difficult to consider the maximum principle by

adopting this approach. We note that the equations introduced by us cannot be derived from a

real valued functional.

The canonical, and most simple, example for both approaches is the linear scale-space equa-

tion

It = c�I; Ijt=0 = I0; 0 < c 2 R: (1)

The derivation of the linear scale space from the axiomatic approach can be found, for example,

in [22]. But, it can be derived as a gradient descent of the L2 norm of the gradient of the image.

The scale-space approach is by now a well established multi-resolution technique for im-

age structure analysis (see for example [36],[20],[30]). The original Gaussian representation,

introduced a scale dimension by convolving the original image with a Gaussian of a standard

deviation � =
p
2t. This is analogous to solving the linear diffusion equation with a constant

diffusion coefficient c = 1.

The information distributed over all scales is generated as the solution I(x; y; t) of the linear

heat equation. Important cues, such as edges and critical points, are gathered from all scales

in order to analyze the scene as a whole. One of the problems associated with this approach

is that important structural features such as edges are smoothed and blurred along the flow, as

the processed image evolves in time. As a consequence, the trajectories of zero crossings of the
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second derivative, which indicate the locations of edges, vary from scale to scale.

To overcome this problem, Perona and Malik (P-M) [28] proposed a nonlinear adaptive diffu-

sion process, termed anisotropic diffusion, wherein diffusion takes place according to a variable,

adaptive, diffusion coefficient, to reduce the smoothing effect near edges. The same generic

equation was proposed and analyzed by Rosenau [32], in the context of mathematical physics.

The P-M nonlinear diffusion equation is of the form:

It = r � (c(jrIj)rI); c(�) > 0; (2)

where c is a decreasing function of the gradient such as (1+(jrIj=kPM)2)�1. It implies a direct

relation between the image smoothness at a point and the image gradient. We further generalize

the linear and nonlinear scale-spaces, and view them as special cases of a more general theory

of complex diffusion-type processes.

Complex diffusion-type processes are commonly encountered, for example, in quantum physics

and electro-optics [7], [26]. The time dependent Schr̈odinger equationis the fundamental equa-

tion of quantum mechanics. In the simplest case for a particle without spin, subjected to an

external field it has the form

i~
@ 

@t
= � ~

2

2m
� + V (x) ; (3)

where  =  (t; x) is the wave function of a quantum particle, m is its mass, ~ is Planck’s

constant, V (x) is the external field potential, � is the Laplacian and i
:
=
p�1. With an initial

condition  jt=0 =  0(x), requiring that  (t; �) 2 L2 for each fixed t, the solution is  (t; �) =
e�

i

~
tH 0, where the exponent is a shorthand for the corresponding power series, and the higher

order terms are defined recursively by Hn	 = H(Hn�1	). The operator

H = � ~
2

2m
�+ V (x); (4)

called the Schr̈odinger operator, is interpreted as the energy operator of the particle under con-

sideration. The first term is the kinetic energy and the second is the potential energy. The duality

relations that exist between the Schrödinger equation and diffusion theory have been studied and

are considered, for example, in [25].

It is very revealing to study the basic solution of the free, i.e. V = 0, ”particle”. Using

separation of variables 	(x; y; t) = �(t)�(x; y), and simple manipulation of the equation, we
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get

i~
�t

�
= � ~

2

2m

��

�
= E :

Since this equation is valid for all x; y and t, it is clear that E is a constant. The basic solution

is therefore � = exp(�iE
~
t) and � = exp(�i

p
2m
~
k � x), where k � k = E. This implies that the

basic solution is a plane wave! We will encounter this ’wavy behavior’ in our complex flow.

Another important complex PDE in the field of phase transitions in traveling wave systems is

the complex Ginzburg-Landau equation(CGL) [15]: ut = (1 + i�)uxx + Ru � (1 + i�)juj2u.

Note that although these flows have a structure of a diffusion process, because of the complex

coefficient, they retain also wave propagation properties.

In both cases of complex diffusion a non-linearity is introduced by adding a potential term,

while the kinetic energy remains linear. In this study we employ the equation with zero potential

(no external field) but with complex and non-linear “kinetic energy”.

There are several examples of diffusion of complex-valued features in low-level vision (e.g.

Whitaker and Gerig [35]; Barbaresco [4]; Kimmel, Malladi and Sochen [19]). Whitaker and

Gerig generate a collection of band-passed images by means of Gabor filtering with specific

set of frequencies. This vector-valued feature space was then smoothed linearly and in an

anisotropic way. It is important to note that only the coefficient of the drift term (the first deriva-

tives) becomes complex; This is a basic difference from our approach, as the qualitative behavior

of a diffusion equation depends primarily on the coefficient (or tensor in the general case) of the

diffusion term. It follows that the complex scale-space equation(s) that we present in this study

are extremely different from the Whitaker and Gerig equations. A similar argument is relevant

in reference to the approach presented by Kimmel,, Malladi and Sochen. In their study the co-

efficients of the Gabor-Morlet wavelet transform are smoothed by the Beltrami flow. Although

the values of these filters are complex, the diffusion tensor is real and the behavior of the Bel-

trami flow is different from the one described in this paper. Another interesting work that study

the diffusion of complex-valued functions is the one presented by Barbaresco [4]. This study is

concerned, however, with complex curves using a variational technique.
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III. LINEAR COMPLEX DIFFUSION

A. Problem Definition

We consider the following initial value problem:

It = cIxx; t > 0; x 2 R (5)

I(x; 0) = I0 2 R; c; I 2C :

This equation unifies the linear diffusionequation (1) for c 2 R and the free Schr̈odinger

equation, i.e. c 2 I and V (x) � 0. When c 2 R there are two cases: for c > 0 the process

constitutes a well-posed forward diffusion, whereas for c < 0 an ill-posed inverse diffusion

process is obtained. In the general case the initial condition I0 is complex. In this paper we

discuss the particular case of real initial conditions, where I0 is the original image.

B. Fundamental Solution

We seek the complex fundamental solution h(x; t) that satisfies the relation:

I(x; t) = I0 � h(x; t); (6)

where � denotes convolution. Rewriting the complex diffusion coefficient as c
:
= rei�, since

there does not exist a stable fundamental solution of the inverse diffusion process, restrict the

analysis to a positive real value of c, that is � 2 (� �

2
; �
2
). Replacing the real time variable t by

the complex time � = ct, yields I� = Ixx, I(x; 0) = I0. This is identical in its form to the linear

real-valued diffusion equation. Its fundamental solution, therefore, is in a Gaussian form. In

order to satisfy the initial condition I(x; 0) = I0 we require

(a)
R1
�1 h(x; t! 0)dx = 1;

(b)
R
jxj>� jh(x; t! 0)jdx! 0; where � = �(t); limt!0 �(t) = 0:

(7)

This leads to the following fundamental solution:

h(x; t) = Ag�(x; t)e
i�(x;t); (8)

where g�(x; t) = 1p
2��(t)

e�x
2=2�2(t), and

A =
1p
cos �

; �(x; t) =
x2 sin �

4tr
� �

2
; �(t) =

r
2tr

cos �
: (9)

For more details see Appendix F.
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Fig. 1. Fundamental solution h�(x; t) as a function of x and � (t = 1). Left - real part (hR), right - imaginary part normalized

by � (hI=�).
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C. Approximate Solution for Small Theta

We will now show that as � ! 0, the imaginary part can be regarded as a smoothed second

derivative of the initial signal, factored by � and the time t. Generalizing the solution to any

dimension in Cartesian coordinates x
:
= (x1; x2; ::xN) 2 R

N , I(x; t) 2 C
N , and denoting that

in this coordinate system g�(x; t)
:
=
QN

i g�(xi; t), we show that:

lim
�!0

Im(I)

�
= t�g~� � I0; (10)

where Im(�) is the imaginary value and ~� = lim�!0� =
p
2t. Restricting the analysis, for

convenience, to a unitary complex diffusion coefficient c = ei�, utilizing the approximation

cos� = 1 + O(�2) and sin� = � + O(�3) for small �, and introducing an operator ~H = c�,

equation (5) can be written (for higher dimensional systems too) as: It = ~HI; Ijt=0 = I0. The
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solution I = et
~HI0, is the equivalent of (6) and (8). The above approximations yield:

I(x; t) = ect�I0 = ee
i�t�I0

� e(1+i�)t�I0 = et�ei�t�I0

� et�(1 + i�t�)I0 = (1 + i�t�)g~� � I0:
Further insight into the behavior of the small-theta approximation can be gained by separating

the real and imaginary parts of the signal, I = IR + iII , and diffusion coefficient, c = cR + icI ,

into a set of two equations:8<
:

IRt = cRIRxx � cIIIxx ; IRjt=0 = I0

II t = cIIRxx + cRIIxx ; II jt=0 = 0;
(11)

where cR = cos � , cI = sin�. The relation IRxx � �IIxx holds for small enough �, which

allows us to omit the second term on the r.h.s. of the first equation, to get the small theta

approximation:

IRt � IRxx ; II t � IIxx + �IRxx: (12)

In (12) IR is controlled by a linear forward diffusion equation, whereas II is affected by both the

real and imaginary equations. We can regard the imaginary part as II t � �IRxx+(”a smoothing process”).

Note that since the initial condition is real valued, the term �IRxx is dominant and cannot be

omitted even for very small � (at t = 0 it is infinitely larger than IIxx as II jt=0 � 0).

D. Analysis of the Fundamental Solution

We consider a few properties with reference to the fundamental solution, and derive bounds

on error under the small � approximation. The approximation of the real part to a Gaussian, and

of the imaginary part to its second derivative scaled by time, obtained for small � is of the order

O(�2). Proofs and calculations of the bounds are provided in the Appendix. Whereas more

technical details can be found in our report [10]. Here we limit the presentation to the summary

of our results.

The kernel can be separated into its real and imaginary parts. As the initial condition I0 is real-

valued in this study, the real part of I(x; t) is affected only by the real kernel and the imaginary

part of I(x; t) is affected only by the imaginary kernel:

I(x; t) = IR + iII = I0 � h = I0 � hR + iI0 � hI ; (13)
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where h = hR + ihI . (we get IR = I0 � hR, II = I0 � hI).
The nature of the complex kernel does not change through the evolution; the kernel is basically

rescaled according the time t (or to �). Therefore we can analyze a few characteristics of the

kernel as a function of � for different values of �. In the sequel we present some of the major

characteristics of the real and imaginary kernels.

1) Properties of the real kernelhR:

1) Kernel formulation

hR(x; t) = Ag�(x; t) cos�(x; t): (14)

2) Maximal amplification
maxx;t jI0 � hRj

maxx jI0j � A: (15)

For small theta we get A = cos�1=2 � = 1 + �2

4
+O(�4).

3) Effectively positive kernels. One requirement of the linear scale-space is to avoid creation

of new local extrema along the scale-space in 1D. Kernels obeying this requirement should

be positive everywhere. In 1D this is equivalent to the requirement that the operator be

causal [22]. As this kernel is not positive everywhere, we check how close is it to a positive

kernel. Let us define a positivity measure �1 � Ph � 1 of a kernel h as follows:

Ph
:
=

R1
�1 h(x)dxR1
�1 jh(x)jdx

: (16)

We regard a kernel h as effectively positive with the measure � � 1, if Ph � 1 � �. For

hR we get the following bound

PhR �
1� 8�(�x1)
1 + 8�(�x1) ; (17)

where

�(x) =

Z x

�1
g�=1(s)ds (18)

and

x1 =

r
(
2

3
� + �) cot �: (19)

This bound is valid for 1:28rad = 73Æ � � � 0. Example (a): for � = 1Æ = �

180
we get

x1 � 11, and PhR � 1�8�(�11)
1+8�(�11) = 1� 2 � 10�27. Example (b): for PhR > 0:99999; (� <

10�5) we require � < 5Æ.
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4) Small theta approximation. We define the distance between convolution kernels as the

norm of their difference operator: d(h; g)
:
= kTh�gk1, where the norm of a linear operator

(using the 1 norm) is

kThk1 :
= sup

kfk6=0

kThfk1
kfk1 = sup

kfk6=0

kh � fk1
kfk1 : (20)

The distance between the real kernel hR(x; t) and a Gaussian g�(x; t) is

d(hR; g�) = O(�2); (21)

and for small values of theta the distance is bounded by:

d(hR; g�) < 0:5�2; 8� 2 [0;
�

10
]; 8t � 0 (22)

5) Definite integral Z 1

�1
hR(x; t)dx = 1 : (23)

2) Properties of the imaginary kernelhI :

1) Kernel formulation

hI(x; t) = Ag�(x; t) sin�(x; t): (24)

2) Maximal amplification
maxx;t jI0 � hI j

maxx jI0j � A: (25)

3) Small theta approximation. The distance between the imaginary kernel, normalized by

�, and a Gaussian’s second derivative scaled by time, is

d(hI=�;
@2

@x2
g�t) = O(�2); (26)

and for small values of theta the distance is bounded by:

d(hI=�;
@2

@x2
g�t) < 0:5�2; 8� 2 [0;

�

10
]; 8t � 0 (27)

4) Definite integral Z 1

�1
hI(x; t)dx = 0 : (28)
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Fig. 3. Complex diffusion of a small theta, � = �=30, applied to a step signal. Left frame - real values, right frame - imaginary

values. Each frame depicts from top to bottom: original step, diffused signal after times: 0.025, 0.25, 2.5, 25.
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Fig. 4. Complex diffusion of a large theta, � = 14�=30, applied to a step signal. Left frame - real values, right frame -

imaginary values. Each frame depicts from top to bottom: original step, diffused signal after times: 0.025, 0.25, 2.5, 25.

E. Examples

We present examples of 1D and 2D signal processing with linear complex diffusion, charac-

terized by small and large values of �. In Fig.’s (3) and (4), we depict the evolution of a unit step,

processed by a complex diffusion of small and large � ( �
30
; 14�
30

), respectively. The same � values

are used in the processing of the the camera-man image (Fig.’s. (5) and (6), respectively). The

qualitative properties of the edge detection (smoothed second derivative) are clearly apparent

in the imaginary part of the signals, for the small � value, whereas the real value depicts the

properties of ordinary Gaussian scale-space. For large �, however, the imaginary part feeds back

into the real part significantly, creating wave-like ringing. In addition, the signal overshoots and

undershoots, exceeding the original maximum and minimum values and thereby violating the

”Maximum-minimum” principle – a property suitable for sharpening purposes, similar to the

Mach Bands characteristic of vision [31].
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Fig. 5. Complex diffusion with small theta (� = �=30), applied to the camera-man image. Top images – real values, bottom

images – imaginary values (factored by 20). Each frame (from left to right): original image, result obtained after processing

time 0.25, 2.5, 25, respectively.

Fig. 6. Complex diffusion with large theta (� = 14�=30), applied to the cameraman image. Top sequence of images – real

values, bottom sequence – imaginary values (factored by 20). Each sequence depicts from left to right the original image and

the results of the processing after t=0.25, 2.5, and 25, respectively.

F. Generalization to Nonlinear Complex Diffusion

Nonlinear complex processes can be derived, based on the properties of the linear complex

diffusion, to match the requirements of specific applications. We present two such nonlinear

schemes, developed for application in image denoising and enhancement.
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IV. RAMP PRESERVING DENOISING

Ramp functions can be used as a model of the basic structure of edges in images or their

equivalent 1D functions. Step-type (singular) edges are a limiting case of ramp functions. Visual

responses to ramp functions have been widely investigated both psychophysically and physio-

logically. In particular they are known for the Mach bands associated with their perception [31].

Ramp-type edges are generic fundamental components of images, and as such, are extracted in

the raw primal sketch of images [24]. It is therefore of special interest and importance to com-

pare the action of a nonlinear complex-diffusion equation on a ramp function with those of real

non-linear diffusion and other previously proposed operators.

We are looking for a general nonlinear diffusion equation

It =
@

@x
(c(�)Ix) (29)

that preserves smoothed ramps.

As was the case with real nonlinear diffusion processes, we search here too for a suitable

differential operator D for ramp edges. Eq. (29) with a diffusion coefficient c(jDIj), which

is a decreasing function of jDIj, can be regarded as a ramp preserving process. Examining

the gradient, as a possible candidate, leads to the conclusion that it is not a proper measure

for two reasons: The gradient does not detect the ramp main features - namely its endpoints;

Moreover, it has a nearly uniform value across the whole smoothed ramp, causing a nonlinear

gradient-dependent diffusion to slow the diffusion process in that region and therefore being less

effective in noise reduction within the ramp-edge. The second derivative (Laplacian in more than

one dimension) is a more suitable choice: It has a high magnitude near the endpoints and low

magnitude elsewhere, and thus enables the nonlinear diffusion process to reduce noise over the

ramp.

We formulate c(s) as a decreasing function of s:

c(s) =
1

1 + s2
; where c(s) = c(jIxxj); (30)

and apply it in (29) to yield:

It =
@

@x

�
Ix

1 + I2xx

�
=

1 + I2xx � 2IxIxxx

(1 + I2xx)
2

Ixx: (31)
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Two main problems are associated with this scheme. The first and more severe one is the fact

that noise has very large (theoretically unbounded) second derivatives. Secondly, a numerical

problem arises when third order derivatives are computed, with large numerical support and

noisier derivative estimations. These two problems are solved by using this nonlinear complex

diffusion.

Following the results of the linear complex diffusion (Eq. 10), we implement the imaginary

value of the signal (divided by �) in controlling the diffusion process.

Whereas for small t this term vanishes, allowing stronger diffusion to reduce the noise, with

time its influence increases and preserves the ramp features of the signal.

The equation for the multidimensional process is

It = r � (c(Im(I))rI);
c(Im(I)) =

ei�

1 +
�
Im(I)

k�

�2 (32)

where k is a threshold parameter. For the same reasons discussed in the linear case, here too

the phase angle � should be small (� << 1). Since the imaginary part is normalized by �, the

process is almost not affected by changing the value of �, as long as it stays small (� < 5Æ). The

discrete implementation details are in Appendix I.

In Figs. 7 and 8 we compare denoising of a one dimensional ramp signal by a P-M process

(Eq. 2), with the performance of the above process (Eq. 32). This example illustrates that

the staircasing effect, characteristic of the P-M process, does not occur in processing by our

nonlinear complex scheme. In Fig. 9 a two dimensional box with varying illumination was

processed. We tried to demonstrate how denoising by our process can perform better in changing

illumination conditions. We also show how the imaginary value can be of use for segmentation

in such circumstances. With regard to the P-M and similar gradient-controlled processes, it

is demonstrated that overcoming the staircasing effects by increasing the threshold kPM (thus

causing the gradient magnitude of the illumination to be in the convex regime of the process)

comes at a cost of severely degrading the edges. In Figs. 10 and 11 two face images were

processed (where there are typically shadings and illumination changes). To the first figure

(part of the Barbara image) additive white Gaussian noise was added synthetically (SNR=20dB)

whereas the Mona Lisa image is a low quality JPEG image with visible artifacts. The ramp-
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preserving process smoothes gradual changes well, yet preserves edges (though not as strongly

as the P-M). The staircasing effect of the P-M process (that can create false edges) are apparent.

Note also the JPEG artifacts near the eyes (Fig. 11 ) that were removed by our process.
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Fig. 7. Perona-Malik nonlinear diffusion process applied to a ramp-type soft edge (kPM = 0:1). Left - original (top) and noisy

ramp signal (white Gaussian, SNR=15dB) . Middle - denoised signal at times 0:25; 1; 2:5, from top to bottom, respectively.

Right - respective values of c coefficient.
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Fig. 8. Nonlinear complex diffusion process applied to a ramp-type soft edge (� = �=30, k = 0:07). Left - real values of

denoised signal at times 0:25; 1; 2:5, from top to bottom, respectively. Middle - respective imaginary values, right - respective

real values of c.

V. REGULARIZED SHOCK FILTERS

Most of the research concerning the application of partial differential equations in the fields of

computer vision and image processing focused on parabolic (diffusion-type) equations. In [27]

Osher and Rudin proposed a hyperbolic equation, called shock filter, that can serve as a stable

deblurring algorithm approximating deconvolution (Fig. 12).

A. Problem Statement

The formulation of the shock filter equation is:

It = �jIxjF (Ixx); (33)
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Fig. 9. Filtering of a synthetic test image of ramp varying illumination. Top row (from left): Original image, with noise

(SNR=5dB) and linearly varying illumination (I = I + 4x+ 2y), ramp-preserving denoising - real part (k = 2); Middle row

(from left): ramp-preserving denoising - imaginary part, Perona-Malik with lower threshold (kPM = 3), Perona-Malik with

higher threshold (kPM = 5); Bottom row (from left): Thresholded gradient of imaginary part ramp preserving, thresholded

gradient of P-M (low threshold), level-sets of imaginary part and P-M.

where F should satisfy F (0) = 0, and F (s)sign(s) � 0. 1

Choosing F (s) = sign(s) yields the classical shock filter equation:

It = �sign(Ixx)jIxj; (34)

generalized in the 2D case to:

It = �sign(I��)jrIj; (35)

where � is the direction of the gradient.
1Note that the above equation and all other evolutionary equations in this section have initial conditions I(x; 0) = I0(x) and

Neumann boundary conditions (@I
@n

= 0 where n is the orientation perpendicular to the boundary).
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Fig. 10. Filtering of a face (Barbara image). Top row (from left): Noisy image (SNR=20dB), result of filtering with a linear

diffusion process, filtering with Perona-Malik diffusion process; Middle row (from left): Ramp-preserving denoising - real part,

imaginary part; Bottom row: Enlargement of forehead (from left) - original, P-M, ramp-preserving real part.

The main properties of the shock filter are:

� Shocks develop at inflection points (zero crossings of second derivative).

� Local extrema remain unchanged in time. No erroneous local extrema are created. The

scheme is total-variation-preserving (TVP).

� The steady state (weak) solution is piecewise constant (with discontinuities at the inflection
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Fig. 11. Filtering a low quality JPEG of the Mona Lisa image. Top row (from left): Original image, result of filtering with

a linear diffusion process, filtering with Perona-Malik diffusion process; Middle row: Ramp-preserving denoising - real part,

imaginary part, Bottom row: Enlargement of the eyes - original, P-M, ramp-preserving real part.

points of I0).

� The process approximates deconvolution.

As noted already in the original paper, any noise in the blurred signal will also be enhanced.

As a matter of fact, this process is extremely sensitive to noise. Theoretically, in the continuous

domain, any white noise added to the signal may add an infinite number of inflection points,

disrupting the process completely. Discretization may help somewhat, but the basic sensitivity
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Fig. 12. Shock filter operation: deblurring a blurred step edge. Solid line - blurred step edge. Dashed lines - 3 steps in the

evolution of the PDE towards formation of a shock in the location of the inflection point.
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Fig. 13. A noiseless sinewave signal (top left) and the steady state of its processing by a shock filter (top right) are compared

with the processing of a noisy signal generated by adding low level of white Gaussian noise– SNR=40dB (bottom left). The

steady state of the processed noisy signal does not depict any enhancement and the only result is noise amplification (bottom

right).

to noise persists. This is illustrated by comparison of the processing of a noiseless and a noisy

sine wave signals (Fig. (13)). Whereas in the case of a noiseless signal the shock filter well

enhances the edges, turning a sine wave into a square-wave signal, in the noisy case - the shock

filter does not enhance the edges at all, and the primary result of the processing is amplification

of noise, although only a very low level of white Gaussian noise was added to the input signal

(SNR=40dB).
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B. Previous Related Studies

The noise sensitivity problem is critical and, unless properly solved, will continue to hinder

most practical applications of shock filters. Previous studies addressing this issue came up with

several plausible solutions. The common approach to increase robustness ([2], [6], [21], [33]),

is to convolve the signal’s second derivative with a lowpass filter, such as a Gaussian:

It = �sign(G� � Ixx)jIxj; (36)

where G� is a Gaussian of standard deviation �.

This is generally not sufficient to overcome the noise problem: convolving the signal with a

Gaussian of moderate width, does not cancel in many cases the inflection points produced by

the noise; Their magnitude becomes considerably lower, but there is still a change of sign at

these points, which induces flow in opposite direction on each side of the inflection point. For

very wide (large scale) Gaussians, most inflection points produced by the noise are diminished

but at a cost: the location of the signal’s inflection points become less accurate. Moreover,

the effective Gaussian’s width � often exceeds the signal’s extent, thus causing the boundary

conditions imposed on the process to strongly affect the solution. Lastly, from a computational

viewpoint, the convolution process in each iteration is costly.

A more complex approach, is to address the issue as an enhancing-denoising problem: smoother

parts are denoised, whereas edges are enhanced and sharpened. The main idea is to add some

sort of anisotropic diffusion term with an adaptive weights of the shock and the diffusion pro-

cesses. Alvarez and Mazorra were the first to couple shock and diffusion, proposing an equation

of the form [2]:

It = �sign(G� � I��)jrIj+ cI��; (37)

where c is a positive constant and � is the direction perpendicular to the gradient rI . This

equation, though, degenerates to (36) in the 1D case and the contribution of the diffusion to the

combined process is lost.

A more advanced scheme, was proposed by Kornprobst et al. [21]:

It = �r(h� I�� + I��)� �e(1� h� )sign(G� � I��)jrIj; (38)

where h� = h� (jG~� � rIj) = 1 if jG~� � rIj < �; and 0 otherwise. In [21] the scheme includes
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another fidelity term �f (I � I0) that is omitted here (since such a term can be added to any

scheme).

Another modern scheme was proposed by Coulon and Arridge [6],

It = div(crI)� (1� c)�sign(G� � I��)jrIj; (39)

where c = exp(� jG~��rIj2

k
) , was originally used for classification, based on a probabilistic

framework. Eq. (39) is the adaptation of the original process for the task of image processing.

The performance of the last two schemes will be later compared with that of the process

proposed in the present study.

C. The magnitude of the second derivative

To account for the magnitude of the second derivative controlling the flow, we return to the

original shock filter formulation of (33) and employ F (s) = 2
�
arctan(as), where a is a param-

eter that controls the sharpness of the slope near zero. With this modification F (s), Eq. (33),

becomes:

It = � 2

�
arctan(aIxx)jIxj+ �Ixx: (40)

Consequently, the inflection points are not of equal weight any longer; regions near edges, with

large magnitude of the second derivative near the zero crossing, are sharpened much faster than

relatively smooth regions. This type of process is implemented in the sequel in a new formulation

of a complex PDE.

D. Complex Shock Filters

From (40) and (10) we derive the complex shock filter formulation for small �:

It = � 2

�
arctan(aIm(

I

�
))jIxj+ �Ixx; (41)

where � = rei�is a complex scalar.

Generalization of the complex shock filter to 2D yields:

It = � 2

�
arctan(aIm(

I

�
))jrIj+ �I�� + ~�I��; (42)

where ~� is a real scalar.
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The complex filter provides an original way to avoid the need for convolving the signal in

each iteration, and still get smoothed estimations. The inherent time dependency contributes to

the robustness of the process. Moreover, the imaginary value is affected by the shock and real

directional diffusion processes – it is enhancedat sharp transitions by the shock and becomes

more coherentin the level-set direction, thus, can better control the process than a simple second

derivative. Note that here the imaginary value approximates a directional second derivative in

the gradient direction (and not a Laplacian), since the complex diffusion term here is directional.

Process Slope Slope’s Shock Stability Shock Location Location Location SNR

variance success in time dislocation variance success bias

Ideal 1 0 100% 1 0 0 100% 0 1
Korn. 0.57 0.031 65% 0.73 2.6 14.3 93% -0.5 8.7

C & A 0.76 0.192 72% 0.82 3.9 86.7 94% -2.1 7.6

Ours 0.78 0.006 99% 0.99 1.7 4.7 99% 0.3 10.7

Ours - 0dB 0.62 0.024 81% 0.99 2.4 8.7 92% 0.6 8.8

TABLE I

EXPERIMENT RESULTS COMPARING THREE ROBUST SHOCK FILTERS PROCESSING A BLURRED NOISY STEP (SNR=5DB).

The performance of our complex valued shock filter (Eq. 41) is compared with the most

advanced real valued robust shock filters, described earlier, of Kornprobst et al. (Eq. 38) and of

Coulon and Arridge (Eq. 39). All three filters are designed to perform in a noisy environment,

to produce shocks of important edges while simultaneously denoise fluctuations (of noise and/or

texture). Trying to obtain objective quantitative measures to evaluate these filters we conducted

a representative experiment of processing a blurred and noisy step edge.

In the experiment 100 blurred and noisy step edges (white Gaussian noise, SNR=5dB) were

processed by each filter. The summary of the results is shown in Table I. The discrete signal I

is comprised of N grid points (Ii, i = 1; 2::; N ). In this context, the gradient is a simple grid

point difference DIi = Ii+1 � Ii, where the largest gradient was considered as the place of the

shock. We will now explain each column of the table: ”Slope” - slope of largest gradient s(I) =

maxi jDIij. ”Slope’s variance” - variance of s(I) over 100 trials. ”Shock success” - we regarded

a successful shock creation if the shock’s slope was at least half of the original magnitude s(I) �
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Fig. 14. Shock filters comparison experiment. Top row (from left): Original step, blurred step (Gaussian blur �b = 3), example

of noisy signal with 5dB SNR, example of noisy signal with 0dB SNR, example of one result from Alvarez-Mazorra process

(Eq. 37). Middle and bottom row shows some examples of processed signals from the experiment (5dB SNR), the result (solid)

is superimposed on the ideal response (dashed): Middle row, 3 left figures: Kornprobst et al. (Eq. 38), 3 right figures: Coulon-

Arridge (Eq. 39). Bottom row, 3 left figures: Our scheme (Eq. 41), 3 right figures: Our scheme processing noisier signals of

0dB SNR.

0:5. ”Stability in time” - indicates how sensitive the result is to the stopping time. We computed

the relative shock’s slope after 10% more time: s(I(1:1T ))=s(I(T )). ”Shock dislocation” -

average distance of the produced shock from the original shock location in terms of grid points,

E[jis�iorigj], where is = argmaxijDIij and iorig is the original shock point. ”Location variance”

- V ar[is]. ”Location success” - we regarded a success in terms of location accuracy if the

distance of the formed shock was no more than 5 grid points from the original location, jis �
iorigj � 5 . ”Location bias” - E[is � iorig] (negative values means bias toward the center). The

expected value of the shock location of an unbiased process is at the original location. ”SNR” -

average SNR of I(T ) with respect to the original unit step.

In this evaluation, for each process the parameters were first tuned to give good results and

were kept constant in the experiment itself. The stopping time T was chosen automatically in

order to produce a non oscillatory signal with a sharp and clear shock. For the experiment to be

reproducible, all the parameters and exact criteria are listed in Appendix H. Some examples of

processed outputs are shown in Fig. 14.

This experiment gives quantitative indications of the advantages of the complex shock filter

with regard to the above criteria. The considerably lower variance in the results (sharpness

January 15, 2004 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH 2003 25

and location) accounts for the process reliability. The stability of the shock over evolution time

indicates that a proper stopping time can be selected also in the enhancement of more compound

signals with several blurred steps of different sizes and locations. Also, from our experience,

it is far less sensitive to parameter tuning. Trying our process with noisier inputs of 0dB SNR

gives comparable results to the other processes at 5dB SNR.

In Fig. 15 a blurred and noisy image was processed. In the case of two-dimensional sig-

nals, only the scheme of Kornprobst et at. and our complex scheme produce acceptable results

at this levels of noise (SNR=15dB). Processing with the complex process results however, in

sharper edges and is closer to the shock process, as can be observed in a comparison to an ideal

shock response to a blurred image without noise (top-right image of Fig. 15). The combined

enhancement-denoising properties of the complex scheme are highlighted by the display of one

horizontal line of the image (bottom right of Fig. 15).

VI. CONCLUDING REMARKS AND DISCUSSION

Generalization of the linear and nonlinear scale spaces to the complex domain, by combining

the diffusion and the free Schrödinger equations, further enhances the theoretical framework of

the diffusion-type PDE approach to image processing.

The following advantages are afforded by the complexification of the diffusion equation ac-

cording to the approach introduced in the present study.

1) The fundamental solution of the linear complex diffusion indicates that there exists a stable

processover the wide range of the angular orientation of the complex diffusion coefficient,

� 2 (��
2
; �
2
), that restricts the real value of the coefficient to be positive. [Issues related

to aspects of inverse diffusion in image processing, i.e. negative real-valued diffusion

coefficient, are dealt with elsewhere [13].]

2) In the case of small �, two observations concerning the properties of the real and imaginary

components of the complex diffusion process are relevant with regard to the application

of this process in image processing: The real function is effectively decoupled from the

imaginary one, and behaves like a real linear diffusion process, whereas the imaginary

part approximates a smoothed second derivative of the real part, and can therefore well

serve as an edge detector. In other words, the single complex diffusion process generates
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Fig. 15. Top row (from left): Original tools image, Gaussian blurred (� = 2) with added white Gaussian noise (SNR=15dB),

ideal shock response (of blurred image without the noise); middle row: evolutions of Eq. (37) - Alvarez-Mazorra (� = 10), Eq.

(38) - Kornprobst et al. (�r = 0:2; �e = 0:1; � = 0:2; � = 10; ~� = 1), Eq. (39) - Coulon-Arridge (k = 5; � = 1; � = 10; ~� =

1); bottom: evolution of Eq. (41) - complex process, left: real values, middle: imaginary values (j�j = 0:1;~� = 0:5; a = 0:5),

right: grey level values generated along a horizontal line in the course of complex evolution of the process (thin line 1 iteration;

bold line 100 iterations). All of the image evolution results are presented for 100 iterations (dt=0.1).
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simultaneously an approximation of both the Gaussian and Laplacian pyramids [5] (at

discrete set of temporal sampling points), i.e. the scale-space.

3) It paves the way to a more complete scale-space analysis. Further, the complex field is

complete and brings along with it powerful tools for dealing with critical values.

4) In the linear case, the imaginary part is a bounded operator (and hence well-posed). There-

fore, small perturbations in the data can not cause divergence of the results. This is unlike

first or second order derivatives which are ill-posed operators, and are generally used for

edge detection (pre-convolving the signal with a Gaussian still produces unstable results

as � ! 0, scaling by time is imperative). One may, therefore, conclude that the imagi-

nary part can serve better as it is a ”well-posed edge detector” for any t � 0. Its stability

is inherent and does not depend on discretization effects or on the numerical schemes

employed in the computations.

5) In many cases it is advantageous to switch on the non-linearity in an adiabatic way, such

that over short time (small scale) the flow is mostly smoothing and as time progresses

the interaction of the smoothing with the image’s features take more important place and

dominates the flow in large times. Explicit time dependency of the P-M coefficient and

its benefits was demonstrated in [12]. In the complex framework, presented here, time

dependency of the anisotropic case is inherent.

6) Complex diffusion enables better performance in different nonlinear tasks such as ramp

denoising and regularization of shock filters.

Although nonlinear schemes remain to be further analyzed and better understood, nonlinear

complex diffusion-type processes can be derived from the properties of the complex linear dif-

fusion, and applied in image processing and enhancement. Such are the two schemes developed

for denoising of ramp edges and for regularization of shock filters. In the first scheme, a nonlin-

ear complex diffusion process controlled by the signal’s imaginary value avoids the staircasing

effect that is characteristic of gradient-controlled nonlinear processes such as the P-M process

[28] (See Figures 7, 8, 9, 10 and 11). The second proposed scheme, presents a complex shock

filter that overcomes problems inherent in the enhancement of noisy signals and images by the

shock filters [27] and outperforms its various variants [2], [6], [21], [33]. In order for the reader

to experience from first hand the performance and characteristics of our proposed linear and
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nonlinear processes, we published our Matlab code implementation on the web [14].
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APPENDIX

In the following sections the analysis is presented in one dimension. As the kernel is separable, generalization

to any number of dimensions is straightforward. More detailed proofs can be seen in our technical report [10].

A. Maximal amplification

kThRk1 � khRk1 see section G (norm of a convolution operator)

=
R1
�1 jAg�(x) cos�(x)jdx

� A
R1
�1 jg�(x)jdx

= A = (cos �)�1=2

= 1 + �2

4
+O(�4):

(43)

kThIk can be considered in a similar manner.

B. Effectively positive kernels

In order to find a bound on PhR , we choose a point x1 > 0 where cos�(x1) = 0:5:

x1 =

q
2
3
(2� + 3�)tr= sin �

= �
q
( 2
3
� + �) cot �;

�
using (9)

�
:

(44)

For this bound we assume x1 > �, so it is valid for 1:28rad = 73Æ � � � 0. We use the relations:

(I) � R1
x1

g�(x)dx �
R1
x1

g�(x) cos�(x)dx �
R1
x1

g�(x)dx

(as � 1 � cos�(x) � 1; g� > 0);

(II) 1
8
� 1

2

R �
0
g�(x)dx � 1

2

R x1
0

g�(x)dx �
R x1
0

g�(x) cos�(x)dx

(as cos�(x) � 1
2

for all x 2 [0; x1] , and x1 > �):

From the above relations and the fact that hR(x) is a symmetric function we can derive the bound of (17).
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C. The distance betweenhR and a Gaussian

We show the derivation of the bound on the distance between hR and a Gaussian. The same arguments and very

similar calculations are used in determining the bound on the h I approximation.

Let us denote fR as the difference function between hR and a Gaussian at time t (see Fig. 2):

fR(x; t) = hR(x; t)� g�(x; t): (45)

d(hR; g�) = kTfRk1 � kfRk1 =
R1
�1

��hR(x) � g�(x)
��dx

< 2
R a
0

��A cos(x
2 tan �
2�2

� �
2
)� 1

��g�(x)dx + 2(A+ 1)
R1
a

g�(x)dx

< 2maxx2[0;a]
�jA cos(x

2 tan �
2�2

� �
2
)� 1j�+ 4A�(�a=�)

(46)

Let us choose a =
p
n� such that n > 1 and �(a) � �

2
(therefore cos(�(x)) > 0 for any x 2 [0; a]). Recalling

that tan � = � +O(�3) and A = 1 +O(�2) we get

maxx2[0;a]
�jA cos(x

2 tan �
2�2

� �
2
)� 1j�

= max
��
A� 1

�
;
�
1� (A cos(a

2 tan �
2�2

� �
2
))
�	

= max
��
A� 1

�
;
�
1� A cos(~n� +O(�3))

�	
= O(�2):

(47)

The term �(�a=�) = �(�pn) decays exponentially with the growth of n. Therefore we conclude that

dR = O(�2) (48)

The bound for the range � 2 (0; �
10
) was calculated numerically, see [10].

D. Definite integrals ofhR, hI

Follows directly from section F.

E. Small theta approximation from the fundamental solution

We show here a little less elegant but more straightforward way for the small theta approximation in one dimen-

sion of hI . The second derivative of a Gaussian (in 1D) is:

@2

@x2
g�(x) = C

x2 � �2

�4
e�x

2=2�2 ; where C
:
=

1p
2��(t)

: (49)

Small theta approximation of hI :

hI = 1p
cos �

Ce�x
2=2�2 sin

�
x2 sin �
4tr

� �
2

�
� Ce�x

2=2�2 sin
�
x2�
4tr

� �
2

� �p
cos � � 1 ; sin � � �

�
� Ce�x

2=2�2
� �(x2�2tr)

4tr

� �
sin(x

2�
4tr

� �
2
) � (x

2�
4tr

� �
2
)
�

� Ce�x
2=2�2

� �(x2��2)
2�2

� �
�2 = 2tr= cos � � 2tr

�
= @2

@x2
g�(x)�tr:

(50)
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F. Constant of the fundamental solution

The basic fundamental solution is

h(x; t) = Ke�
x2 cos �

4tr ei
x2 sin �

4tr

= jKje� x2

2�2 ei
�
x2 tan �

2�2
+'

� (51)

As the constant K is complex, there are two degrees of freedom: the magnitude jKj and the phase '. The first

requirement (7.a) dictated by the initial condition translates to

(a:I)
R1
�1 hR(x; t! 0)dx = 1

(a:II)
R1
�1 hI(x; t! 0)dx = 0:

(52)

We will see that (7.b) is satisfied based on the properties of the Gaussian.

First, let us find the definite integral of hR. We use the following definite integral formula (taken from [29] p.

459, Eq. 16):

R1
�1 e�ax

2+bx+c
�
sin j cos	(px2 + qx+ r)dx =

p
�

(a2+p2)1=4
exp

�a(b2�4ac)�(aq2�2bpq+4cp2

4(a2+p2)

��
sin j cos	� 1

2
arctan p

a
� p(q2�4pr)�(b2p�2abq+4a2r)

4(a2+p2)

� (53)

From (51) we write hR as

hR = jKje� x2

2�2 cos
�
x2 tan �
2�2

+ '
�

= jKje�ax2 cos �px2 + '
�
;

where a = 1
2�2

; p = tan �
2�2

:

(54)

From (53) and (54) we get:

R1
�1 hR(x)dx = jKj R1�1 e�ax

2

cos
�
px2 + '

�
dx

= jKjp2� cos �� cos
�
1
2
� + '

�
:

(55)

Similarly, R1
�1 hI(x)dx = jKjp2� cos �� sin

�
1
2
� + '

�
: (56)

From (52.a:II) and (56) we get

' = �1

2
� ; (57)

and from (52.a:I) and (55) we get

jKj = 1p
2� cos ��

; (58)

hence the constant K is

K =
e�i

1

2
�

p
2� cos ��

: (59)

Requirement (7.b) is retained due to the characteristics of the Gaussian function. Let us choose � =
p
�.

Therefore �(t) = (2tr= cos �)1=4 !t!0 0 for any j�j < �
2

. And we get
Z
jxj>�

jh(x)jdx =
2p
cos �

�(� 1p
�
)!�!0 0 : (60)

In the concise writing of the fundamental solution (8), K is actually separated into 3 multiplicative parts in the

expressions of A, g� and �.
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G. Norm of a convolution operator

Let f be a bounded function max(f) < M , (f 2 L1). Let Th be the convolution operator with the kernel h

(h 2 L1): Thf = h � f . We want to prove the relation

kThk1 � khk1: (61)

Let us first find a bound on kThfk1. We use Young’s inequality

kf � hkr � kfkpkhkq;
f 2 Lp; g 2 Lq; r�1 = p�1 + q�1 � 1; (1 � p; q; r � 1):

(62)

Setting p =1; q = 1; r =1 we get

kThfk1 � kfk1khk1: (63)

We let

fsup = argsupkfk6=0

kThfk1
kfk1

From the definition in (20) it follows that kThfsupk1 = kThk1kfsupk1. Using the relation of (63) we get

kThk1kfsupk1 � khk1kfsupk1:

H. Noisy step experiment description

A unit step was discretized by 60 grid points where the step is off-center (in our case between points 40 and

41). The step was blurred by a Gaussian kernel of � = 3. 100 instances with additive white Gaussian noise were

produced (�n = 0:25, SNR with respect to the blurred signal is 5dB). Each instance was processed by the three

robust shock filters (Kornprobst et al., Coulon-Arridge, ours). Stopping time was chosen automatically according

to two criteria: In order to choose a sufficiently denoised signal the process was first evolved until the TV norm was

less than 20% above that of a unit step:
R jrI jdx < 1:2. Then we required that the largest gradient is monotonically

increasing in time (stopped the process when the maximal absolute gradient was smaller than the previous check).

This way we got a sharp gradient (presumably where the shock is) of a relatively smooth signal outside the vicinity

of the shock. If the conditions were not met, the process was stopped after 10,000 iterations. Parameters: Eq. (38),

�r = 1; �e = 0:5; � = 0:03; � = 1; ~� = 2. Eq. (39), k = 0:02; � = 1; � = 1; ~� = 1. Eq. (41), j�j = 0:2; a = 8

(in the 0dB experiments a = 2), � = �
1000

.

I. Numerical implementation

We give the explicit 2D schemes for the three processes proposed by us in this paper. These are iterative schemes,

where the value of each complex valued pixel I n+1
i;j (row i, column j) at iteration n+1 is updated according to the

values of the neighboring pixels at iteration n: I n+1
i;j = Ini;j + �DtI

n
i;j . The value of � is discussed below. [Note

that here the addition and multiplication operators are complex valued.]
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1) Linear diffusion :

DtI
n
i;j = ei�(Ini+1;j + Ini�1;j + Ini;j+1 + Ini;j�1 � 4Ini;j):

2) Ramp preserving diffusion :We use the direct complex generalization of the discretization scheme of

[28]. Let us denote the four neighboring pixels as: IN = Ii�1;j ; IS = Ii+1;j ; IW = Ii;j�1; IE = Ii;j+1. The

respective directional derivatives estimates are: D(IZ) � IZ � Ii;j , Z 2 fN;S;W;Eg. The directional diffusion

coefficient is C(IZ ) = ei�

1+(Im(IZ)=(k�))2
. The update is according to

DtI
n
i;j = �Z2fN;S;W;EgD(InZ)C(I

n
Z ):

3) Complex shock filter:

DtI
n
i;j = � 2

�
arctan(aIm(Ini;j)=�)

q
j ~DxI

n
i;j j2 + j ~DyI

n
i;j j2 + �D2

�I
n
i;j +

~�D2
�I

n
i;j ;

where ~Dfx=yg is a symmetric first order approximation in the x or y direction defined by the minmodfunction, D �

approximates derivative in the gradient direction and D � approximates derivative perpendicular to the gradient. We

refer the reader to [27], [2] for specific implementation of these operators.

Time step bound: In explicit schemes the time step between each iteration is bounded for numerical stability

by the CFL bound. As discussed earlier, the fundamental solution includes a Gaussian-type kernel of variance

�2 = 2tr
cos �

. Implementing Gaussian convolution of time � , by incremental time steps where � 2 = 2� , requires the

time step bound to be: �� � 0:25h2 (in 2 dimensions, where h is the spatial step). In our case we have � = tr
cos �

and hence in the general case we require: �t � 0:25h2 cos �
r

. This applies for both the linear and the nonlinear cases

presented above. For r = 1, h = 1 we get � = �t � 0:25 cos�. Thus, when � approaches �=2 it becomes very

inefficient to implement complex diffusion with incremental time-steps. For small �, however, there is essentially

no difference from the case of real diffusion. In order to model more closely the analytic PDEs, one may use smaller

time steps than the CFL bound at the beginning of the evolution.

For our implementation example code see [14].
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