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Abstract

Denoising algorithms based on gradient dependent energy
functionals, such as Perona-Malik and total variation denois-
ing, modify images towards piecewise constant functions.
Although edge sharpness and location is well preserved, im-
portant information, encoded in image features like textures
or certain details, is often compromised in the process of
denoising. We propose a mechanism that better preserves
fine scale features in such denoising processes. This is ac-
complished by adding a spatially varying fidelity term that
locally controls the extent of denoising over image regions
according to their content. Local variance measures of the
oscillatory part of the signal are used to compute the adaptive
fidelity term. Our results show improvement in the signal-to-
noise ratio over scalar fidelity term processes, and they are
more appealing visually. This type of processing is relatively
simple, can be used for a variety of tasks in PDE-based im-
age processing and computer vision, and is stable and mean-
ingful from a mathematical viewpoint.

1 Introduction

PDE-based methods have been widely used over the past
decade for image denoising with edge preservation. These
methods are either based on the axiomatic approach of non-
linear scale-space (nonlinear diffusions), or on the varia-
tional approach of energy functional minimization. Details
regarding the interaction and close relations between these
approaches can be found, for example, in [14, 16].

A classical variational denoising algorithm is the total
variation (TV) minimizing process of Rudin-Osher-Fatemi
[9]. This algorithm seeks an equilibrium state (minimal en-
ergy) of an energy functional comprised of the TV norm of
the image I and the fidelity of this image to the noisy input
image I0:
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This is further generalized by the �-formulation [2, 4] with

the functional
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The Euler-Lagrange (E-L) equation is

F � div

�
�0 rI
jrI j

�
+ �(I0 � I) = 0 (3)

where � 2 IR is a scalar controlling the fidelity of the solu-
tion to the input image (inversely proportional to the measure
of denoising). Neumann boundary conditions are assumed.
The solution is usually found by a steepest descent method:

It = F ; I jt=0 = I0: (4)

When the noise is approximated by an additive white
Gaussian process of standard deviation �, the problem can
be formulated as finding

minI
R
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(5)

In this formulation, � can be considered as a Lagrange
multiplier, computed by:
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j
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div
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(I � I0)dxdy: (6)

The actual function with which we work in this paper is
�(s) =

p
1 + �2s2. The process that results from this func-

tion is more stable than the TV. We choose it as a represen-
tative of variational denoising processes.

Although the performance of this, and other PDE-based
methods, have shown impressive results, the limitations
of such processes have recently become of great concern
[3, 6, 12]. The implicit assumption that underlies the for-
mulation of these flows/equations is the approximation of
images by piecewise constant functions (in the BV space).
In some sense they produce an approximation of the input
image as the so-called ”cartoon model” and, thus, naturally
dispose of the oscillatory noise while preserving edges (in
some cases even enhancing them, e.g. [8]).



A good cartoon model captures much of the image impor-
tant information. Yet, it has several obvious drawbacks: tex-
tures are excluded, significant small details may be left out,
and even large-scale fine features, that are not characterized
by dominant edges, are often disregarded.

The purpose of this paper is to show that a relatively sim-
ple modification of the above equation yields a denoising al-
gorithm that better preserves the structural (texture) informa-
tion of the image.

2 The Cartoon Pyramid Model

The cartoon model has been defined and investigated in the
early 80’s [5, 1], was further elaborated by Mumford [7] and
is widely used as the basic underlying model for many image
denoising methods. In the continuous case, the cartoon has a
curve � of discontinuities, but everywhere else it is assumed
to have a small or a null gradient jrI j.

The TV and other nonlinear diffusion processes are es-
pecially good in extracting the cartoon part of the image.
We use them, therefore, as a simple pyramid (scale-space)
of rough image sketches at different scales. Let us define a
cartoon of scale s, using the � process, as follows:

Cs
:
= I�j�= 1

s

(7)

where I� is the steady state of (??). Let us define the residue
as the difference between two scales’ cartoons:

Rn;m
:
= Cn � Cm (n < m): (8)

We shall refer to the Non-Cartoon part of scale s as the
residue from level zero:

NCs
:
= R0;s = C0 � Cs: (9)

This cartoon and residue data structure is analogous of the
pyramid of wavelet approximations. By using the definitions
of (7) and (8) and integrating the E-L equation (3) we deduce
the following basic properties:

1: C0 = I0
(The cartoon of scale 0 is the input image):

2: C1 =
R


I0(x; y)dxdy

(The cartoon of scale 1 is the mean of the input image):
3:

R


Rn;mdxdy = 0

(The mean of any residue is zero):
4: Cs =

R1
s
Rn;n+dndn+ C1

= �1
n=sRn;n+1 + C1

(A cartoon image can be built from residues
of larger scales):

The � diffusion process dissipates energy. We note that
the term

R


(I0 � I)2dxdy is, actually, the power of the

residue. This implies that I� can be viewed as the most non-
oscillatory sketch of I0 when the permitted reduced power of
the original signal is bounded by some measure proportional
to 1

�
.
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Figure 1: Top row: Original signal Iorig (left), non-
smoothness jNnsj as a function of evolution time (right),
middle row: Signal (left) and residue (right) of first stable
scale, bottom row: Signal (left) and residue (right) of second
stable scale.
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Figure 2: Top: Noisy signal I0 (left), non-smoothness jNnsj
as a function of evolution time (right), bottom: signal (left)
and residue (right) of stable scale.

In order to model a natural image in a simple way, yet cap-
ture its significant characteristics, we model the image as a
cartoon of a single scale with its matching residue. We refer
to the scale so chosen, to represent the cartoon part of the im-



Figure 3: An example of processing results obtained with a natural image. From top: Original ’Barbara image’ (left); Noisy
version of the original image, I0, with SNR=8.7dB, � = 20 (right); Result of processing with scalar � (SNR=12.6dB, left);
Result of processing with adaptive � (SNR=14.2dB, right); Residue IR (left); S(x; y) calculated according to residue
(middle) �(x; y) at convergence of process (right).



Figure 4: Enlargement of Barbara’s right knee (full images
are in Fig. 3). Top - result of scalar process, bottom - result
of adaptive process.

age, as the representative cartoon scale sr. There can be sev-
eral approaches to finding a representative scale, and, in gen-
eral, an image can have several such scales. We propose to
find the representative scale by examining the stability of the
gradients along scales. As a cartoon consists primarily of a
piecewise smooth image, partitioned by edges, a stable scale
range [s1; s2] is one in which the total edge length (number
and size of objects) changes very slowly. As the definition of
an edge is not always clear, we resort to finding the smooth
regions defined as having a gradient of less then 1% of the
dynamic range of the input image. The total area (length
in 1D) of smooth regions is jNsj =

R


�(Ns)dxdy where

�(A) is the indicator function of the set A, and we define the
set of smooth points as Ns

:
= f(x; y) : jrI(x; y)j < Tsg.

Here Ts = (max
(I0) � min
(I0))=100. The set of non-
smooth points is Nns = 
�Ns. The smoothness area jNsj
is generally increasing in scale (jNnsj decreasing), though
monotonicity of the area, and embedding of the sets, is not
guaranteed. For monotone Lyapunov functionals that can in-
dicate stability of scales see [15]. We choose the scale sr as
one of the meta-stable states of jNsj (Figs. 1,2 ).

Our model consists of three components: I0 = IC +

INC + In, where Iorig = IC + INC is the original image,
IC is the Cartoon approximation, INC is the remainder Non-
Cartoon part, and In is an additive noise. Note that we left
the definition of ”non-cartoon” part vague. It, typically, con-
sists of textures, small-scale details, thin lines etc. The only
assumption we make is that it has zero mean. Under this
decomposition, the residue of the noisy image is:

IR � I0 � I = ~INC + ~In : (10)

Note that we distinguish between the ”true” non-oscillatory
part and its approximation by the � diffusion process by the
tilde upperscript.

3 The Adaptive � Problem

To obtain an adaptive scheme, we generalize the � denoising
problem by imposing a spatially varying power constraint.
Let us define first a measure to which we refer as the local
power:

Pz(x; y) � 1

j
j
Z



(Iz(~x; ~y)� �[Iz ])
2wx;y(~x; ~y)d~xd~y;

(11)
where wx;y(~x; ~y) = w(j~x � xj; j~y � yj) is a normalized
(
R


wx;y(~x; ~y)d~xd~y = 1) and radially symmetric smooth-

ing window, �[�] is the expected value. From the definition
of the local power it follows that

R


Pz(x; y)dxdy = Pz ,

where
Pz � var(Iz): (12)

We reformulate the scalar � problem, stated in Eq. (5), in
the context of the adaptive � problem as follows:

minI
R


�(jrI j)dxdy

subject to P
R̂
(x; y) = S(x; y);

(13)

where I
R̂
= (I � I0 � C), C is a constant and S(x; y) � 0

is assumed to be given a-priori.
We solve the optimization problem using Lagrange multi-

pliers:

E =

Z



(�(jrI j) + 1

2
�(x; y)P

R̂
(x; y))dxdy: (14)

The Euler-Lagrange (EL) equation for the variation with re-
spect to I is

��(x; y)(I � I0 � C)� div

�
�0 rI
jrI j

�
= 0; (15)

where for any quantity X(x; y) we define the locally aver-
aged quantity �X(x; y) =

R


X(~x; ~y)wx;y(~x; ~y)d~xd~y. We

solve this equation for I by a gradient descent:

It = ��(x; y)(I0 � I + C) + div

�
�0 rI
jrI j

�
: (16)

In order to compute the value of � we multiply the EL
equation (15) by (I � I0 � C) and integrate over. After a
change in the order of integrals in the � term we get

Z



(�(x; y)S(x; y) �Q(x; y))dxdy = 0; (17)

where

Q(x; y) = (I � I0 � C)div

�
�0 rI
jrI j

�
:



A sufficient condition is

�(x; y) =
Q(x; y)

S(x; y)
: (18)

Finally, the constant C is obtained by solving @CE = 0,
yielding

C =

R


�(x; y)(�I(x; y)� �I0(x; y))dxdyR



�(x; y)dxdy

: (19)

3.1 Automatic Texture Preserving Denoising

In the general case, we do not have any significant prior
knowledge on the image that can facilitate the denoising pro-
cess. We only assume that the noise is of constant power, and
is not correlated to the signal (e.g. additive white Gaussian
or uniform noise).

Our aim is to use the � denoising mechanism in a more
accurate and precise manner. Images which can be well rep-
resented by large scale cartoon model are the best candidates
for successful denoising. Images with much fine texture and
details will not benefit that much from the operation; while
reducing most of the noise, this type of processing will in-
evitably degrade important image features. The first prob-
lem is to distinguish between good and bad candidates for
� denoising. The task becomes even more complex if this
is done adaptively. Many natural images exhibit a mosaic of
piecewise smooth and texture patches. This type of image
structure calls for position (spatial)-varying filtering opera-
tion.

The performance of the scalar � denoising process is il-
lustrated in Fig. 5, using a typical cartoon-type and textured
images. The SNR’s of these three processed images are sum-
marized in Fig. 6, and plotted as a function of the reduced
power (normalized power of the residue). Obviously, as
these examples illustrate, cartoon-type images are denoised
much better than textured images (both in terms of SNR and
visually). Another important observation is that the maxi-
mal SNR of cartoon and non-cartoon images is reached at
different levels of denoising. Whereas cartoon-type images
are stable and reach their peak SNR at high denoising levels
(PR � �2), non-cartoon images degrade faster and require
less denoising (PR < �2).

We present here a relatively simple method that can ap-
proximate the desired level of denoising in a region. In our
above formulation (Eq. 13), the problem reduces to finding
S(x; y).

We use the cartoon pyramid model for this purpose. Our
first aim is to differentiate between the cartoon part of the im-
age IC and the noise and texture parts INC + In. We choose
the first meta-stable scale where PR � �2 (this condition
is actually implicit as there is no stable scale with residue
power below the noise level). We assign

S(x; y) =
�4

PR(x; y)
; (20)

where PR(x; y) is the local power of the residue IR.

Figure 5: Scalar � denoising of textured and texture-free
images. Top row: Piecewise constant image, middle row:
Textured image of grass, bottom row: Patches of the two
types of images combined in one. Left column depicts the
original images, middle column - noisy images, right column
- result of scalar � processing (Eq. 3) at convergence (PR =

�2).

In the case where IR � In (basic cartoon model without
textures or fine scale details) this scheme degenerates to the
scalar � process. The local power of the residue is almost
constant (PR(x; y) � �2) and hence S(x; y) � �2. We get
a high quality denoising process where I � IC = Iorig . In
the case of most natural images, however, textures will also
be filtered and included in the residue part. As the noise is
uncorrelated with the signal, we can approximate the total
power of the residue as PNC(x; y) + Pn(x; y), the sum of
local powers of the non-cartoon part and the noise, respec-
tively. Thus, textured regions are characterized by high local
power of the residue. In order to preserve the detailed struc-
ture of such regions, the level of filtering there should be
minimized over these regions.
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Figure 6: SNR of scalar � denoising of images shown in
Fig. 5. SNR is plotted as a function of the reduced power,
normalized by the noise power: PR=�

2. Dashed line piece-
wise constant image, dash-dot line texture image, solid line
combined image.

Let us recall the classical Wiener filter (optimal linear fil-
ter in the mean squared-error sense). Its formulation in the
frequency domain is

G(!) =
Ps(!)

Ps(!) + Pn(!)
; (21)

where Ps(!) and Pn(!) are the power spectrum of the sig-
nal and noise, respectively. The basic concept amounts to
reduction in the extent of filtering (G ! 1) at frequencies
where the signal power exceeds that of the noise.

In our case we have a similar principle, whereby reduction
in the extent of filtering (i.e. S ! 0) is called for in regions
where signal power exceeds that power of the noise. The
signal is in this case that portion of the image accounting for
the texture and fine details that may be filtered out by the
� process. Formally, substituting the relation PR(x; y) �
PNC(x; y) + Pn = PNC(x; y) + �2 for PR(x; y) in Eq.
(20), we get

S(x; y) � �2
1

1 + PNC(x; y)=�2
: (22)

3.2 Denoising with prior information

In cases where more information regarding the structure of
the original signal is available, the performance of denois-
ing process incorporating a spatially-varying fidelity con-
straint can be substantially ameliorated. The specifics are
application-dependent and heuristic in nature. We therefore
mention here only a few related ideas. To preserve specific
features in the denoising process, such as long thin line or
known types of textures, one can pre-process with the corre-
sponding feature detector (Hough transform, texture detec-
tor). The value of S(x; y) depends, then, locally on the fea-
ture detector response. Cases of spatially varying noise also

fit the model. For example, in low-quality JPEG images, the
boundaries between 8x8 pixel-blocks are often more noisy
and fidelity of the original data there should, therefore, be
decreased (S increased).

Figure 7: Processing of a noisy mosaic of textures (fabric
and metal) and smooth areas. From top: Original mosaic
made of patches of fabric and metal textures, juxtaposed with
two constant patches (left); Noisy version, I0, of the origi-
nal with SNR=2.4dB, � = 40 (right); Result of processing
with scalar � - SNR=6.4dB (left), result with adaptive � -
SNR=7.6dB (right); Residue IR (left); S(x; y) calculated ac-
cording to the residue (right); �(x; y) at the convergence of
the process (bottom image).



4 Examples

The effects of adaptive- versus scalar-fidelity denoising are
illustrated using a synthetic mosaic comprised of two tex-
tured patches juxtaposed with two smooth patches (Fig. 7).
The scalar fidelity term requires that a global power, equal to
the noise power, be reduced. As the � process is smoothing
both texture and noise, more power is reduced in the tex-
tured regions than in the originally smooth ones. This re-
sults in oversmoothing of textured regions, whereas smooth
regions are not sufficiently denoised (Fig. 7, left side sec-
ond row from top). The adaptive fidelity term process (sec-
ond row right) applies different levels of denoising in dif-
ferent regions. This improves the result both visually (tex-
ture is better preserved, smooth regions are better denoised)
and in terms of signal-to-noise ratio. At the third row of
Fig. 7, we show how the required spatially varying noise
power, S(x; y) (right), depends on the value of the residue,
IR (left). The value of the adaptive fidelity term, �(x; y), ob-
tained when the process converges is depicted graphically by
the image at the bottom of the figure (lighter regions indicate
higher value). Naturally, the value of �(x; y) is inversely
related to the reduced power measure S(x; y).

Processing a noisy version of the Barbara image (Fig. 3),
it is demonstrated how the adaptive � method well performs
on natural images. Our simple local power criterion seems
to be sufficient to differentiate textured from smooth regions,
even in relatively complex images. Accordingly, appropriate
local requirements on the power to be reduced are applied.
In Fig. 4, Barbara’s right knee is enlarged to highlight simi-
lar phenomena to those obtained in the case of the synthetic
example, where textures are preserved and the denoising of
smooth regions is stronger. Fig. 8 shows the Teddy-bear
from the Toys image where the textured bear parts are in
front of a smooth background. Noise is reduced selectively
in a natural manner.

In Table 1 we show the comparison between scalar and
adaptive processes in terms of SNR. As can be observed,
denoising is improved in a variaty of natural images.

4.1 Implementation details

We used explicit Euler schemes to implement the iterative
processes. The averaging window w(x; y) was selected to
be a Gaussian of standard deviation �w = 5. The potential
in all images was �(s) =

p
1 + s2 (� = 1). As we used gray

level images with values in the range [0; 255] the results are
similar to TV denoising. We observed that the calculation of
the constant C gives very little improvement. Therefore we
usedC = 0 to save time. The residue power was bounded by
PR � 1:5�2. In the experiment on natural images (results
shown in Table 1) we set a constant residue power PR =

1:5�2. Texture patches were taken from the VisTex archive
[13]. All images were processed automatically with the same
parameters (no tuning of parameters was performed for each
image).

Figure 8: Part of the Toys image. Top left - original, top
right - noisy image, bottom left - result of scalar denoising,
bottom right - result of adaptive denoising.

Image SNR0 Scalar Adaptive
Cameraman 15.8 19.2 20.8
Lena 13.5 17.5 18.6
Boats 15.6 19.6 20.6
Sailboat 10.4 15.1 16.3
Toys 10.0 16.8 17.8

Table 1: Denoising results of a few classical images. From
left, SNR of the noisy image (SNR0), SNR of scalar denoising
(’Scalar’), SNR of adaptive denoising (’Adaptive’). All experi-
ments were done on images degraded by additive white Gaussian
noise (� = 10).

5 Conclusion

The widely-used variational denoising algorithms with
global power constraints well perform on simple cartoon-
type images, where most of the information is represented by
the simple skeleton approximation of the image. However, in
order to preserve texture and small scale details, more subtle
constraints are called for. We developed an adaptive varia-
tional scheme that controls the level of denoising by local
power (variance) constraints.

In this study a simple mechanism based on the local power
of the residue was introduced in order to determine the de-
sired adaptive constraints. Solving the EL equations resulted
in a spatially varying fidelity term that determines the value
of the fidelity to the input image (or degree of denoising) in
each region. A-priori knowledge on the details to be pre-
served can further enhance this method.



We have shown that this scheme can filter noise better than
the scalar fidelity term process in terms of SNR over a vari-
ety of synthetic and natural images. Visually, the processed
images look more natural and less ’cartoon-like’. Spatially
varying power constraints can be used in almost any vari-
ational denoising process. Further improvement may be
gained in distinguishing between texture and noise by us-
ing more elaborated schemes other than the power criterion,
such as those obtained by transforming the residue to the Ga-
bor/wavelet space.
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