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Abstract

Challenging object detection and segmentation tasks can be facilitated by the availability of a ref-

erence object. However, accounting for possible transformations between the different object views, as

part of the segmentation process, remains difficult. Recent statistical methods address this problem by

using comprehensive training data. Other techniques can only accommodate similarity transformations.

We suggest a novel variational approach to prior-based segmentation, using a single reference object, that

accounts for planar projective transformation. Generalizing the Chan-Vese level set framework, we intro-

duce a novel shape-similarity measure and embed the projective homography between the prior shape and

the image to segment within a region-based segmentation functional. The proposed algorithm detects the

object of interest, extracts its boundaries, and concurrently carries out the registration to the prior shape.

We demonstrate prior-based segmentation on a variety of images and verify the accuracy of the recovered

transformation parameters.
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1 Introduction

The coupled tasks of segmentation and object detection are essential for the extraction of semantic content

from images. Prior knowledge on the shape of interest can significantly facilitate these processes, particularly

when the object boundaries are not well defined. However the integration of shape information into the

segmentation process is non-trivial. The main difficulty is the need to account for possible transformations

between the prior shape and the shape being segmented.

This problem was studied extensively via template matching techniques, see [17, 21, 22, 26, 40, 41, 44]

and references therein. When dealing with contours, registration via template matching is equivalent to the

Hough Transform [37]. Shape is then commonly represented in a parametric way and the dimension of

the representation grows with the complexity of the shape and its degrees of freedom. Template matching

and Hough transform are known to yield difficult global optimization problems when the dimension is high,

thus incorporation of projective transformations is difficult to accomplish. Moreover, these methods require

a substantial set of corresponding points (or features), such that the matched images must have identical

texture, see [23] and reference therein.

A different approach focuses on landmark based analysis, in which a training shape set, sampled and

aligned, is assumed. In particular, the Active Shape Model [8] and Active Appearance Model [7], that use

Principal Component Analysis (PCA) of landmarks to model shape variability, gained popularity for their

simplicity and efficiency. However, these methods are semi-automatic, require prior shape analysis and are

parameterization dependent.

Variational methods solve segmentation problems by means of energy minimization, integrating top-

down and bottom-up information, see [1] and references therein. Specifically, the level-set framework [31]

for curve evolution has been successfully applied to extract complex object boundaries, allowing an auto-

matic change in the topology. Prior-based segmentation methods incorporate a representation of a reference
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shape within the energy functional. Thus, the recovered object boundary should resemble the expected con-

tour, in addition to being constrained by length, smoothness and compatibility with the image gray levels

and gradients.

In order to introduce prior shape knowledge and a given group of transformations in the level-set for-

mulation, a shape dissimilarity measure should be provided. Several works, for example [12, 13, 35, 39],

use the distance function as the level-set and the square difference between level-sets as the shape dissimi-

larity measure. A symmetric and unbiased modification of this shape distance (called pseudo distance) has

been recently suggested by Cremers and Soatto [10]. However, these similarity measures only account for

isometric transformations and scaling, since more general transformations (such as non-isotropic scaling or

perspectivity) do not preserve the characteristics of distance functions.

The statistical methodology [4, 9, 19, 24, 25, 35, 39] accounts for transformations beyond similarity

and for small non-rigid deformations by using a comprehensive training set. It characterizes the probability

distribution of the shapes and then measures the similarity between the evolving object boundary (or level-

set function) and representatives of the training data. It is important to note that there is no distinction in this

method between transformation-based and deformation-based shape variation. The modes of variation have

to account for both. Moreover, the performance depends on the size and coverage of the training set.

None of the existing methods accounts for projective transformations between the prior shape and the

shape of interest. The inability to deal with projective transformations is significant. In the presence of

projectivity, neither similarity nor (even) the affine model provide reasonable approximation for the trans-

formation between the prior shape and the shape to segment. Figs. 1b-c show the best registration of a prior

contour of the object shown in Fig. 1a to a given image, assuming similarity and affine transformations re-

spectively. The apparent mismatch inhibits the segmentation process and prohibits accurate reconstruction

of the missing parts. In contrast, the registration example in Fig. 1d demonstrates that planar projective

transformation is a good approximation even though the elephant shape contour is roughly planar.
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We suggest a novel variational approach to prior-based segmentation, that explicitly accounts for planar

projective transformation, using a single reference object. The segmentation process is carried out concur-

rently with the registration of the prior shape to the shape of interest. The outcomes of the algorithm include

the detection of the object of interest and correct extraction of its boundaries. The planar projective trans-

formation between the two object views is accurately recovered as well. Neither point correspondence nor

direct methods [20] are used, thus color or texture compatibility between the prior and the segmented image

is needless. This is accomplished by introducing a novel shape-similarity measure, that admits a wide range

of transformations, beyond similarity, and using it to generalize the Chan-Vese level-set framework [3]. The

proposed region-based segmentation functional includes an explicit expression of the projective homography

between the prior shape and the shape to segment.

Employing the parameterization-free shape description, enabled by the level-set formulation, we gain

a significant advantage over landmark-based and template matching techniques that represent shapes by

collections of points or features. The suggested distance function between the level-set representations of

the matched shapes is well defined and is not depend on shapes sampling. Moreover, transformations applied

on the domains of the level-set functions, transform the represented shapes correspondingly. This results in

an elegant and powerful mathematical formulation to align the prior and the evolving shape, minimizing

their dissimilarity measure with respect to the transformation parameters. The graceful merge of the image

data with that of the projectively registered prior is the essence of the proposed contribution.

The suggested algorithm is demonstrated on real and synthetic examples, in the presence of perspective

distortion. The successful segmentation results and the reliable estimation of the transformation parameters

suggest this method as a promising tool for various segmentation and registration applications.

The paper is organized as follows. In section 2 we review the level-set framework of Chan and Vese [3],

and outline our prior shape model, in particular the novel shape similarity measure. In section 3 we briefly

summarize the prior-based segmentation scheme that was presented in [34]. It has an intuitive geomet-
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(a) (b) (c) (d)

Figure 1: Registration, by the proposed method, of the contour of the object shown in (a) image using : (b)
Similarity model (4 transformation parameters). (c) Affine model (6 transformation parameters). (d) Planar
projective homography (8 transformation parameters). Note the mismatch in (b) and (c) despite the relatively
small change in the camera view. Registration results of (b) and (c) are the best possible with similarity and
affine transformations.They have been obtained after an extensive search of the respective parameter spaces.
The corresponding transformation parameters are displayed in the last two rows of Table 3.

ric interpretation and a relatively simple mathematical formulation. This method, however, only handles

perspectivity (a six-parameter transformation), and is applicable to the limited class of star-shaped objects.

Nevertheless, it provides the conceptual basis for the method developed in this paper. Next, we general-

ize the algorithm to eight-parameter projectivity model and remove the restriction to star-shaped objects.

Fundamental concepts from two-view geometry that are necessary to accomplish this generalization are pre-

sented in section 4. The embedding of the transformation model within the variational framework, and the

minimization of the resulting functional, are considered in section 5. Experimental results are provided in

section 6.
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2 Variational Framework

2.1 Chan-Vese two-phase model

Mumford and Shah [29] proposed to segment an input image f : Ω → R, with respect to a segmenting

boundary C and a piecewise smooth approximation of the input image u, by minimizing the functional:

E(u,C) =
1

2

∫

Ω

(f − u)2dx + λ
1

2

∫

Ω−C

|∇u|2dx + ν|C| , (1)

where λ and ν are positive scalars. Hereafter x = (x, y). A reduced form of this functional is simply a

restriction of u to a piecewise constant approximation of f , such that each connected component Ωi, where

∪iΩi = Ω and Ωi ∩Ωj = ∅, has a constant gray level value ui. This leads to the minimum partition problem,

where the functional takes the following reduced form:

E(u,C) =
1

2

∑

i

∫

Ωi

(f − ui)
2dx + ν|C| (2)

In the level-set formulation for curve evolution [31], a segmenting boundary C in an image plane Ω ⊂ R
2,

is the zero level-set of a 3D function φ, C = {x ∈ Ω| φ(x) = 0}. Chan and Vese [3], inspired by the

segmentation model of Mumford and Shah (1), suggested to segment an input image f using the Heaviside

function of the evolving level-set function H(φ) as an indicator for object and background regions in the

image. Contour length has been also expressed in a region-based manner. For the two-phase case the

resultant functional takes the following form:

ECV =

∫

Ω

(f − u+)2H(φ) + (f − u−)2 (1 −H(φ)) + ν|∇H(φ)|dx, (3)
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The scalars u+ and u− are alternately updated with the evolution of the level-set function. They take the

average gray level values of the input image in the regions indicated by φ ≥ 0 and φ < 0.

u+ =

∫

f(x)H(φ)dx
∫

H(φ)dx
u− =

∫

f(x) (1 −H(φ)) dx
∫

(1 −H(φ))dx
(4)

Note that the integration limits of the reformulated functional (3) are now well-defined and known. The

gradient descent equation for the evolution of φ is derived using the Euler-Lagrange equations for the func-

tional (3):

∂φ

∂t
= δ(φ)

[

ν div

(

∇φ

|∇φ|

)

− (f − u+)2 + (f − u−)2

]

. (5)

As in [3], a smooth approximation of the Heaviside function Hε, rather than a step function, is used. In

particular,

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)) (6)

and its derivative δε(φ) = dH(φ)/dφ is

δε(φ) =
1

π

ε

ε2 + φ2
. (7)

Figs. 2a-b illustrateHε and δε near zero. Thus, the evolutionary change of φ, according to (5) is not restricted

to its zero level-set.

2.2 Prior shape model

The energy functional (3) can be extended by adding a prior shape term [11]:

E(φ, u+, u−) = ECV (φ, u+, u−) + µEshape(φ), µ ≥ 0. (8)

The inclusion of this shape term within the energy functional leads to three related questions:
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(a) (b)

Figure 2: Smooth approximation of the Heaviside functionHε (a) and its derivative δε (b). Adapted from [3].

1. What should be the representation of the prior shape?

2. What should be the similarity measure between the prior shape and the evolving segmented shape?

3. What is the group of transformations that can be accommodated by the above similarity measure?

The current work provides a comprehensive and innovative solution to these questions. Let Ω̃ ⊂ R
2 be

the reference image frame. The representation of the prior shape within the energy functional (8) is a 3D

function φ̃ : Ω̃ → R that embeds the contour C̃ of the known shape:

C̃ = {x ∈ Ω̃ | φ̃(x) = 0}, (9)

Positive and the negative values of φ̃ correspond to object and background regions in Ω̃ respectively. We

suggest two alternative representations of φ̃, that are discussed and compared in the subsequent sections. The

formulation of φ̃ leads to a definition of a dissimilarity measure with respect to the evolving segmentation.

It is a weighted sum of the non-overlapping positive and negative regions of φ and φ̃:

Eshape(φ) =

∫

Ω

(

Hε(φ(x)) −Hε(φ̃(x))
)2

dx (10)
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This extension to the functional adds the following term to the evolution equation (5):

δε(φ)
(

Hε(φ) −Hε(φ̃)
)

(11)

Thus, at each time step, φ will be modified in image regions where there is inconsistency between the object-

background areas indicated by Hε(φ) and Hε(φ̃). The change in φ is weighted by δε, which is illustrated in

Fig. 2b for several values of ε. The shape-term is further extended to incorporate possible transformations

between the prior shape and the shape of interest. This is approached by applying a 3D transformation

Tp: R
3 → R

3 to φ̃:

Eshape(φ, Tp) =

∫

Ω

(

Hε(φ(x)) −Hε(Tp(φ̃(x)))
)2

dx (12)

The reformulated energy functional becomes:

E(φ) =

∫

Ω

{(f − u+)2Hε(φ) + (f − u−)2 (1 −Hε(φ)) + ν|∇Hε(φ)| + µ[Hε(φ) −Hε(Tp(φ̃))]2}dx (13)

The extended gradient descent equation for the evaluation of φ is:

∂φ

∂t
= δε(φ)

[

(f − u−)2 − (f − u+)2 + ν div

(

∇φ

|∇φ|

)

+ µ
(

Hε(φ) −Hε(Tp(φ̃)
)]

. (14)

Note that we do not enforce the evolving level-set function φ to resemble Tp(φ̃). Instead, we demand simi-

larity of the regions within the respective contours. Thus, φ is not necessarily a distance function. Therefore

Tp can be used to accommodate for planar projective transformations between the prior contour C̃ and the

evolving segmenting contour C.

In section 3 we examine the six-parameter model that was introduced in [34]. It is based on a unique

representation of the prior shape φ̃, which simplifies its perspective mapping to the shape of interest. The
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eight-parameter model, presented in section 4, generalizes the framework to projectivity.

3 Perspectivity

3.1 Cone of rays

Consider a set of rays, defined by an object in 3D space and a camera center. An image is obtained by the

intersection of these rays with a plane. This set is usually referred to as a cone of rays, although it is not a

cone in the classical sense [18]. Now, suppose that this cone of rays is intersected by two planes, as shown

in Fig. 3. Then, there exists a perspective transformation H mapping one image onto the other. This means

that the images obtained by the same camera center may be mapped to one another by a plane projective

transformation [14, 15, 18].

Let f and f ′ be the image planes of two cameras, having the same camera center, with projection matrices

M and M ′ respectively. For simplicity, the coordinate system of the first camera is chosen to coincide with

the world coordinate system, so that M = K[ I | 0 ], where K is the 3 × 3 camera calibration matrix and

I is the identity matrix. The projection matrix of the second camera is M ′ = K ′[ R | 0 ], where K ′ is the

calibration matrix and R is the relative rotation between the coordinate systems of the cameras.

Consider two image points p ∈ f and p′ ∈ f ′ of a 3D world point P . Let x, x
′ and X be their

corresponding homogeneous coordinates. Thus, x = K[ I | 0 ]X, x
′ = K ′[ R | 0 ]X and the mapping

between x and x
′ is x

′ = K ′RK−1
x = Hx, with H = K ′RK−1. This relation can be simplified by

working with a normalized coordinate system1. When K and K ′ only differ by their focal length, K ′K−1 =

diag(k, k, 1) where k is the ratio of the focal lengths.

The transformations of zoom and camera rotation can be expressed as a movement of the image plane

1Internal camera calibration is beyond the scope of this work. Therefore, we will present the internal camera parameters in
terms of pixels, assuming square pixels. Moreover, the origin of coordinates in the image plane is set at the camera’s principal
point. The term normalized coordinate system is adopted from [15].
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Figure 3: The cone of rays. An image is defined by the intersection of this set of rays with a plane. A ray
between the camera center CC and a 3D world point P intersects the plane in the image points p ∈ f and
p′ ∈ f ′. The relation between all such image points is a perspective mapping: p′ = Hp. Adapted from [18].

while maintaining the camera center fixed. Note that these are particular cases of perspectivity. Handling dis-

placements between the centers of the cameras (without parallax) requires extension of the geometric model.

These steps are considered in following subsections. We proceed to introduce a prior shape representation

derived from the cone of rays.

3.2 Generalized cone

A generalized cone2 or a conical surface, is a ruled surface generated by a moving line (the generator) that

passes through a fixed point (the vertex) and continually intersects a fixed planar curve (the directrix) [6].

Let Pv = (Xv, Yv, Zvertex) denote the cone vertex, and let pv = (xv, yv) be the projection of the vertex on

the directrix plane. We set, without loss of generality, Xv = xv and Yv = yv. Now, consider a directrix,

C = p(s) = (x(s), y(s)) which is a closed contour, parameterized by arc-length s, of an object shape in the

plane Z = Zplane = 0. The generalized cone surface is defined by:

φ̃(r, s) = φ̃((1 − r)p(s) + rpv) = (1 − r)Zplane + rZvertex (15)

2The concept of generalized cone (or cylinder) in computer vision has been introduced to model 3D objects [2, 28]. Its
geometrical properties have been intensively investigated, see [16, 32] and references therein.
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(a) (b) (c) (d)

Figure 4: (a) A generalized cone is sliced by three planes, at Z = 0.3, Z = 0 and Z = −0.3. (b) The
resulting intersections. (c) A generalized cone is intersected by an inclined plane: ax+ by+ cz+ d = 0. (d)
The resulting contour.

where r varies smoothly from 1, that corresponds to the vertex, via 0, the directrix, to some convenient

negative value.

When the vertex of the generalized cone is located at the camera center, the definition of the generalized

cone coincides with that of the cone of rays, presented in subsection 4. It follows that by planar slicing of

the generalized cone, one can generate new image views as though they had been taken with a camera under

the perspective model3. Note, however that the construction of the generalized cone (15), implies that the

first image plane is perpendicular to the principal axis. Extension of the allowable transformation between

corresponding image points x
′ and x to translation is possible if the object contour is planar and parallel to

the first image plane.

3.3 Formulation of the transformation

We will now consider the representation of the transformation Tp(φ̃) of the prior shape in the energy func-

tional. The recovery of the transformation parameters, given the prior contour and the curve generated by

the zero-crossing of the estimated level-set function, is described subsequently.

Following subsection 2.2, φ̃ embeds the prior contour according to (15). For simplicity, the vertex height

3There is, however, one exception to this analogy. The intersection of a cone and a plane is either a closed curve, an open curve
or a point. In projective geometry terminology, the latter two correspond to projection of finite points in the first image plane to
infinity. We do not consider ideal points and planes at infinity. Phrasing it explicitly, our only concern is the mapping of a given
closed curve to another closed curve.
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Zvertex, which corresponds to the focal length, will be set to 1. The prior contour C̃ is the cone’s directrix.

In order to minimize the energy functional (13), one has to apply a gradient descent process that calls

for the evaluation of φ simultaneously with the recovery of the transformation Tp of the function φ̃. We

demonstrate this for transformations Tp that consist of translation and rotation of the generalized cone, and

correspond to scaling, translation, rotation and perspective distortion in the image.

3.3.1 Scaling and general translation

Assume first that the focal length is changed. This approximately corresponds to translation of the image

plane along the optical axis. In the image, the effect is scaling. Figs. 4a-b illustrate this notion: as the

planar section of the generalized cone is closer to its vertex, the cross-section shape is smaller. Equivalently,

the generalized cone can be displaced in the direction of the Z axis, while the intersecting plane remains

stationary at Z = 0. Formally, in this case, Tp(φ̃) = φ̃+ tz.

To account also for translation in the image, we displace the generalized cone by t = (tx, ty, tz)
T . The

corresponding shape term in the energy functional is then

Eshape(φ) =

∫

Ω

(H(φ)(x, y) −H(φ̃(x+ tx, y + ty) + tz))
2dx.

3.3.2 Rotation and compound motion

Consider a tilted planar cut of the generalized cone, as shown in Figs. 4c-d. The resulting contour is per-

spectively deformed, as a function of the inclination of the intersecting plane and its proximity to the vertex

of the cone. Equivalently, one may rotate the generalized cone around its vertex, and zero-cross to get the

same perspective transformation.

We denote by γ, β and α the Euler rotation angles around the Z,Y and X axes respectively, in that

order of rotation. They determine the relative orientation between the first and the second camera coordinate
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systems. The rotation matrix R ∈ R
3×3 operating on a vector (x, y, z)T takes the form [43]

R =

















cβcγ cβsγ −sβ

sαsβcγ−cαsγ sαsβsγ + cαcγ sαcβ

cαsβcγ+sαsγ cαsβsγ−sαsγ cαcβ

















(16)

where sα is shorthand for sin(α) and cα for cos(α). General rotation and translation of the generalized cone

by R and t is expressed as (x′, y′, Tp(φ̃)) = R(x, y, φ̃) + t. Explicitly,

x′ = cβcγx+ cβsγy − sβ + tx (17)

y′ = (sαsβcγ−cαsγ) x+(sαsβsγ+cαcγ) y+sαcβ+ty

z′ = (cαsβcγ+sαsγ)x+(cαsβsγ−sαcγ) y+cαcβ+tz

where z = φ̃ and z′ = Tp(φ̃). The gradient descent equations of the transformation parameters are presented

in [34].

3.4 The six-parameter algorithm

We summarize the six-parameter algorithm for image segmentation and recovery of the transformation be-

tween the current and prior object instances, assuming the following setup.

The input consists of two images f and f ′ of the same object, taken with the same camera, but under

different viewing conditions. The boundary C̃ of the object in f is known. The image f ′ has to be segmented.

The world plane is assumed to be parallel to the first image plane f , and f is assumed to be at distance 1

from the camera center. The second image plane f ′ is tilted and shifted relative to the first one.

1. Given the contour C̃, construct a generalized cone φ̃, using (15) with Zvertex = 1.
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a) Prior image (mannequin head). (b) The image to be segmented. The mannequin head is
rotated, translated and partly occluded. The initial contour is shown. (c) Successful segmentation using the
six-parameter algorithm. (d) The generalized cone based on the prior contour of (a). Only the positive part
of the cone is shown. (e) The final state of the level-set function φ. (f) Validation: The dark shape is the
prior silhouette, transformed according to the recovered transformation parameters. Shown red is the final
contour, as in (c).

2. Choose some initial level-set function φ, for example a right circular cone. Its zero-level set is the

initial segmenting contour.

3. Set initial values (e.g. zero) for α, β , γ , tx, ty and tz.

4. Compute the average gray levels of the current object and background regions, u+ and u−, using (4).

5. Translate (by t) and then rotate (by R) the prior shape representation φ̃, using the coordinate transfor-

mation (17) with the current estimate of the transformation parameters.

6. Update φ using the gradient descent equation (14).
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7. Update the transformation parameters α, β , γ , tx, ty and tz using the derivatives of the cost functional

(13) with respect to each parameter.

8. Repeat steps 4-7 until convergence.

The algorithm is exemplified in Fig. 5. The prior image is shown in Fig. 5a; its segmentation is known.

Fig. 5b shows a new instance of the mannequin head, rotated and translated with respect to the reference

pose. The hat creates significant occlusion. Note that the head is placed on a plastic base of a similar grey-

level. The initial segmenting contour, obtained by zero-crossing the initial level-set function (right circular

cone) is shown. Successful segmentation using the six-parameter algorithm is shown in Fig. 5c. Note the

precise tracing of the profile and the recovery of the occluded crown, despite the perspective distortion.

Fig. 5d is the generalized cone that represents the prior shape (a). The final state of the level-set function

φ is presented in Fig. 5e. Note that φ and Tp(φ̃) resemble in terms of their Heaviside functions - that is

by their zero-crossings (the final contour), but not in their entire shapes. Since the actual transformation

was not measured, the recovered transformation parameters are confirmed in Fig. 5f by comparing the final

segmenting contour with the prior shape, transformed according to the recovered parameters.

4 From six to eight parameters

4.1 Planar projective homography

To generalize the admissible geometric relation between two corresponding shape contours we review the

concept of planar projective homography. The equivalence of geometric projectivity and algebraic homog-

raphy is supported by the theorems of Desargues [36]. Planar projective homography (projectivity) is a

mapping H : P
2 → P

2 such that the points pi are collinear if and only if H(pi) are collinear (projectivity

preserves lines) [18, 36].
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Figure 6: The homography induced by a plane. The ray that intersects the first image plane at a point p
meets the world plane Π at a point P . The point P is projected to a point p′ in the second image plane. The
mapping from p to p′ is the homography, denoted by H , induced by the plane Π. Illustrated after [18]. In
this research, the corresponding points p and p′ are on corresponding planar contours.

The relation between corresponding views of points on a plane Π (world plane) in a 3D space, as is

illustrated in Fig. 6, can be modeled by a planar homography induced by the plane. An explicit expression

for the induced homography can be derived as follows: Let p and p′ be two views of a world point P ∈ Π, in

two camera frames f and f ′ respectively. Let x, x′ and X be their corresponding homogeneous coordinates.

As in subsection 3.1, M andM ′ are the projection matrices of the respective cameras, whereM = K[ I | 0 ].

However, since the cameras generally do not have a common center, M ′ = K ′[ R | t ], where t is the relative

translation between the cameras. Thus, x = K[ I | 0 ]X and x
′ = K ′[ R | t ]X.

Let n be the unit normal vector to the plane Π, and let d > 0 denote the distance of Π from the optical

center of the first camera. The linear transformation from x to x
′ can be expressed as

x
′ = K ′

(

R +
1

d
tn

T

)

K−1
x = Hx . (18)

Using the same assumptions as in subsection 3.1, we set K and K ′ to the identity matrix I . Thus, the planar
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homography matrix takes the form

H = R +
1

d
tn

T . (19)

A detailed derivation can be found in [15, 18, 27]. The matrixH is determined by the translation and rotation

between the two cameras {R, t}, and by the structure parameters {n, d} of the world plane Π. Note that only

the ratio t/d can be recovered from H . We proceed to show how the structure of the homography can be

used to recover the relation between the camera frames and thus between the respective shape contours.

4.2 Implicit recovery of the homography

A nonsingular homography between two planes π and π ′ is determined (up to a scale factor) by four pairs

of corresponding points p ∈ π and p′ ∈ π′, with no triplet of points in either plane being collinear. Consider

the homography matrix H ,

H =

















h11 h12 h13

h21 h22 h23

h31 h32 h33

















∈ R
3×3 (20)

and let x = (x, y, 1) and x
′ = (x′, y′, 1) be the homogeneous representations of the points p and p′, such that

x
′ = Hx. The eight unknowns of H (the ratios of its nine entries) can be recovered by solving at least four

pairs of equations of the form:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

, y′ =
h21x+ h22y + h23

h31x+ h32y + h33

(21)

Classic approaches recover H by solving an over-determined set of equations like (21). The translation and

rotation (R, t) between the image planes, and the scene structure (n, d), are recovered by decomposition

of the known homography matrix (see [15, 18, 27] and references therein). In contrast, our novel approach

calculates the homography directly in its explicit form (19). Rather than relying on point correspondence,
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we match two corresponding contours of the shape of interest using calculus of variations. Note that since

the recovery of the homography and the segmentation process are simultaneous, only the reference shape is

known in advance. The prior shape is registered to the shape being segmented as part of its detection and

extraction.

4.3 Explicit recovery of the homography

We now use the explicit formulation of the homography (19) to reformulate equation (21). Consider first

the special case in which the world plane and the first image plane coincide, and d is set to 1. In this case,

the normal to the world plane, n is (0, 0, 1). Substituting d and n in (19), we obtain the entries of the

homography matrix H: h13 = R13 + tx, h23 = R23 + ty, h33 = R33 + tz and hij = Rij otherwise.

Generally, the world plane is not perpendicular to the optical axis of the first camera, thus n 6= (0, 0, 1).

As before, we represent n using the coordinate system of the first camera. The unit vector n is obtained by

first rotating the vector (0, 0, 1) by an angle ξ around the y-axis and then by an angle ψ around the x-axis.

Hence, n = (− sin ξ, sinψ cos ξ, cosψ cos ξ). Substituting R, t and n in (19), we obtain the components of
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the homography matrix H:

h11 = cos β cos γ − tx
d

sin ξ

h12 = cos β sin γ + tx
d

sinψ cos ξ

h13 = − sin β + tx
d

cosψ cos ξ

h21 = sinα sin β cos γ − cosα sin γ − ty
d

sin ξ

h22 = sinα sin β sin γ + cosα cos γ + ty
d

sinψ cos ξ

h23 = sinα cos β + ty
d

cosψ cos ξ

h31 = cosα sin β cos γ + sinα sin γ − tz
d

sin ξ

h32 = cosα sin β sin γ − sinα sin γ + tz
d

sinψ cos ξ

h33 = cosα cos β + tz
d

cosψ cos ξ

(22)

Substituting the entries of H in (21), one can explicitly relate shape points between the two views. We will

use the calculus of variations to relate the shape contours and recover the translation, rotation and structure

parameters.

5 Objective Functional

5.1 Representation of the prior shape

The generalized cone representation of the prior shape, discussed in section 3, is inadequate when the shape

contour is seen from two different view points and the world plane is in general position. Furthermore,

zero-crossing the transformed generalized cone H(Tp(φ̃)), as described in 3.3.2, requires Tp(φ̃) to be single-

valued. This restricts the group of admissible shape contours and the range of allowable transformations. We

therefore present an alternative representation of the prior shape that can be applied to general planar shapes.

Consider a prior image f : Ω → R
+ with labeled object and background regions Ω+ and Ω− respectively.
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The prior shape is represented by a function φ̃ ∈ R
3 :

φ̃(x, y) =















1 f(x, y) ∈ Ω+

0 f(x, y) ∈ Ω−

(23)

Let Tp : (φ̃(x, y), x, y) → (φ̃′(x′, y′), x′, y′) denote the projective transformation, that maps a point (x, y)

and its φ̃ value to a (projectively) equivalent point (x′, y′), with φ̃′(x′, y′) = φ̃(x, y). Thus, the binary function

φ̃′(x′, y′) is obtained from φ̃(x, y) by coordinate transformation.

Expressions for x′ and y′ are obtained by substituting the explicit entries for the homography matrix (22)

in (21). For example, when ξ = ψ = 0 and d = 1 the expressions are:

x′ =
cβcγx+cβsγy−sβ+tx

(cαsβcγ+sαsγ) x+(cαsβsγ−sαcγ) y+cαcβ+tz

y′ =
(sαsβcγ−cαsγ)x+(sαsβsγ+cαcγ) y+sαcβ+ty
(cαsβcγ+sαsγ)x+(cαsβsγ−sαcγ) y+cαcβ+tz

(24)

The representation (23) of the shape prior is simpler than that using the generalized cone (section 3), but

leads to complex expressions for the transformed coordinates x′ and y′. For example, the coordinates given

in Eqs. 24 are the quotients of the corresponding expressions in (17). In the proposed algorithm, at each time

step one re-evaluates the homography matrix entries (22), based on the estimated transformation parameters.

The coordinate transformation Tp is applied to the representation φ̃ of the prior shape. The transformed

representation Tp(φ̃(x, y), x, y) is substituted in the gradient descent equation for φ (14).

5.2 Recovery of the transformation

In order to evolve the level set function φ according to (14), one has to simultaneously recover the transfor-

mation Tp(φ̃, x, y) of the prior level-set function. The transformation parameters (α, β, γ, tx/d, ty/d, tz/d,
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ψ and ξ) are evaluated via the gradient descent equations obtained by minimizing the energy functional (13)

with respect to each of them. The general gradient descent equation for each of the transformation parame-

ters (denoted here by η) is of the form:

∂η

∂t
= 2µ

∫

Ω

δε(Tp(φ̃))
(

Hε(φ) −Hε(TP (φ̃))
) ∂TP (φ̃, η)

∂η
dx (25)

where

∂TP (φ̃, η)

∂η
=
∂TP (φ̃)

∂x

(

∂x

∂x′
∂x′

∂η
+
∂x

∂y′
∂y′

∂η

)

+
∂TP (φ̃)

∂y

(

∂y

∂x′
∂x′

∂η
+
∂y

∂y′
∂y′

∂η

)

(26)

The partial derivatives ∂Tp(φ̃)/∂x and ∂Tp(φ̃)/∂y are computed numerically using the finite difference

method. The derivatives ∂x′/∂η and ∂y′/∂η with respect to each transformation parameter η have been

derived analytically. From the implicit function theorem we obtain

∂x

∂x′
=

∂y′

∂y

∂y′

∂y
∂x′

∂x
− ∂y′

∂x
∂x′

∂y

∂x

∂y′
=

∂x′

∂y

∂y′

∂x
∂x′

∂y
− ∂y′

∂y
∂x′

∂x

∂y

∂x′
=

∂y′

∂x
∂y′

∂x
∂x′

∂y
− ∂x′

∂x

∂y′

∂y

∂y

∂y′
=

∂x′

∂x
∂y′

∂y
∂x′

∂x
− ∂y′

∂x
∂x′

∂y

(27)

Finally, the equations for ∂x′

∂x
, ∂x′

∂y
,∂y′

∂x
,∂y′

∂y
are evaluated by differentiating the expressions (24) for x′ and y′

with respect to x and y.
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5.3 The eight-parameter algorithm

5.3.1 Algorithm

We summarize the proposed algorithm assuming the following setup. The inputs are two images f and f ′

of the same object, taken with identical cameras, but from different viewing positions. The segmentation of

the reference object in f is known and its contour is assumed to be approximately planar. The segmented

reference object is used to construct the prior shape representation φ̃ according to (23).

1. Choose some initial level-set function φ, for example a right circular cone. Its zero level-set is the

initial segmenting contour.

2. Set initial values (e.g. zero) for the transformation parameters α, β , γ , tx, ty,tz,ξ and ψ. If d is

unknown, set d = 1.

3. Compute the average gray level values of the current object and background pixels, u+ and u−, us-

ing (4).

4. Apply a coordinate transformation to the prior shape representation φ̃ (substitute (22) in (21)) with the

current estimate of the transformation parameters.

5. Update φ using the gradient descent equation (14).

6. Update the transformation parameters α, β , γ , tx, ty and tz, ψ and ξ as explained in 5.3.2.

7. Repeat steps 3-6 until convergence.

The segmentation and registration steps are interleaved, thus realizing the power of the prior-based segmenta-

tion approach. Note that the algorithm directly recovers the transformation parameters, thus the cumbersome

task of decomposing the homography matrix is avoided [15, 18, 27].
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5.3.2 Optimization

Global optimization problems are common in computer vision. Here, the cost functional (13) may have

several local minima with respect to the parameters and the evolving level set function φ. Direct update

of the parameters via their the derivatives (25) may lead to an undesired local minimum, as exemplified in

Fig. 7.

It is known [38] that the global minimum of a general function (or functional) above a continuous domain

cannot be found in finite time. Nevertheless, global optimization strategies can be successfully applied

to well-behaved functions. In step 6 of the algorithm, the transformation parameters are determined by

multidimensional minimization, using the Nelder–Mead downhill simplex algorithm [30] followed by the

gradient based Quasi-Newton method [5]. The direct search method of Nelder-Mead is based on evaluating

a function at the vertices of a simplex, then iteratively shrinking the simplex as better points are found until

some desired bound is obtained. The nine eight-dimensional vertices are randomly initialized within the

limits of the parameters. The outcome of the Nelder-Mead algorithm is used as the starting point for Quasi-

Newton minimization employing the partial derivatives (25) for fine tuning of the search results. The simplex

algorithm works, in our examples, moderately well. In most cases, the globally minimal cost (corresponding

to shape overlap) was identical to the result of quasi-Newton search from the zero starting point. The Quasi-

Newton algorithm has a quadratic rate of convergence, but when applied by itself finds the local minimum

in the vicinity of its initial point.

The stability of the resulting shape with respect to small errors in the minimizing transformation parame-

ters was examined numerically on several images and transformation examples. The value of the shape term

in the functional is taken as a measure for the shape variation. It was found that the minimizing shape varies

smoothly with the change in the transformation parameters. The results differ slightly from image to image.

In Fig. 8 we depict the results of varying one parameter while keeping the seven others fixed in the ground
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(a) (b)

Figure 7: A local minimum. (a) A wrong segmenting contour (red), drawn on the input image. (b) The
same contour, drawn on the incorrectly transformed prior shape. To avoid convergence to an incorrect local
minimum, we use the Nelder–Mead downhill simplex algorithm followed by the gradient based Quasi-
Newton minimization.

truth. The degree of stability is defined by the Hessian of the shape term at that point. Few parameters are

more sensitive to such a variation. For a better understanding of the stability the correlations (or higher order

derivatives) should be calculated. This is under current study.

6 Experimental Results

The algorithm developed in this paper is capable of prior-based segmentation and shape registration in the

presence of perspective distortion. We demonstrate its operation on a variety of examples. In each example,

we show the input image (the image to segment), and the reference image, from which the prior-shape was

obtained. In addition to the prior-based segmentation results, we illustrate the mismatch between the input

image and the reference image, and verify the transformation parameters estimated by the algorithm. In all

the experiments we set dt = 0.1, ε = 1 and d = 1. The contributions of each term in the gradient descent

equation of φ (14) are normalized to [−1, 1], thus ν and µ are set to 1. Modifying the weight of the prior

term is done by normalizing the term to [−µ, µ] with µ > 0. Examples for such modifications are shown in
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Figure 8: The shape dissimilarity measure (Eq. 12) as a function of each of the transformation parameters
while keeping the seven others fixed in the ground truth.

Fig. 11f-i. In all the examined examples the number of iterations4 needed for convergence was between 50

and 100. The reader is also referred to the web page [33] which contains video clips that visually demonstrate

the convergence of the segmentation processes for the examples shown in Fig. 10, Fig. 11 and Fig. 14.

We start by presenting two synthetic examples (Fig. 9 and Fig. 10) that allow comparison with the

ground truth, and proceed to show segmentation of various real images. The first example (Fig. 9 and

Table 1) demonstrates successful segmentation and registration for a wide range of projective transformations

between a prior shape, shown in Fig. 9a and its different appearances, presented in Figs. 9b-e. The recovered

transformation parameters are compared with the true ones in Table 1. Without the prior shape term, the

final contour (red) may either incorrectly segment the white objects (as in Fig 9f) or the black unconnected

object (as in Fig 9g), depending on the initial contour. When the prior shape term is over-stressed, the final

segmenting contour ignores the actual image data (Fig 9h). This figure also displays the significant mismatch

between the prior shape and the shape to segment.

4Repetitions of steps 3-6 in the eight parameter algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: (a) Prior shape. (b)-(e) Successful segmentation results using the prior shape. Note the significant
perspective distortions of the shape that simulate quite wide camera view point changes with respect to (a).
A comparison of the recovered parameters with the true ones is shown in Table 1. (f)-(g) Segmentation
without prior shape term. The final contour may either incorrectly segment the white objects (f) or the black
disconnected object (g), depending on the initial contour. (h) The prior shape term is over-stressed. The final
segmenting contour ignores the actual image data. This image also demonstrates the misalignment between
the prior shape (red) and the input image.

Consider next the synthetic reference image shown in Fig. 10a, that contains several components of

different sizes and gray levels. The prior shape was obtained by thresholding. The image to segment is

shown in Fig. 10b, together with the initial contour. The input image is a noisy5, transformed and corrupted

version of the image in Fig. 10a. Successful segmentation is demonstrated in Fig. 10c. The recovered

transformation parameters are validated by comparison to the true transformation parameters in Table 2.

The misalignment between the image to segment and the reference image is shown in Fig. 10d. Without

using the prior shape, the input image is difficult to segment, see Fig. 10e.

Real images are used in all other examples, Figs. 11-14. Consider the two views of the toy elephant

shown in Figs. 11a-b. As seen in Fig. 11c, the segmenting contour precisely tracks the outline of the ele-

5Zero-mean Gaussian noise with STD equal to 14% of the grey-level dynamic range.
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Transformation parameter α β γ tx ty tz ψ ξ

True Fig 9b 0.2000 −0.2000 −15.000 -5.00 5.00 0.100 0.1000 −0.2000

Recovered Fig 9b 0.2120 −0.2140 −14.450 -5.09 4.66 0.098 0.1230 −0.2690

True Fig 9c 0.2000 0.1000 20.000 -10.00 10.00 -0.050 −0.5000 −0.5000

Recovered Fig 9c 0.1970 0.1040 20.680 -9.82 9.91 -0.040 −0.4720 −0.4950

True Fig 9d −0.3000 −0.3000 −50.000 -10.00 10.00 0.100 0.7000 0.7000

Recovered Fig 9d −0.3020 −0.3000 −49.740 −10.19 10.00 0.111 0.7180 0.6780

True Fig 9e −0.3000 −0.3000 60.000 -10.00 15.00 0.300 −0.3000 0.7000

Recovered Fig 9e −0.2990 −0.3090 60.210 -10.16 14.96 0.309 −0.2810 0.7010

Table 1: Comparison of the recovered and true transformation parameters, for the examples shown in Fig. 9

(a) (b) (c) (d) (e)

Figure 10: (a) A reference image, containing several components of different sizes and gray levels. The
prior shape was obtained by thresholding. (b) The input image: a noisy, transformed and corrupted version
of (a), with the initial contour (red). (c) Correct segmentation (red). (d) The unregistered prior shape (red)
drawn on the input image. The reference (prior) image and the image to segment are clearly misaligned. (e)
Segmentation (red) without using the prior shape.

phant, and recovers the missing part of its trunk. This segmenting contour is the zero level-set of the final

evolving function φ shown in Fig. 11d. The accuracy of the recovered transformation is visually verified

in Fig. 11e. To demonstrate the influence of the prior shape weight on the final segmentation, we have

conducted several experiments with various values of µ, shown in Figs. 11f-i. In Fig. 11f, the prior term

is over-stressed (µ � 1) thus the data is ignored and the transformation between the prior and the image

to segment is not recovered. Note the significant misalignment between the prior shape (red) and the input

image. Fig. 11g shows segmentation without prior (µ = 0). When the weight of the shape term is low,

as demonstrated in Fig. 11h (µ = 0.5) and in Fig. 11i (µ = 0.8), the final segmenting contour occupies

the gap between the object boundaries and the transformed prior. Further stressing the contour length term
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(ν > 1) a result similar to Fig. 11g is obtained. We compared the homography matrix generated from the es-

timated transformation parameters with that obtained using 13 manually selected corresponding point pairs,

see Table 3. The comparison has been done for the implicit homography parameters that were recovered

directly (row 2) and those that were computed from the explicit homography matrix entries according to

Eq. 22 (row 3). The values of the parameters recovered assuming similarity transformation (Fig. 1a) and

affine transformation (Fig. 1b) are reported in rows 4-5.

Transformation parameter α β γ tx ty tz ψ ξ

True values 0.0750 0.0750 7.50 -10.0 10.0 -0.1 0.0750 0.150

Recovered Values 0.0690 0.0750 7.40 -10.0 9.6 -0.1 0.0860 0.140

Table 2: Comparison of the recovered and true transformation parameters, for the example shown in Fig. 10.

Homography matrix entry h11 h12 h13 h21 h22 h23 h31 h32

Point correspondence 0.91 0.28 3.2 -0.31 0.71 34.05 -0.0003 0.0019
Proposed algorithm, implicit homography 0.92 0.27 2.88 -0.29 0.70 32.7 -0.0003 0.0017
Proposed algorithm, explicit homography 0.92 0.27 2.80 -0.30 0.70 33.35 -0.0003 0.0018
Similarity approximation 0.88 0.37 1.81 -0.37 0.88 35.5 0 0
Affine approximation 0.92 0.30 0.09 -0.37 0.78 31.01 0 0

Table 3: Comparison of the homography matrix entries obtained using the proposed algorithm and via manu-
ally selected corresponding point pairs, for Fig. 11. The last two rows of the table display the transformation
parameters obtained assuming similarity and affine transformations respectively. These values correspond
to the registration results shown in Fig. 1b-c. Note, that not all the similarity parameters are independent.

Fig. 12 demonstrates successful prior-based segmentation and registration of the scissors despite the

holes and the specular reflection. This is a challenging example, since the overlap between the reference

image and the image to segment is small, and localized in the over-exposed part of the image. In Figs. 13c,g,

the bottle-opener is accurately segmented regardless of the significant projective distortion and the over-

exposure at the bottom-right part of the opener. Note the difference in the grey-level distribution between

the two views. Figs. 13h-i show registration of the prior contour to the given image, assuming similarity and

affine transformations respectively. The similarity and affine approximations recover the rotation in the im-
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age plane, but fail to capture the perspective deformation. The apparent mismatch inhibits the segmentation

process and prohibits accurate reconstruction of the missing parts.

Finally, Figs. 14a-b are a day and night satellite views of Europe respectively. The images were adapted

from NASA:earthobservatory.nasa.gov. Successful segmentation is demonstrated in Fig. 14c. The coast

line of the continent and the islands are precisely extracted, despite the spatial brightness variations. The

accuracy of the recovered transformation is visually verified in Fig. 14d. Note the significant mismatch,

Fig. 14e, between the two views. Without using the prior shape, segmentation of Fig. 14b is difficult. As

seen in Fig. 14f, parts of Scandinavia and the eastern Adriatic shore are incorrectly segmented6.

7 Discussion

Given an image and a prior shape, segmentation and registration can be viewed as two aspects of a single

underlying problem. The essence of the method proposed in this paper is concurrent segmentation and regis-

tration, as mutually supporting processes within a unified variational framework. The keys to the success is

the introduction of a shape similarity measure that enables the incorporation of the homography formulation

within the objective functional. Explicit encoding of a geometric transformation with such a high descriptive

power allowed to break away from the common statistical representation of transformations in prior-based

segmentation.

The ability to precisely extract the actual object contour based on the image data and its expected shape

is critical in many applications. A robot manipulator guided by the segmentation of Fig. 11g, for example,

might break the elephant trunk or attempt to pierce through its specular reflections, mistakenly interpreted

as holes. In this sense, segmentation that is based on Fig. 11c is preferable.

The Chan-Vese two-phase segmentation model, currently employed in our scheme, requires the average

6A similar segmentation result (no prior), showing similar difficulties, appeared in [3], Fig. 11.
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grey-levels of the foreground and background to be distinct. Nevertheless, as seen in the bottle opener,

scissors and Europe examples (Figs. 12-14), the use of the shape prior allows to substantially relax the

homogeneity requirements. The suggested method is modular in the sense that the underlying level-set

segmentation model can be upgraded. For example, it will be possible to accommodate cluttered background

by using the Vese-Chan multi-phase segmentation model [42].

Expressing the planar-projective transformation within the energy functional (13) in terms of relative

camera-object motion (R, t) and plane structure (n, d) rather than via the homography matrix is a consider-

able shortcut toward the recovery of these parameters. The cumbersome task of decomposing the homogra-

phy matrix [15, 18, 27] is avoided. Also, note that reference images are often taken in controlled conditions.

If the prior image plane is perpendicular to the optical axis, the search for the eight homography parameters

can be reduced to six by setting the structure parameters (ψ, ξ ) to zero, thus simplifying the registration

procedure. For non-calibrated cameras the homography can be fully recovered in its implicit form (recovery

of h11 . . . h32 instead of α, β etc.). Then only eight parameters are recovered and the need for decoupling

between the internal and external camera parameters does not arise. The mathematical formulation for the

recovery of the (implicit) homography parameters is obtained by substituting the expressions (21) directly in

(26) for η = h11 . . . h32. The homography parameters recovered using this formulation are shown in Table 3,

second row.

In principle, the planar projective transformation model requires the observed contour points of the 3D

object to be coplanar and to take part in the prior shape outline as well. In practice, this assumption can

be relaxed for moderate transformations. As seen in the satellite image example (Fig. 14), an excellent

result is obtained even though the coastline of Europe is clearly non-planar. The elephant example (Fig. 11)

demonstrates successful application of the suggested method despite the evident violation of the assumption.

A comprehensive solution for general 3D objects would require to extend the transformation model beyond

planar projective homography, a subject for further study.
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In active contour methods that do not employ a prior shape, the selection of the initial contour might be

crucial for correct segmentation and designation of segments as object or background. Figs. 9f-g demonstrate

possible segmentation results obtained without a shape prior, that are initialization dependent. Prior shape

knowledge facilitates the detection of the desired object, reducing the influence of the initialization on the

final result, as demonstrated in the successful segmentation results in Figs. 9b-e.

The suggested approach can be extended to deal with non-rigid objects in two ways. If the non-rigidity

can be modeled in parametric form, as in the case of articulated objects, the additional parameters could

be incorporated within the transformation model. Otherwise, one may integrate the proposed method with

a statistical scheme based on a training set, e.g., Rousson and Paragios [35]. This would allow to capture

the non-rigidity via the statistical component, and the projective transformation using the approach that we

suggest.

The successful segmentation results and the reliable estimation of the transformation parameters encour-

age future research. Potential applications include perspective-invariant search in image databases, registra-

tion and structure recovery in stereo imaging, and object tracking in video sequences.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: (a) A reference image (elephant), from which the prior shape was obtained. (b) The input image.
The initial contour used for the segmentation process is shown (red). (c) Successful segmentation: the
final contour is shown (red). (d) The final form of the evolving level-set function φ. (e) Verification of the
estimated transformation parameters: The final contour as in (c), drawn on the projectively transformed prior
shape according to the recovered homography. (f)-(i) The suggested method is demonstrated for several
values of prior shape weight (µ). (f) The prior shape is over-stressed (µ � 1) thus the data is ignored
and the transformation between the prior and the image to segment is not recovered. Note the significant
misalignment between the prior contour (red) and the input image. (g) µ = 0. The prior shape does not effect
the segmentation result . (h)-(i) Low shape term weight (µ < 1). The final segmenting contour occupies the
gap between the object boundaries and the transformed prior contour. Further stressing the contour length
will yield result similar to (g). (h) µ = 0.5 (i) µ = 0.8.
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(a) (b) (c)

(d) (e) (f)

Figure 12: (a) A reference image (scissors), from which the prior shape was obtained. (b) The input image,
taken from a different viewpoint and with missing parts due to over-exposure. (c) Successful segmenta-
tion. The missing contour parts are accurately completed. (d) Verification of the estimated transformation
parameters: The final contour as in (c), drawn on the projectively transformed prior shape according to
the recovered homography. (e) The misalignment between the prior shape (red) and the input image. (f)
Segmentation (red) without using the prior shape.
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(g) (h) (i)

Figure 13: (a) A reference image (bottle opener), from which the prior shape was obtained. (b) The input
image, taken from a different viewpoint and with over-exposure. (c) Successful segmentation. The missing
contour parts are accurately completed. (d) Verification of the estimated transformation parameters: The final
contour as in (c), drawn on the projectively transformed prior shape according to the recovered homography.
(e) The misalignment between the prior shape (red) and the input image. (f) Segmentation (red) without
using the prior shape. (g) Successful segmentation with wider camera view, using the reference image (a).
(h)-(i) Registration of the prior contour to the given image using (h) similarity approximation and (i) affine
approximation. Note the apparent mismatch. The similarity and the affine approximations cannot capture
the perspective distortion.
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(a) (b) (c)

(d) (e) (f)

Figure 14: (a) A reference image of Europe, from which the prior shape was obtained. (b) Input image:
A satellite image of Europe at night. The reference and prior image were adapted from earthobserva-
tory.nasa.gov. (c) Successful segmentation: the final contour (red) accurately traces the coast lines. (d)
Verification of the estimated transformation parameters: The final contour as in (c), drawn on the projec-
tively transformed prior shape according to the recovered homography. (e) The misalignment between the
prior shape (red) and the input image. (f) Segmentation (red) without using the prior shape. The dark areas
in Scandinavia and in the eastern Adriatic shore are incorrectly segmented.
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