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1 Introduction

Diffusion flows are processes applied to digital images in order to enhance or
simplify them. These flows are usually implemented by appropriate discretiza-
tions of partial differential equations partial differential equations (PDEs). It-
eratively applying these discretizations named also numerical schemes to an
image, results in a series of images with decreasing detail, see Fig. 1. Using
a suitable flow, one can enhance important image features such as edges and
objects while filtering the image from undesired noise. This can be done not
only to gray level and color images, but also to textures, movies, volumetric
medical images, etc.

Diffusion flows are important members of the family of methods for image pro-
cessing, computer vision, and computer graphics based on the numerical solu-
tion of PDEs. Other members of the family include active contours/surfaces
for image segmentation, reconstruction of 3-dimensional scenes from their
shading or stereo images, graphic visualization of natural phenomena, and
many others. This family of methods has many advantages among them the-
oretical origin due to derivation from a minimization of (usually geometric)
cost functions, efficiency and robustness.

2 Diffusion Flows and Geometric filters

Diffusion processes are widely spread in many areas of Physics. Naturally,
they found their way to the field of image processing. At first, only linear
diffusion was used, but gradually also nonlinear diffusions were introduced
and geometry-based filters proposed. This section reviews the development of
these methods from the early days till the recent present.
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Fig. 1. A diffusion flow of a color image. The original image is on the top left

2.1 The Heat Equation
The simplest diffusion is the one generated by the 2-dimensional heat equation
I, = Al

with I(z,y) the 2-dimensional data, I; its partial derivative according to time,
and A the Laplacian operator (0., +0yy)- This equation depicts, for instance,
the temporal change in the heat profile of a metal sheet. In our case I(x,y)
gives the gray level values of the image.

The heat equation was the first diffusion process applied to images [44]. It was
mainly used to create a scale space for an image, meaning a 3-dimensional
volume with a scale coordinate ¢ added to the spatial coordinates = and y.
At the origin of ¢t we have the original image as initial condition, and as we
advance along ¢ we get smoother versions of it. The idea behind scale space
is that important features of the original image should survive the change of
scale and therefore all the scale space of the image should be used to detect
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these features. Later on, the heat equation was suggested for filtering noise
corrupting the image [9]. After applying the heat equation for a short duration,
the noise which is of fine resolution would disappear.

The heat equation as a diffusion flow generating a scale space has an important
attribute which is its linearity. It is therefore also referred to as linear diffusion.
However, it damages the edges of objects in images and does not preserve
connected components, see Fig. 2. This simple example was presented in the
introduction of the first papers collection on this topic [37].

Fig. 2. The heat equation damages edges and separates connected components

2.2 The Geometric Heat Equation

New flows were suggested to overcome the problem of the change in the num-
ber of connected components. One such flow, first introduced by Alvarez,
Guichard, Lions and Morel [1] in the context of invariant image processing, is
the level set curvature flow. Level set curves are another way to describe the
structure of a gray level image. Given an image I(z,y), its level set curves
are defined as C(h) = {(z,y) : I(z,y) = h}. See Fig. 3 for the level curves of
the images in Fig. 2. The interior of a closed contour can be considered as a
component, and the number of components somehow indicates the complexity
of the image [3].

Fig. 3. Level set curves of the images in Fig. 2

The idea was to use the powerful Grayson theorem [10] for curve evolution
via its curvature. The theorem states that the curvature flow
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Ct = kN,

with k the curvature of the closed planar curve C' and n the unit normal
vector to the curve, results in the convergence of the curve to a point.

Using the Osher-Sethian [21] level set formulation the whole image could be
propagated via the curvature flow equation. That is, each and every level set
of the original image could be propagated by its curvature flow, and all this
process could be described by a single evolution equation for the whole image

given by
VI
=div | —— 1|.

This process is possible due to the Evans-Spruck [7] confirmation that as
embedding of such propagating curves is preserved, the level set formulation
is indeed valid for the curvature flow. One nice property of this flow is that
connected components remain connected until they disappear. Moreover, this
flow is invariant to Euclidean transformations in the image plane.

Next, came the interesting question of what could be said about more com-
plicated transformations. In [1] the authors also introduced the equi-affine

invariant flow given by
vI 1/3
= iv [ —— . 1
= (av (777)) 19 .

Again, the connection to curve evolution was presented at the same time by
Sapiro in his PhD thesis [26]. First, the curvature flow can be equivalently
written by

Ct = Css;

where C(s) = {z(s),y(s)}, and s is the Euclidean arc length parameterization.
This is why it is also known as the geometric heat equation . Using similar
writing for the equi-affine flow, that is,

Ct = va;

where v is the equi-affine arc length dv = k!/3ds, the resulting geometric flow
can be written by
Ct = Ii:l/3n.

This equation known as the affine heat equation enjoys some of the nice prop-
erties of Grayson’s theorem, like preservation of embedding of the propagating
contours. It is thus directly related to Eq. (1) again via the Osher-Sethian level
set formulation. These beautiful relations and geometric properties started a
new era in the image processing and analysis field. For example, when smooth-
ing stereo images we would better use the affine heat equation, and not the
geometric heat equation that would distort the geometric structure relating
the two images. Applications of these operators include computation of geo-
metric signatures [12, 8], and extensions of these ideas deal with problems like
geometric scale space for images painted on surfaces [13, 33].
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2.3 Isotropic Nonlinear Diffusion

At the other end researchers started to explore the field of variational prin-
ciples and geometry in image processing. That is, define an integral measure
that somehow captures the norm of the image. For example, the TV norm
was a popular selection proposed in [25]. The TV (stands for total variation)
is defined by

/ |VI|dzdy,

for which the Euler-Lagrange equation is given by

(VI
div (W) =0.

That is, the level set curvature should be equal to zero. This geometric con-
nection should not come as a surprise, since by the co-area equation we have

that
//|VI|dxdy = // dsdh
2

where s is the arc length parameter of each and every level set contour, and
h is a parameter running over the image intensities I. The zero curvature is
indeed the result of minimizing the arc length of all level set contours in the
image.

The methods used to denoise an image based on the TV norm usually apply
the Euler-Lagrange as a gradient descent via a PDE of the form

. (VI
I{; = div (W) .

Again, the corresponding flow of the image level sets can be written as

1

Ct = WKZH,

[14]. This is nothing but a selective curvature flow, where the flow is enhanced
at smooth regions, and suppressed near the image edges (where the image
gradient is high), so that these important features are preserved.

Another popular filter proposed at the same time is the Perona-Malik [23]
anisotropic diffusion . Unlike its name, the filter is an inhomogeneous yet
locally isotropic flow given by

I, = div (f(|VI|)VI).

We see that setting f(s) = s~! we are back with the TV flow, while other
selections lead to other filters.

f is the diffusivity function and its role is to control the amount of diffusion
according to the gradient of the image. At image edges, where |VI| is large,



6 A. Spira, N. Sochen, and R. Kimmel

the diffusion should be minimal, and vice versa at the interior of objects. To
accomplish that, f should be monotonically decreasing. A popular choice for
fis

1

f(viI)) = T VIR

2.4 Anisotropic Nonlinear Diffusion

Gabor [9, 2, 20, 16] was probably the first to consider anisotropic diffusion
by smoothing along the edge and inverting the heat operator and thereby
generating an unstable enhancing process across the edge. If we write the
gradient direction as £ = VI/|VI| and 7 as the orthogonal direction, see Fig.
4, I; = I, is nothing but the curvature flow. Gabor proposed to use one
iteration of a discretization of the equation

It = IWW - €I§E,

where € determines the amount of inverse diffusion. This simple and nice
formulation for image enhancement (which can not be easily extracted from
a variational principle) was re-discovered many times along the evolution of
the image processing field.

Fig. 4. The gradient direction and the tangent direction of the image level sets

A recent interesting anisotropic differential filter for image analysis is Weick-
ert’s [42] edge direction sensitive flow. Weickert’s idea was to plug a 2 x 2
symmetric positive definite matrix instead of the scalar function f(s) of the
Perona-Malik flow. The orthonormal eigenvectors of the matrix are selected
according to the image gradient direction

vy || VI, vy L VI
and their corresponding eigenvalues are taken such that

M(VI|)
|v11|rgoo A(VI|) 0-

This way, the smoothing is mostly along the edges and not across them.
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2.5 Mean Curvature Flow

Many times the way we represent objects defines the way(s) in which we can
manipulate them. Images, for example, were represented traditionally as a
matrix of numbers. Many image processing techniques followed this repre-
sentation. Recently, a more geometric point of view emerged. An image is
regarded and represented as a surface. In fact, the graph of the intensity func-
tion for gray-valued images is a two-dimensional surface. One may think of
it as embedded in IR® with coordinates z, y and I. Once described in this
way it is natural to ask geometric questions such as about the curvature of
the surface at a given point. We may also envisage processes that alter the
geometric properties of the surface. Noting that noise is represented in the
image as points (or small regions) of high curvature, it is natural to give a
smoother version of the image by reducing points with high curvature. One
way to achieve this goal is to define an evolution equation that depends on the
curvature. We move, at each instant, the image surface in the direction of the
normal to the surface. Note that this is the only direction that changes the
shape of the image. Movement along the other two directions simply causes a
reparameterization that does not change the image’s gray-value content. The
amount of change at each point is proportional to the mean curvature in that
point. Denoting the mean curvature H, and the normal to the surface N, we
find the following PDE
S = HN.

How should we understand this equation? how is it applied to images? In
order to give an answer we go back to the representation of the image as a
surface. The graph of the image embedded in IR? is represented as the trinari
(z,y,I(x,y)). The two tangent vectors along the canonical coordinates x and
y are given by X; = (1,0, ;) and X, = (0,1, I;). The normal vector is derived
easily as orthogonal to X; and X5. Its form is

1
N=—r—=(-1,,-1,1).

1+ |VI?
The mean curvature at each point is

(14 1)1,y — 20, 1,1, + (1 + I;)Im

H(z,y) =
(@) u+@+gﬁ

It follows that the equation is

1
z,y, )} = H(=I;,-I,,1) ———.
( 'Y, )t ( x> Yo ) 1—|—|VI|2
Since we work in a constant domain and a constant coordinate system, namely
the Cartesian z and y coordinates the only change that actually takes place is
the value of the gray value at each pixel. In order to have the required effect
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while changing the gray values only, we change the gray value at each point
such that its projection on the normal has exactly the magnitude of the mean
curvature. A simple calculation shows that we need to multiply by a factor of

1+ |VI|?, see Fig. 5.

Fig. 5. The mean curvature flow for gray level images is accomplished by only
changing the intensity component

The final equation is

(14 L)* Iy — 2L I Iy + (1 + I} Loy
1412+ I;)

t =

2.6 Color Images

Color images are the canonical example of vector value images. The light
that is reflected from a surface is described by the wavelength spectrum
R()\) = S(A)p(A) where S(X) is the spectrum of the illumination and p())
is the material reflectance property known as the albedo. Three filters are
applied at each spatial point to the spectrum to produce the three channels
I' = [ dAR(X) f{(\). These three channels are usually called Red, Green, and
Blue (RGB) with respect to the regions in spectrum space where the filters ex-
tract most of their energy. The information is then encoded in three functions
R(z,y), G(z,y) and B(z,y).

There are several approaches in the denoising process of color, and other
multi-channel images. The first and most simple and naive approach is to
apply a denoising process to each channel separately. This approach ignores
completely the correlation between the different channels. Since the channel
edges are not necessarily aligned, an anisotropic channel by channel process
may blur regions where only one channel has an edge. In case several strong
edges in all channels exist with small offsets, artificial colors may appear.
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We describe in this section a different approach where the color channels
are correlated via the Di Zenzo metric [5]. More elaborate approaches that
incorporate perceptual psychophysical data will be discussed below in the
context of the Beltrami framework. Here we follow the approach of Sapiro
and Ringach [27]. The Di Zenzo metric is defined in the color space . Its
explicit form is

D R:+G3 + B R.R, + G,Gy + B, B,
~ \R.R, +G,Gy + B,;B, R +G; + B, ’

where the subscripts  and y mean partial derivation. The elements can be
written more simply with the Einstein summation convention: indices that
appear twice are summed over. The elements are written as D, = I I} where
the summation is over the index 4 =1,2,3,and I' =R, I? =G, I* = B. In
general D, = I;;I,’;, where p and v take the values 1 and 2. They stand for
z,, and z,, where by convention z; = z and z2 = y.

The matrix D is real and symmetric and it can be diagonalized. Formally we
can write D = UT AU where A = diag(\y,A_). The matrix U is composed
of the eigenvectors that give the direction of maximal variation in color space
and its perpendicular direction. The A; indicate the amount of change in
each direction. Sapiro and Ringach suggest in their paper to construct an
anisotropic process in the following manner:

I} =div (f(\+ + A_)VIY).

This equation can be derived as a gradient descent of a functional. It is simply
S[IY] = [¥(A+ 4+ A_)dzdy. A new analysis of this and many other approaches
can be found in Tschumperlé’s thesis [39].

2.7 The Beltrami Flow

In the Beltrami framework [15, 31] the image is regarded as an embedding of
the image manifold in the space-feature manifold. In a more rigorous terms we
describe the image as a section of a fiber bundle. The fiber bundle is composed
of the spatial part, which is usually a rectangle in IR?, called the base manifold,
and the fiber that describes the feature space i.e. intensity, color, texture etc.
A section of the fiber bundle is a choice of a specific feature from the feature
space for every point in the base manifold. The feature space may be a linear
space or a more complicated manifold. In the first case we call the section a
vector field.

The most simple example is the gray-value image. Denote the embedding map
by X. The explicit form of this map for gray level images is

X(u',u?) = (u',u?, I(u',u?)),

where u',u? are the spatial coordinates and I is the intensity component, see
Fig. 6. For color images the embedding map reads:
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X(u',u®) = (u',u®, I (ut, u?), PP (uh, u?), IP (u', u?)),

where I',I% I® are the three color components (for instance red, green and
blue for the RGB color space).

1(x,y)
X
u2 | /_\\

ul y
U X(U)

X

Fig. 6. A gray level image according to the Beltrami framework

The geometry of the image manifold, i.e. the section, is determined according
to its metric tensor G, which is the result of the metric H chosen for the space-
feature manifold, i.e. the fiber bundle . A natural choice for gray level images
is a Euclidean space-feature manifold with the metric

100
H=(hj)=[010 |,
00 32

where f is the relative scale between the space coordinates and the intensity

component. The metric G of the image manifold is derived from the metric H
and the embedding X by the pullback procedure

(G)ij = 0; X?0; X hap -

Using the explicit form of the embedding map X and the metric of the fiber
bundle H for gray level images, we can find the metric G:

_ oy (1+ 5 BLI
G—(gz])—( 1321112 1+ﬂ2-[22 )

A
where I; = 6‘951-.

The Euclidean metric H of the space-feature manifold for color images is
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100 0 0
0100 0

H=(hyj)=]00820 0 |,
000 820
000 0 B2

where the same scaling factor was chosen for the three color channels. The
resulting image metric is

G = (gij) = 1+ 823, (I8 B2y, Ity
9 BY I 1+6873,5)% )

The Beltrami flow is obtained by minimizing the area of the image manifold

S = // \/§du1duQ,

with respect to the intensity components, where g = det(G) = gi11g22 — g%5-
The gradient descent process is given by the corresponding Euler-Lagrange
equations

55

a _ —1,ab
Xt =-9 2h (st

=g 30;(g3 g7 9;X") + I}8; X"0;X g7

with g% the components of the contravariant metric of the image manifold
G~! (the inverse of the metric tensor G). The Christoffel symbols (also known
as the Levi-Civita coefficients) I are defined in terms of the fiber bundle
metric H:

1
Fbac = ihad (abhdc + Ochpg — 6dhbc) . (2)

In matrix form it reads
1
Xt = —div G VX®) +Tr(IF),
‘=7 (V9 { (I'“F)

~

AgXa

where I'® is the matrix whose elements are (I'*)q = I% and F, =
0;X9;X"gii. The symbol A, is the Laplace-Beltrami operator which is the
extension of the Laplacian to manifolds. The resulting diffusion flow for gray
level images is

I, = A, = H(I,N),

i.e., the image surface moves according to the intensity component of the
mean curvature flow, see Fig. 7. Because we chose a Euclidean feature space
the Christoffel symbols are identically zero in this case. They vanish for color
images as well. The diffusion equation for each color component reads

I = AT 3)
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Fig. 7. In the Beltrami flow for gray level images the image surface moves according
to the intensity component of the mean curvature flow. Geometrically, only the
projection of this movement on the normal to the surface matters

The diffusion process in Fig. 1 is actually the Beltrami flow. Figure 8 contains
a closeup of the images in Fig. 1, including the 2-dimensional manifolds of
the red, green and blue color components. It is evident that the Beltrami flow
filters out the noise while not only preserving the edges, but keeping their
location in the three color components aligned.

3 Extending the Beltrami Framework

The basic idea of the Beltrami framework of treating the image as a manifold
and enhancing it by minimizing its area can be extended in various ways.
In this section the framework is extended to higher dimensional spaces (for
texture, video and volumetric data), non-Euclidean feature spaces and other
diffusion directions.

3.1 Texture, Video and Volumetric Data

We have discussed color for which researchers try to give a simple geometric
interpretation, like an arc length that would capture our visual sensitivity
to colors. Next, we claimed that in order to extract technology from such
definitions we need to link the color arc length to another measure of distance
in the image domain. This way we came up with the hybrid space idea.

Next comes the interesting question of what is texture and how should we treat
it? Like color, we try to interpret texture as a region for which homogeneity
is no longer determined by a single constat like color, but rather repeating
patterns in the image domain. Again we need some sort of measure that defines
a distance between different patterns. There are many ways to achieve this



Geometric Filters, Diffusion Flows, and Kernels in Image Processing 13

Fig. 8. The results of the Beltrami filter. The original image is on the left and the
filtered one on the right

goal [24]. Once such an arc length is defined, all we need to do is to plug it
into our Beltrami framework and we have a filter for texture.

Such filters were reported in [16], where the texture is represented by using
the Gabor-Morlet wavelet transform W (z,y,0,0) [19], with = and y the spa-
tial coordinates, 6§ the wavelet orientation parameter and o the wavelet scale
parameter. The texture image is the embedding (z,v,6,0) — (x,y,60,0,R, J),
where R = real(W) and J = imag(W). Each scale is considered as a different
space, resulting with the metric
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1+ R?: + Ja:2 R.Ry+ JpJy ReRy + J3 Jg
G=(9s) = | RoRy+JoJy 1+ R+ J; RyRo+JyJy |,
RyRy + JpJp RyRo + JyJo 1+ Ry + J;

and the Beltrami flow

R; = AR
Jt = AgJ

Consequently, each scale can be filtered in a different way and to a differ-
ent extent. See Fig. 9 for a demonstration of texture enhancement using the
Beltrami flow.

Fig. 9. Texture enhancement by using the Beltrami filter on the Gabor-Morlet
wavelet transform of the texture image. The original image is on the left

The Beltrami filter for gray level video and volumetric medical data (such as
CT or MRI) is accomplished by considering them as the embedding (z,y, z) —
(z,y, 2, I), where for video z represents time and for volumetric data the third
spatial coordinate. The induced metric in this case is

1+ 12 LI, LI
G= (g,]) = IzIy 1+ Iy2 IyIz s
LI, LI 1+1I2

and the Beltrami flow is

where VI = (I, I, I) and g =1+ I + I + I7.

3.2 Non-Euclidean Feature Spaces

We have seen above that the image is represented as an embedding of a surface
in a spatial-feature space. In the previous subsections we treated many tasks
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in which the feature space is Euclidean and endowed with a Cartesian coor-
dinate system. There are many instances where the situation is different. We
shall present below two such cases: perceptual color denoising and orientation
diffusion.

Color Image Denoising

The construction of the RGB color space was described in the section on color
images. While the coordinates in this color space are perfectly defined from
a physical point of view they are not enough in order to denoise color images
aimed to be seen by human beings. The most important notion in denoising
is distance. What is relevant in denoising color images is to understand how
distances between colors are perceived by humans. In other words we treat the
perceptual color space as a three-dimensional manifold whose local coordi-
nates are given by the RGB system. What is needed in order to complete the
picture is to provide the metric on this manifolds such that distances between
colors can be measured with accordance to perception. This distance can not
be deduced from physics and must be given from psychophysical experiments
and considerations. Albeit its modern appearance, this paradigm is more than
a century old. The first formulation of the perceptual color space as a Rieman-
nian manifold is due to Helmholtz [11] in 1896 ! Helmholtz suggested a metric
which is based on the famous log response of our senses. While it is good as a
first approximation it was soon realized that his metric is inappropriate and
does not describe well the experiments in various regions of the perceptual
color space. The experiments are based on the notion of Just Noticeable Dif-
ferences (JND). In a typical JND experiment two squares of the same color are
shown to a subject. One of these squares gradually changes its color until the
subject declares that the colors are different. This gives a map of infinitesimal
distances in color space and can be compared directly to metrics that model
this human color perception. The construction of such metrics captured the
interest of prominent scientist such as Helmholtz and Schrédinger [28]. The
Helmholtz model is given simply by the following line element:

ds® = (dlog R)? + (dlog G)* + (dlog B)*

This equation ignores the dependence of the JND on the overall luminance.
Schrodinger tried to rectify this line element and suggested the following
model:

(0 0y

"R+GiB\ R "G "B

More recent efforts to model the metric of the perceptual color space include
Stiles [36] and Vos and Walraven [41].

We will demonstrate here the denoising with respect to the Helmholtz and
Schrédinger metrics only. For a thorough discussion refer to [32]. Let us denote
the perceptual color Riemannian manifold by M,.. The Beltrami framework
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describes a color image as the embedding of a two-dimensional surface in the
fiber bundle IR? x M,. The base manifold is IR?. At each point in the base
manifold the fiber M, is attached. A color image is a section of this fiber
bundle. The metric on the fiber bundle is simply

ds* = dsipatial +ds2,,,, = dz® + dy® + dI'dI’ h;;

color

where for the Helmholtz model

& 0 0
(hij)=1 0 é 0],
0 0 3

and for the Schrédinger model it is

1
iyt (00
Y R+G+B G
0 0 %

The induced metric on the section is simply
Juv = 6;U/ + Iﬁlghlja

and the Levi-Civita coefficients are given by Eq. (2). The Beltrami flow then
is
I} = AT+ T71,0,X79,X*g"

Orientation Diffusion

Another example of a non-Euclidean feature space is the orientation [18]. In
this case the feature manifold is the unit circle S!. We construct again the
fiber bundle IR? x S! and regard the orientation vector field as a section of this
fiber bundle. In order to express the metric on this fiber bundle we cover St
with two coordinate patches. This can be done in various ways. We present
here the hemispheric coordinates for simplicity. Embedding the orientation
circle in IR? with Cartesian coordinates u and v we find that S* is given by
u? 4+ v? = 1. We write the metric on the patch of S described by u as

2
u 1
du? =
1—u2)u 1—u?

ds® = du® + dv® = (1 + du® = A(u)du?

Having calculated the metric on the fiber we can now deduce the induced
metric on the section

ds® = dz?+dy’+A(u)du® = (l-l-zél(u)ufa)da,‘2-|-2A(u)uwuydmdy-i-(1+A(u)u§)dy2

Note that the metric on the fiber bundle is given by
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10 0
(hij)=10 1 0
00

2

The Levi-Civita coefficients can be calculated by Eq. (2). The Beltrami flow
equation reads: ‘
u = Agu+ I8, X70,X*g" .

The Beltrami flow modifies the features in the feature manifold such that a
unit length vector stays always a unit length vector along the flow.

3.3 Inverse Diffusion Across Edges

An interesting approach to extend Gabor’s original idea [9] for image enhance-
ment via
It = IWW - 6_[55,

is to try to manipulate the eigenvalues of the inverse metric matrix in the
Beltrami operator. If these values are kept positive, the result is a diffusion
that can be enhanced in a specific direction as proposed by Weickert in his
‘coherence enhancement’ filters [43]. More interesting, yet obviously less sta-
ble, is the concept of negative eigenvalues that mimic Gabor’s inverse diffusion
across the edge. This was first introduced in [16].

The concept is simple. We first extract the inverse metric matrix (g*/) and
compute its eigenstructure, (¢%) = UAUT. Next, manipulate the eigenvalues
so that the smaller one gets a negative sign. This way, the inverse diffusion
across the edge, due to the negative sign, enhances and sharpens the edges in
the image, while the diffusion along the edges (the direction orthogonal to the
maximal change direction) smooths the boundaries and adds some control to
the process. See Fig. 10 for an example of this process. This is an extension to
Gabor’s original idea from 1965, that exploits the geometric structure of the
color image, where there are no level-sets or ‘isophots’ due to its multi-channel
nature.

4 Numerical Schemes

The PDEs describing the diffusion processes are continuous, but they are
implemented on discrete digital images by computer algorithms with discrete
representations. The means to bridge this gap are the numerical schemes that
ensure that the discrete solution will converge to the continuous one as the
grid is refined.

Many numerical schemes are used for the solution of the image diffusion
PDEs. Among them the fast fourier transform (FFT), wavelet transforms,
finite element techniques, neural networks, multigrid methods and many
more. However, in most cases finite difference schemes are used. In these
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Fig. 10. Edge enhancement by diffusion along the edge and inverse diffusion across
it. The original image is on the left

schemes continuous derivatives are approximated by discrete differences. The
parameter domain is covered by a grid with step sizes k in time and h in
space and the variables are discretized, for instance u(t,z) is replaced by

u? 2 u(t = nk,z = mh), see Fig. 11.

t N
n+1
um
h
n n
Um 'um+1
k
X

Fig. 11. The numerical grid for finite difference schemes

In most cases the design of satisfactory finite difference numerical schemes is
quite straightforward. However, due to the size of the data, simplistic schemes
might be inefficient and require a long run time. In the following subsections
the main principles of the finite difference schemes are presented along with a
few more elaborate schemes required to efficiently tackle the more challenging
PDEs used for image processing.
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4.1 Linear Diffusion

For 1-dimensional linear diffusion, the first derivative in time of the function
u(t,z) can be approximated by the first order accurate forward difference

n+1 n
+,n & Uy T Uy
Dt Uy = k )

and the second derivative in space can be approximated by the second order

central difference " N "
DO n A um+1 - 2um, + Um—1
zzlm = h2

The resulting numerical scheme for the linear diffusion is

n+1 n n _ n n
Uy — Uy Umpa 2um + Uy

k h? ’

and if we define
A k
r= ﬁ,
we get

ulttt = (1 =2r)ul +r (ul gy Ful ).

All we need is to add the initial condition
Ugn = fm,

and to define the boundary conditions.

This is an explicit numerical scheme, because the value of u at iteration n +
1 is given explicitly by the value of u at previous times, see Fig. 12. The
update step consists of merely additions and multiplications. The problem
with explicit schemes is that their time step is limited by reasons of stability.
For linear diffusion we require r < 1/2 . Taking a bigger time step may result
in an unstable process, whose outcome does not depend on the initial data but
on the computation errors. In many equations the allowed time step is rather
small and necessitates many iterations till the required output is reached. One
solution is implicit numerical schemes, where the desired value u™' depends
on the value of u at the same time n + 1 and at other spatial locations, see
Fig. 12. One example is the Crank-Nicolson second order accurate scheme in
time and space

1 n n+l _ n+1 n+1 n _ n n
u?n+ — Uy 1 um+1 2um + umfl um+1 2um + Up—1

k 2 h? h?

In this case we need to solve a tridiagonal system of equations in every update
step. This can be done efficiently by the Thomas algorithm. A large time
step would affect the accuracy of the solution, but it would not generate any
instabilities.
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t N t 2
Un+1 n+1 n+1 n+1
® m um-l Um Um+1
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n /‘ K n n
Um-14 Um oM+l Un o
X X

Fig. 12. The time and space dependencies of the explicit (left) and implicit (right)
schemes for linear diffusion

For images where the equations have more than one dimension in space, ex-
plicit schemes are usually impractical due to the decrease of the bound on the
time step. For linear diffusion we have r < 1/(2D), with D the spatial dimen-
sion of the equation. On the other hand, implicit schemes result in a system
of equations that is not tridiagonal and usually cannot be solved efficiently.
More elaborate implicit schemes are required.

One such numerical scheme is the Alternating Direction Implicit (ADI)
scheme. Peaceman and Rachford’s [22] version is

kN s ko .
(]I—§A1>U T2 = (]I+ EAQ)U
(1= 3 )ur = (14 ) e, @

with I the identity matrix and the operators Aju = uz; and Axu = uy,
replaced by their second order approximations. It can be seen from Eq. (4) that
each iteration includes two steps where first the x direction is solved implicitly
and the y direction explicitly, and then the opposite. Both steps consist of
solving a tridiagonal system of equation, which can be done efficiently by the
Thomas algorithm.

4.2 Nomnlinear Diffusion

The original Perona-Malik filter [23] suffered from instabilities. The regular-
ization presented by Catté, Lions, Morel and Coll [4] consists of replacing
F(VI|) with f(]VI,|) where I, is the convolution of I with a gaussian kernel
with a standard deviation of ¢. This smoothing of I eliminates some of the
small scale noise and makes the filter well-possed.

Weickert, ter Haar Romeny and Viergever [45] introduced the first order ac-
curate Additive Operator Splitting (AOS) scheme to numerically implement
this filter. The update step is
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1 m
= — Z (I — mkA;(I™))~' 17,
m i=1
with m the dimension of the image and the elements of the matrix A; are
given by

feth q € N(p)
(Ai)pg =9 — EleN(p) % p=q
0 otherwise

with N(p) the neighbors of the grid point p in the -th direction, and f, the
value of f(|VI?|) at grid point p.

The AOS scheme is semi-implicit and the size of the time step does not affect
its stability. The scheme is efficient because it only requires the solution of
tridiagonal systems of equations. It creates a discrete scale space [43] and its
additivity gives equal importance to all coordinate axes as opposed to the
multiplicative Locally One Dimensional (LOD) scheme which uses the update
step

m
=T @— kA (1)~ 1m.

i=1
The AOS may be used also for some anisotropic nonlinear filters applied to
gray level images. For color images and filters like the Beltrami flow, where
each color component depends on the value of the others, the splitting is
impossible. To date, there is no PDE based implicit scheme for the color
Beltrami. This is one of the main motivations for the construction of numerical
kernels, described in the next section.

5 Kernels

It was shown in the previous section that the bound on the time step of some
of the explicit numerical schemes can be alleviated by the use of implicit
schemes. This enables a tradeoff between the efficiency of the scheme and
its accuracy. Unfortunately, this is not the case in some of the important
geometric filters, such as the Beltrami filter. Another approach, namely the
use of kernels, is the answer in some of these cases. Moreover, the kernels add
a new perspective to these filters and present connections to other existing
image enhancing procedures.

5.1 The Gaussian Kernel for the Heat Equation

It can be shown that linear diffusion of an image can be accomplished by
convolving it with a Gaussian kernel. Applying the heat equation to the 2-
dimensional data I(u!,u?,ty) for the duration ¢ is equivalent to the convolu-
tion
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T(ub, 02, by + 1) = // (@, 82, to) K (|jut — @], Ju? — 2] t)di da?
ZI(ulau27t0)*K(u17u2;t) ) (5)

where the kernel is given by

(e ey

The use of the kernel enables to replace the iterative application of the nu-
merical scheme for the PDE with a one step filter.

5.2 1-Dimensional Kernel for Nonlinear Diffusion

A kernel for the nonlinear diffusion of 1-dimensional signals was presented in
[30]. The nonlinear kernel adapts itself to the local amplitude of the signal.
Adaptive filtering has been done before, mainly by using robust estimation
techniques. However, the nonlinear kernel relates to the signal as a curve and
its adaptivity originates from the geometry of this curve.

The main idea behind the nonlinear kernel is presented in Fig 13. For the
linear kernel the amplitude of the filtered signal at a specific point is the sum
of the neighboring points’ amplitudes weighted according to their distance
along the coordinate axis. For the nonlinear kernel the weighting is according
to the distance on the signal itself. The nonlinear kernel ‘resides’ on the signal
while for the linear kernel the Gaussian ‘resides’ on the coordinate axis.

—

15

[
i —~_J

Fig. 13. Filtering a signal with a linear Gaussian kernel (top) and a nonlinear kernel
(bottom)
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The distance along the signal is calculated using the metric of the curve which
is the signal. Various metrics are possible and they yield different filtering
results. The Euclidean metric, for instance, using the curve representation
C(p) = (z(p),y(p)) = (z,y(x)) is g(z) = 1 +y2. The kernel is constructed for
the 1-dimensional Beltrami flow

C, = A,C.

The kernel cannot be global in time due to its non-linearity (the kernel depends
on the signal’s local amplitudes which change in each iteration of the kernel).
Therefore the PDE cannot be replaced with a one step filter like in linear
diffusion. Only a short time kernel which is applied iteratively is possible.
After each iteration the signal is

Clovto+1) = [ Cloto)K v, 551)dp
with the kernel

o _v\p,p)

t
H(p, p;t) can be taken to be a constant [30] and we get

wm=§<£ﬁﬁi

where ds is an arc length element given by ds = \/g(p)dp. Since [ ? s is the
distance on the signal from point p to point p, the resulting kernef is indeed
a Gaussian ‘residing’ on the signal, see Fig. 13.

5.3 The Short Time Kernel for the Beltrami Flow

A short time kernel for the 2-dimensional Beltrami flow was introduced in [35].
If used iteratively, it has an equivalent effect to that of the Beltrami flow. We
replace Eq. (5) with

.mmm{m+w://Pw2#¢@Kmhﬁmaﬁwmmw%
which we denote by
Ii(ut u? to + 1) = T (uh, u?, to) x4 K (ub,u?;t).
This is not a convolution in the strict sense, because K does not depend on the

differences u® — @'. It will be shown later that *, is the geometric equivalent
for manifolds of convolution. The general form of K is
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H(ul. u2: 2(p,1 2
K(ul,u2;t) — (u ;u 7t) exp (_%/J (utau )),

where we take, without lose of generality, (@', @?) = (0,0) and omit from K
the notation of dependency on these coordinates. In order to find K, we use the
fact that it should satisfy Eq. (3) and after a few mathematical manipulations
we get

g 1
gt = IVl = 7,
with V, the extension of the gradient to the manifold. This is the Eikonal

equation on the manifold, and its viscosity solution is a geodesic distance
map 1 on the manifold. The resulting short time kernel is

@) 5\
H, ful u? ds
K(u',u? a',a%t) = tO exp ( ( ’4t) )
H d2 ((ulauz)a (Ul,ﬂ2)
= TO €xp <_ g At ) ’ (6)

where ds is an arc length element on the manifold, and dg(p:1,p2) is the
geodesic distance between two points, p; and p2, on the manifold. Note that in
the Euclidean space with a Cartesian coordinate system dg (p1,p2) = |p1 —p2|.
The geodesic distance on manifolds is therefore the natural generalization of
the difference between coordinates in the Euclidean space. It is natural then
to define the convolution on a manifold by

Ii(ut,u?) %, K (u',u?;t) = //P’(al,fﬁ)K (dy ((u*,u?), (@', 4%))) d' di®.

The resulting update step for the image is

@@ g\
) H, ) ful 2y 48
I’l(ul’u2’t0+t) — o // I’(ﬁl,'&z,to) exp _M dﬂldﬂQ,
t (al,a2)eN(ul,u?) 4t

with N (u!,u?) the neighborhood of the point (u!,u?), where the value of the
kernel is above a certain threshold. Because of the monotone nature of the
fast marching algorithm used for the solution of the Eikonal equation, once a
point is reached, where the value of the kernel is smaller than the threshold,
the algorithm can stop and thereby naturally bound the numerical support of
the kernel. The value of the kernel for the remaining points of the manifold
would be negligible. Therefore, the Eikonal equation is solved only in a small
neighborhood of each image point. Hy is taken such that integration over the
kernel in the neighborhood N (u!,u?) of the point equals one.

The short time Beltrami kernel in Eq. (6) is very similar to the Bilateral
filter kernel [38, 6]. The difference between them is that the Beltrami kernel
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uses geodesic distances on the image manifold, while the Bilateral kernel uses
Euclidean distances. As can be seen from the derivation of the Beltrami kernel,
the Bilateral filter originates from image manifold area minimization. The
Bilateral filter can actually be viewed as an Euclidean approximation of the
Beltrami flow.

The Euclidean distance used in the Bilateral filter, while being easier to calcu-
late, does not take into account the image intensity values between two image
points. A point can have a relatively high kernel value, although it belongs to
a different object than that of the filtered image point. The Beltrami kernel
takes this effect into account and penalizes a point that belongs to a different
connected component. That is, it is not ‘as blind’ as the Bilateral filter to the
spatial structure of the image.

The short time kernel for the Beltrami flow requires the solution of the Eikonal
equation on the image manifold. The image manifold is a parametric manifold,
where the metric G is given for every point. The solution to the Eikonal equa-
tion on parametric manifolds [34] is based on the solution of the same problem
on triangulated manifolds [17] which in turn is an extension of Sethian’s fast
marching method [29]. Another Eikonal solver on flat domains with regular
grids was proposed by Tsitsiklis [40].

The original fast marching algorithm [29] solves the Eikonal equation in an
orthogonal coordinate system. This is not the case for image manifolds. There
912 # 0 and we get a non-orthogonal coordinate system on the manifold. The
solution for that is similar to that of [17], where a pre-processing stage is
used to construct a suitable numerical stencil for each grid point. In this case
there is no need to perform the unfolding step of [17] because the structure of
the non-orthogonal grid on the manifold is given by its metric G. Figure 14
demonstrates the solution of the Eikonal equation for the parametric manifold
z = 0.5 sin(4nz) sin(4ry).

In order to demonstrate the spatial structure of the kernel, we tested it on
the synthetic image in Fig. 15. At isotropic areas of the image, the kernel is
isotropic and its weights are determined solely by the spatial distance from
the filtered pixel. Across edges the significant change in intensity is translated
into a long geodesic distance, which results in negligent kernel weights on the
other side of the edge. The filtered pixel is computed as an average of the
pixels on the ‘right’ side of the edge.

6 Conclusion

This chapter described image enhancement using PDE based geometric dif-
fusion flows. On the theoretical side, starting with variational principles ex-
plains the origin of the flows, and the geometric approach results in some
nice invariance properties. On the practical side, using carefully selected nu-
merical schemes and developing kernels for the flows, enables an efficient and
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o x 10 y

Fig. 14. Fast marching on the manifold z = 0.5 sin(47z) sin(47y). Left: implemented
on the parameterization plane. Right: projected on the manifold. Lower values are
assigned brighter colors. The black curves are the level curves

Fig. 15. Level curves of the kernel at various locations in a synthetic image



Geometric Filters, Diffusion Flows, and Kernels in Image Processing 27

robust implementation. Combined together we get a fascinating area of re-
search yielding state of the art algorithms.
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