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Abstract
Shape-from-Shading(SfS) is a fundamental problem in Computer Vision. A very common assumption in this field is that image
projection is orthographic. This paper re-examines the basis of SfS, the image irradiance equation, under a perspective pro-
jection assumption. The resultant equation does not depend on the depth function directly, but rather, on its natural logarithm.
As such, it is invariant to scale changes of the depth function. A reconstruction method based on the perspective formula is
then suggested; it is a modification of the Fast Marching method of Kimmel and Sethian. Following that, a comparison of the
orthographic Fast Marching, perspective Fast Marching and the perspective algorithm of Prados & Faugeras on synthetic
images is presented. The two perspective methods show better reconstruction results than the orthographic. The algorithm
of Prados & Faugeras equates with the perspective Fast Marching. Following that, a comparison of the orthographic and
perspective versions of the Fast Marching method on endoscopic images is introduced. The perspective algorithm outper-
formed the orthographic one. These findings suggest that the more realistic set of assumptions of perspective SfS improves
reconstruction significantly with respect to orthographic SfS. The findings also provide evidence that perspective SfS can be
used for real-life applications in fields such as endoscopy.

Keywords: perspective shape-from-shading, fast marching methods.

1. Introduction and Background
Recovery of Shape-from-Shading (SfS) is a fundamental problem in Computer Vision. The goal of SfS is to solve the image
irradiance equation, which relates the reflectance map to image intensity, robustly. The task, however, appears to be nontrivial.
This has caused most of the works in the field to add simplifying assumptions to the equation. Of particular importance is
the common assumption that scene points are projected orthographically during the photographic process.

Many works in the field of Shape-from-Shading have followed the seminal works of Horn [3], [4] , [5], who initiated the
subject in the 1970s, and assumed orthographic projection. Horn’s book [6] reviews the early work on Shape-from-Shading
(until 1989). Zhang et al. [32] surveys and classifies some of the works from the ’90s and compares the performance of six of
them (namely, minimization approaches: [34], [11]; propagation approach: [1]; local approach: [10]; linear approaches: [17],
[28]). Kimmel & Bruckstein [8] classify image extrema and two kinds of saddle points and use these topological properties
of the surface in a global Shape-from-Shading algorithm. In the current millennium Zhao & Chellappa [33] use symmetric
Shape-from-Shading to develop a face recognition system which is illumination insensitive; they show the symmetric Shape-
from-Shading algorithm has a unique solution. Kimmel & Sethian [9] proposed the Fast Marching method as an optimal
algorithm for surface reconstruction. Their reconstructed surface is a viscosity solution of an Eikonal equation for the
vertical light source case. Sethian [25] provides deep insight into Level Set and Fast Marching methods. Robles-Kelly &
Hancock [20] use the Mumford-Shah functional to derive diffusion kernels that can be employed for Shape-from-Shading.
Prados et al. [19] base their approach on the viscosity solution of a Hamilton-Jacobi equation. They extend existing proofs of
existence and uniqueness to the general light source case and prove the convergence of their numerical scheme. Many more
orthographic algorithms were suggested in the literature, but only a few can be described herein.

∗This research has been supported in part by Tel-Aviv University fund, the Adams Super-Center for Brain Studies, the Israeli Ministry of Science, the
ISF Center for Excellence in Applied Geometry, and the A.M.N. fund.
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Figure 1: Difference in reconstruction between perspective and orthographic SfS. a. Perspective projection of the filled
quadrilateral is identical to orthographic projection of the meshy parallelogram. b. The image produced by both surfaces
(light source direction: ~L = (0, 0.5,−1)). Orthographic reconstruction of this image must produce a 3D parallelogram.

Despite all the work in this field, the comparative study [32], which dealt only with orthographic SfS, reaches the following
conclusions: “1. All the SFS algorithms produce generally poor results when given synthetic data. 2. Results were even worse
on real images, and 3. Results on synthetic data are not generally predictive of results on real data.”

The few works that did employ the perspective projection have been too restrictive and have not addressed the general
problem. Yamany et al. [30] and Seong et al. [23] assumed that distance variations between camera and surface could be
ignored. Samaras & Metaxas [22] employed a deformable model for the SfS problem, so reconstruction took place in 3D
space. Thus, during the deformation process, the image point onto which a 3D point was projected changed, and its new
location should have been interpolated, resulting in a nonuniform sampling of the image.

Another approach to perspective SfS is piecewise planar modelling of the depth function (Lee & Kuo [12], Penna [16]).
However, orthographic and perspective reflectance maps of a plane are identical, as Sect. 3.1 would show. Therefore, the two
types of projection of a piecewise planar surface differ only at the edges, while fully agree at the interior of the faces.

Recently, Yuen et al. [31] proposed the use of perspective SfS with the Fast Marching method of Kimmel & Sethian [9].
This work approximated surface normals in 3D space using the neighboring pixels of the point under examination. Into
these approximations the equations of perspective projection were substituted. This approach suffers two drawbacks. First, is
describes a specific numerical approximation without reference to the theoretic problem (i.e., the image irradiance equation
itself). Second and most importantly, neighboring pixels lie on a uniform grid (image space), while their 3D correspondents
need not be so (in 3D space). The result was that depth derivatives were approximated in 3D space on a nonuniform grid,
while the underlying assumption was a uniform one (image space uniformity).

Weiss [29] suggested a physical formalism which enables incorporation of invariants of the imaging processes and geo-
metric knowledge about the surface. This work describes a theoretical method, but presents no numerical results.

Although the great majority of researches in the field of SfS rely on the orthographic projection, and the minority which
applies to perspective SfS is limited in scope, no information is available on the image irradiance equation under the perspec-
tive projection model. The goal of this paper is to formulate the image irradiance equation under the perspective assumption
and then to solve the resultant Shape-from-Shading problem. The proposed solution is a perspective version of the Fast
Marching method of Kimmel & Sethian [9] based on the new formulation of the image irradiance equation.

To motivate why a change in the underlying assumption from orthographic to perspective projection has a strong impact
on the results, let us introduce an analytic example of two Lambertian quadrilaterals (Fig. 1(a)). It can be shown analytically,
that perspective projection of the filled quadrilateral onto the image plane is identical to orthographic projection of the
meshy parallelogram (the mesh is for visualization purposes only). Their images (under identical directional lighting) would
also be the same, as they reside on the same plane, and hence have identical normals. This stems from the image irradiance
equation (see [5]) for a Lambertian surface illuminated by a point light source at infinity (Sect. 2.2 will describe the equation).
Consequently, the perspective image of the quadrilateral is identical to the orthographic image of the parallelogram under
the same light source (Fig. 1(b)). This implies that if the quadrilateral was photographed by a perspective camera, but
reconstructed by an ideal, orthographic algorithm, the reconstruction would be that parallelogram. Thus, the shape difference
between the two quadrilaterals is a reconstruction error inherent in the orthographic model, which cannot be overcome by
any specific orthographic algorithm. Furthermore, it can be proved that orthographic reconstruction of a rectangular image
of a 3D plane must yield a 3D parallelogram; this need not be the case if the projection is perspective, as Fig. 1 demonstrates.
(The proof is omitted for brevity.)

This example (Fig. 1) suggests that the improvement in reconstruction due to the perspective projection assumption may
be considerable, as it diminishes a major source of error in current SfS techniques.
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Preliminary results of the work described by the current paper appeared in [26]. (There, the algorithm was a very basic
one with gradient descent minimization of an energy functional). In parallel to [26], another research group, Prados &
Faugeras [18], developed the perspective image irradiance equation but with a different algorithm for its solution. The
current paper will compare these two perspective methods as well as the orthographic Fast Marching on synthetic data.

The practical contribution of this paper will be further evaluated by a reconstruction comparison of the proposed algorithm
and the original Fast Marching method on medical images taken by endoscopy from different parts of the gastrointestinal
tract. The comparison will show that perspective SfS, in contrast with orthographic SfS (see the above quote of [32]), should
be adequate for real-life applications such as endoscopy.

The paper is organized as follows. We first develop the image irradiance equation under the perspective projection model
(Sect. 2), and explain its dependence on the natural logarithm of the depth function (Sect. 2.3). Section 3 provides intuition
for surfaces in image coordinates and their reflectance maps under the perspective model. Examples of simple surfaces
(planes and paraboloids) are described. Section 4 suggests a perspective SfS algorithm based on the Fast Marching method
of [9]. Section 5 describes the comparison of orthographic Fast Marching, perspective Fast Marching and the algorithm of
Prados & Faugeras on synthetic images. In addition, it compares the orthographic and perspective Fast Marching algorithms
on medical images taken by endoscopy. Finally, Sect. 6 draws the conclusions. Appendix A derives the perspective image
irradiance equation in detail. Appendix B develops the equations for the perspective Fast Marching method and proves the
relevant theorems.

2. The Perspective Image Irradiance Equation
2.1. Notation and Assumptions
Let us first describe the notation and assumptions that hold throughout this paper. Photographed surfaces are assumed
representable by functions of real-world coordinates as well as of image coordinates. ẑ(x, y) denotes the depth function
in a real-world Cartesian coordinate system whose origin is at camera plane. If the real-world coordinate (x, y, ẑ(x, y)) is
projected onto image point (u, v), then its depth is denoted z(u, v). By definition, z(u, v) = ẑ(x, y). I(u, v) denotes the
intensity at image point (u, v). f denotes the focal length, and is assumed known. The scene object is Lambertian, and is
illuminated from direction ~L = (ps, qs,−1) by a point light source at infinity. ~N(x, y) is the surface normal.

2.2. Equation in Image Coordinates
As a first step in solving the image irradiance equation under the perspective projection model, we convert the equation into
more convenient forms. The equation is given by:

I(u, v) = ~L · ~N(x, y) (1)

where:

x = −u · ẑ(x, y)

f
(2)

y = −v · ẑ(x, y)

f
(3)

Substituting Eqs. 2, 3 and ~L
by
=
def

(ps, qs,−1) (see Sect. 2.1) into Eq. 1 yields:

I(u, v) =
1 + psẑx + qsẑy√

1 + p2
s + q2

s

√
1 + ẑ2

x + ẑ2
y

(4)

We then express ẑx and ẑy in terms of u, v, z, zu, and zv, and substitute the resultant expressions along with Eqs. 2, 3 into
Eq. 4. Appendix A derives these expressions from the projection equations, and obtains:

I(u, v) =
(u − fps)zu + (v − fqs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f2(z2

u + z2
v)

(5)

where z(u, v)
def
= ẑ(x, y) for (u, v) which is the perspective projection of (x, y, ẑ(x, y)). Equation 5 is the perspective image

irradiance equation.
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2.3. Dependence on ln(z(u,v))

Equation 5 shows direct dependence on both z(u, v) and its first order derivatives. If one employs ln(z(u, v)) instead of
z(u, v) itself (by definition z(u, v) > 0), one obtains the following equation:

I(u, v) =
(u − fps)p + (v − fqs)q + 1√

1 + p2
s + q2

s

√
(up + vq + 1)2 + f2(p2 + q2)

(6)

where p
def
= zu

z
= ∂ ln z

∂u
and q

def
= zv

z
= ∂ ln z

∂v
. Eq. 6 depends on the derivatives of ln(z(u, v)), but not on ln(z(u, v)) itself.

Consequently, the problem of recovering z(u, v) from the image irradiance equation reduces to the problem of recovering the
surface ln(z(u, v)) from Eq. 6. Because the natural logarithm is a bijective mapping and z(u, v) > 0, recovering ln(z(u, v))
is equivalent to recovering z(u, v) = eln(z(u,v)).

The image irradiance equation under orthographic projection is invariant to translation of ẑ(x, y), which means ẑ(x, y)+c

(for constant c) produces the same intensity function as ẑ(x, y). In contrast, the perspective image irradiance equation (Eq. 5)
is invariant to scale changes of z(u, v). That is, the intensity functions of c · z(u, v) and z(u, v) are identical. This follows
from the properties of the natural logarithm, and can also be verified by Eqs. 5, 6. Invariance to scaling seems to be a more
plausible assumption than invariance to translation when employing real cameras.

3. The Perspective Irradiance Equation of Simple Surfaces
We next provide some analytic examples of surfaces and their representation in the image coordinate system (u, v, z(u, v)),
and their reflectance map (R(u, v)) under the perspective model. These formulae would sharpen the difference between
the orthographic and perspective models and would give the reader some intuition for the difference between the real-world
representation of a surface (x, y, ẑ(x, y)) and its representation in image coordinates (u, v, z(u, v)) under the perspective
model (under the orthographic model, these representations are identical).

We examine two types of real-world surfaces: planes and paraboloids.

3.1. Planes
Let us consider a general plane:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0)

where a, b, x0, y0, z0 are constants. Substituting image coordinates (u, v) according to the perspective projection equations
and solving for z(u, v) yields:

z(u, v) = z0
f + au0 + bv0

f + au + bv
(7)

where u0
def
= − f ·x0

z0
, v0

def
= − f ·y0

z0
. The last equation states that the depth of the planar surface at point (u, v) is proportional

to the reciprocal of au + bv. The opposite takes place in orthographic projection: x ∝ u, y ∝ v, and hence depth is
proportional to au + bv = ax + by, by definition of ẑ(x, y).

Under both perspective and orthographic projections, the image irradiance equation becomes:

R(u, v) =
psa + qsb + 1

‖~L‖
√

a2 + b2 + 1
(8)

This fact is trivial for the orthographic projection. In [27] we derive this equation for the perspective case as well. The
equation shows that for a planar object the image irradiance is constant (i.e., independent of u and v) under both projection
models.

3.2. Paraboloids
3.2.1. Canonical Paraboloids

We first consider a canonical paraboloid of the form:

ẑ(x, y) = ax2 + by2
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Its representation in image coordinates under perspective projection is:

z(u, v) =

{
f

au2+bv2 , if au2 + bv2 6= 0

0, if au2 + bv2 = 0

Again, the perspective and orthographic equations are reciprocal (up to a scale factor).
The reflectance map in this case is:

R(u, v) =
2f(psau + qsbv) − (au2 + bv2)

‖~L‖
√

au2 + bv2
√

au2 + bv2 + 4f2

3.2.2. General Paraboloids

For a general paraboloid of the form:

ẑ(x, y) = z0 + a(x − x0) + b(y − y0) + c(x − x0)
2 + d(y − y0)

2 + e(x − x0)(y − y0)

the image coordinate representation is:

z(u, v) =
S(u, v) −

√
S2(u, v) − 4T (u, v)P

2T (u, v)
(9)

where:

T (u, v)
def
= cu2 + dv2 + euv

S(u, v)
def
= f2 + u(fa + 2cu0z0 + ev0z0) + v(fb + 2dv0z0 + eu0z0)

P
def
= z0f(f + au0 + bv0) + z2

0(cu
2
0 + dv2

0 + eu0v0)

(assuming T (u, v) 6= 0). The reflectance formula in this case is omitted due to its complexity. Even though there exists
another solution to the quadratic equation, in the general case that solution is not physical. This is because substitution of z0

into the other solution results in z(u0, v0) 6= z0 (unless f + au0 + bv0 = 0), which contradicts the definition of z0.

4 Perspective Fast Marching
This section suggests a perspective SfS algorithm. The algorithm is a modification of the Fast Marching method of Kimmel
and Sethian [9] from the orthographic set of assumptions to the perspective one.

4.1 Solving The Approximate Problem

The algorithm of Kimmel and Sethian [9] stems from the orthographic image irradiance equation: I(x, y) = ~L · ~N(x, y).
This equation is known as the Eikonal equation and can be written as:

p2 + q2 = F̃ 2

where p
def
= zu = zx, q

def
= zv = zy and F̃ =

√
(I(x, y))−2 − 1. Similarly, the perspective image irradiance equation (Eq. 5),

can be transformed into the form:
p2A1 + q2B1 = F̂ (10)

where A1 and B1 are positive and independent of p as well as of q. F̂ , on the other hand, depends on both p and q. The
complete expressions for A1, B1 and F̂ appear in Appendix B.

Following [9], we use the numerical approximation (originally introduced in [21] as a modification of the scheme of [15]):

pij ≈ max{D−u
ij z,−D+u

ij z, 0}
qij ≈ max{D−v

ij z,−D+v
ij z, 0}
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where D−u
ij z

def
=

zij−zi−1,j

∆u
is the standard backward derivative and D+u

ij z
def
=

zi+1,j−zij

∆u
, the standard forward derivative in

the u-direction (zij
def
= z(i · ∆u, j · ∆v)). D−v

ij z and D+v
ij z are defined in a similar manner for the v-direction.

The motivation for employing this numerical scheme is due to its consistency and monotonicity. For the Eikonal equation,
Rouy & Tourin [21] have shown that an iterative algorithm based on this scheme with Dirichlet boundary conditions on image
boundaries and at all critical points converges towards the viscosity solution with the same boundary conditions. Existence
of the viscosity solution has been proven in [14] and uniqueness, in [21] and [7]. Sethian [24] have proven that the Fast
Marching algorithm produces a solution that everywhere satisfies the discrete version of the Eikonal equation.

Substituting the numerical approximation into Eq. 10, we get the discrete equation:

(
max{D−u

ij z,−D+u
ij z, 0}

)2
A1 +

(
max{D−v

ij z,−D+v
ij z, 0}

)2
B1 = F̂ij (11)

where F̂ij
def
= F̂ (i · ∆u, j · ∆v). As Appendix B details, the solution of this equation at every point (i, j) is:

z =





z1 +
√

F̂
A1

, if z2 − z1 >

√
F̂
A1

z2 +
√

F̂
B1

, if z1 − z2 >

√
F̂
B1

A1z1+B1z2±

√
(A1+B1)F̂−A1B1(z1−z2)2

A1+B1
, otherwise

(12)

where z1
def
= min{zi−1,j , zi+1,j} and z2

def
= min{zi,j−1, zi,j+1}.

4.2 The Iterative Solution
An important observation described in [9] is that information always flows from small to large values at local minimum
points. Based on this, the orthographic Fast Marching method reconstructs depth by first setting all z values to infinity, and
the correct height value at the local minima. Then, every step extends the reconstruction to higher depths. Reconstruction is
thus achieved by a single pass.

Nevertheless, a single pass cannot solve the aforementioned formulation of the perspective problem (Eq. 11), because the
approximate solution (the right-hand side of Eq. 12) depends on F̂ , which depends on both p and q. Hence, we suggest an
iterative method. In every iteration, F̂ is calculated according to the depth recovered by the previous iteration. Based on this
approximation of F̂ and on Eq. 12, a solution is calculated for the new iteration. We initialize this process by the orthographic
Fast Marching method of [9].

Following each iteration, the resulting depth map was normalized (i.e., divided by the norm of all depth values). This
preserves a correct reconstruction, because the perspective SfS is invariant to multiplication by constant (see Sect. 2.3).

5. Experimental Results
5.1. The Experiments
To evaluate the contribution of perspective SfS, we compared it with the Fast Marching method of Kimmel & Sethian [9].
The reason for selecting this orthographic algorithm for the comparison is triple. First, we consider the Fast Marching
method a state-of-the-art technique. Second, in [26] we compared three orthographic methods (Lee & Kuo [11], Zheng &
Chellappa [34] and Kimmel & Sethian [9]) with a basic perspective method that was suggested there (based on gradient
descent). Among these three orthographic methods, the Fast Marching method performed best. Third, the fact that the
suggested perspective method is based on this orthographic method, neutralizes the effect of the numerical scheme on the
results. Therefore, any improvement would be a consequence of the transition to the perspective equation, and not of the
different ways of solving the equations.

Recently, another perspective algorithm has been suggested by Prados & Faugeras [18] in parallel to ours. We compare
our algorithm with this algorithm as well.

An important advancement over [26], which compares merely synthetic images, is the experimentation with real images.
In addition to a demonstration with synthetic data, we compared the orthographic and perspective Fast Marching algorithms1

on medical images taken by endoscopy.

1The algorithm of Prados & Faugeras could not be compared on real data, as it requires the exact depth function on the boundaries (Dirichlet condition).
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5.1.1. Experiments with Synthetic Images

All synthetic input images were produced from an original surface ẑ(x, y) in the real world. The surface was projected onto
plane [uv] according to the perspective projection equations (Eqs. 2, 3). A rectangular area bounded by the projection and
symmetric about the optical axis was uniformly sampled. The original surface ẑ(x, y) was then interpolated to the sampling
points. The orthographic image irradiance equation then served to create the intensity at each point. This procedure was
applied to avoid direct usage of the perspective formula, which the proposed algorithm attempts to recover.

A large amount of synthetic inputs was examined, but only few can fit into this paper. Section 5.2 provides representative
examples.

To evaluate the contribution of the perspective Fast Marching, we compared it with two other algorithms: an orthographic
algorithm (Fast Marching by Kimmel & Sethian [9]) and a different perspective algorithm (by Prados & Faugeras [18]).

We evaluated the performance of the algorithms on synthetic images according to three criteria adopted from Zhang et
al. [32]: mean depth error, standard deviation of depth error, and mean gradient error. For completeness, we also supply the
standard deviation of gradient error, although it is considered not physical.

Notwithstanding, the adoption of orthographic criteria (such as the above) to the perspective case is nontrivial. In contrast
with a pure orthographic comparison (as in [32]), where reconstructed [xy] domains are guaranteed to be rectangular, in a
perspective comparison each algorithm may recover a different [xy] domain. Thus, the resultant surface points need not have
the same (x, y) rates as points on the original surface. Consequently, scaling the recovered surface to fit the original (due to
invariance to depth scaling; see Sect. 2.3) is also more complicated. The scaling now need be calculated by surface samples
at different (x, y) locations.

To best fit the reconstructed [xy] domains to the true ones (in the least-squares sense), we scaled them linearly. In order to
determine a scale factor for the depth functions (ẑ(x, y) = z(u, v)) we projected the reconstructed surface onto the true one,
and calculated the scale factor between reconstructed points and their projection. The distance from reconstructed points to
the projections was taken as the distance for mean depth error.

We considered three methods of projection:

1. The trivial one, to compare depths at points corresponding to the same image pixel. This method ignores the discrepancy
in [xy] domain.

2. To interpolate and extrapolate the original surface by a Thin-Plate spline, and approximate the z value of the original
surface at the (x, y) rates where the reconstructed surface is provided. Thus, projection is vertical (i.e., parallel to the
z-axis).

3. To project reconstructed points onto the true surface using an approximation of the Moving Least Squares (MLS) method
[13]. The main idea is to project a point onto a surface by finding the nearest neighbor of the point among surface points,
approximating a plane in its vicinity (from surface points), and projecting the point onto this plane, perpendicularly.
Then, the surface is approximated by Weighted Least Squares in a local coordinate system (defined by this plane) at the
point of projection. This type of projection is locally perpendicular to the target surface.

When comparing orthographic and perspective algorithms, measures based on the first two method led to inconclusive results.
The comparison we describe hereafter would therefore be based upon the third projection, Moving Least Squares.

5.1.2. Experiments with Real Images — Endoscopy

We studied endoscopic images taken from different parts of the gastrointestinal channel.
Endoscopy is a practical field of life on the one hand, while it has the advantage of a controlled light source environment,

on the other hand. The light source can be considered a point light source, but not an infinitely distant one. To overcome this
limitation, we worked on a small portion of the original endoscopic image at a time. This had a double effect. First, light
in this case came from a narrow range of directions, which could be approximated by a constant lighting direction. Second,
because the light source and camera were adjacent, a narrower range of distances from object to camera meant a narrower
range of distances to the light source as well. This diminished the decay of illumination strength with distance.
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5.1.3. Algorithm Implementation

We tested the algorithm of Kimmel & Sethian using two implementations. First, we extended the implementation of the Fast
Marching method by the Technical University of Munich2 to accommodate the oblique light source case as well. Then, to
ensure the correctness, we re-implemented the algorithm from scratch. Both implementations gave similar results. In the
comparison, we quote our own implementation, but results are practically the same with both.

The code of the orthographic Fast Marching served as the basis for the implementation of the perspective Fast Marching
too. Thus again, two implementations were produced and verified.

The implementation of the algorithm of Prados & Faugeras [18] is courtesy of the original authors. To be consistent with
the original paper, the implementation starts from a subsolution and uses Dirichlet boundary data on image boundaries and at
all the critical points. The stopping criterion was a threshold of 10−10 on the difference between the surfaces reconstructed
by two successive iterations.

5.1.4. Parameters and Visualization Issues

The three algorithms under study assume that light source direction is known. For the synthetic images the true direction was
provided, but for the endoscopic images these data were unavailable. We therefore utilized very rough estimations of light
source directions. A human viewer estimated the azimuth and elevation of the light source direction from the endoscopic
image itself in multiples of π

8 or π
6 radians. The same estimated direction was supplied to all methods.

In addition, perspective SfS requires the knowledge of the focal length f . Our implementation arbitrarily set an identical
value for all examples.

Another kind of data required by all three algorithms is the points of local minimal depth. Again, for the synthetic
examples the true data was supplied, while for the real ones a human viewer visually located the points in the photographs,
and set their depth to an arbitrary constant (identical for all real images).

The algorithm of Prados & Faugeras was supplied with the Dirichlet boundary data extracted from the synthetic images.
It was also supplied with the true [uv] grid size used to construct the images.

As a post-processing step, all real-image reconstructions underwent a translation and a rotation to convert camera coordi-
nates to object coordinates, for better visualization.

The suggested algorithm converges very fast. No more than 2 iterations, in addition to the orthographic stage, were
necessary for the perspective Fast Marching method to converge on real-life images. We demonstrate this in our comparison
by inclusion of images of 5 iterations per example, all of which appear to be visually the same. We exploit the excessive
images to provide more viewing angles of the perspective reconstruction. Viewing angles were selected so as to let the reader
appreciate the three-dimensionality of reconstructed surfaces.

In all real examples, the orthographic reconstruction and the perspective reconstruction after 1 iteration were plotted from
an identical viewpoint to allow their visual comparison. Also, the same illumination and albedo were used to reproduce the
orthographic and perspective surfaces.

5.2. Comparative Evaluation of Synthetic Examples
The synthetic surfaces we study are described in Table 1. Figure 2 shows the original image of each example (size: 50 × 50
pixels), the real surface and reconstruction by three algorithms: orthographic Fast Marching, perspective Fast Marching and
the perspective algorithm of Prados and Faugeras [18]. The reconstructed surfaces and the real ones are juxtaposed in Fig. 3.
Tables 4–6 summarize the error rates according to the aforementioned criteria.

Example #1: Perspective Fast Marching and Prados & Faugeras gained error rates lower than those of the orthographic
Fast Marching according to all measures. Perspective Fast Marching performed better than Prados & Faugeras according to
mean and standard deviation of depth error. Prados & Faugeras performed better than perspective Fast Marching according
to mean gradient error. In general, both perspective algorithms are better than orthographic Fast Marching, while they equate
with each other, both being based on the same equation.

Example #2: Perspective Fast Marching has lower mean depth and gradient errors than the orthographic version. The
orthographic Fast Marching has lower standard deviation of depth error than the perspective Fast Marching. Prados &
Faugeras obtains lowest mean and standard deviation of the depth error, but highest mean gradient error. In a visual inspection

2Folkmar Bornemann, Technical University of Munich, WiSe 00/01, 11.12.2000, http://www-m8.mathematik.tu-muenchen.de/m3/teaching/
PDE/begleit.html
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Formula: ~L = x ∈ y ∈
1. ẑ(x, y) = 300 + 30(sin(2x) + sin(2y)) (0, 0,−1) [−3.0788, 3.054] [−3.0788, 3.054]
2. Vase image. The image was slanted by 20o

about the x-axis, because otherwise the
background would have a constant depth
and need be supplied to Fast Marching as
minima points.

(0, 0,−1) [−12.3654, 12.3654] [−12.3654, 12.3654]

3. ẑ(x, y) = 5(cos(
√

x2 + (y − 2)2) +

cos(
√

x2 + (y − 1)2) +

cos(
√

x2 + (y + 2)2)) + 100

(0, 0,−1) [−2.9016, 2.9016] [−2.9478, 2.9486]

4. ẑ(x, y) = ln(
√

x2 + y2) (0, 0,−1) [−15.3283, 15.3283] [−15.3283, 15.3283]
5. ẑ(x, y) = sin(2x), ẑ(x, y) is then rotated

by 20o about the x-axis and the result is
scaled by factor of 2 and translated by 20

(0, 1,−1) [−2.5820, 2.5276] [−1.9440, 2.3582]

Table 1: The formulae and parameters of four typical synthetic examples. These examples were part of a much larger
comparison, and would be described in detail herein.

Algorithm: No. of Mean Depth Std. Dev. of Mean Gradient Std. Dev. of
Iterations: Error: Depth Error: Error: Gradient Error:

Kimmel & Sethian: 1 0.46340 0.31221 51.79201 1862.09956
Perspective FM: 1st 0.44414 0.31049 21.42945 202.78671
Perspective FM: 2nd 0.31569 0.23315 58.57205 1112.16660
Perspective FM: 3rd 0.31123 0.22648 22.57623 376.79622
Perspective FM: 4th 0.30853 0.22492 19.27577 254.64257
Perspective FM: 5th 0.30787 0.22477 29.18984 623.03837
Prados & Faugeras: 169 0.32077 0.25668 26.82533 274.27769

Table 2: Comparison of algorithms on example #1.

Algorithm: No. of Mean Depth Std. Dev. of Mean Gradient Std. Dev. of
Iterations: Error: Depth Error: Error: Gradient Error:

Kimmel & Sethian: 1 4.66332 2.47092 0.08462 0.59064
Perspective FM: 1st 3.02464 3.29558 0.06061 0.69701
Perspective FM: 2nd 3.11067 3.28568 0.06012 0.69318
Perspective FM: 3rd 3.11062 3.28573 0.06010 0.69300
Perspective FM: 4th 3.11062 3.28573 0.06010 0.69301
Perspective FM: 5th 3.11062 3.28573 0.06010 0.69301
Prados & Faugeras: 89 1.80394 1.15217 0.30808 2.06713

Table 3: Comparison of algorithms on example #2.
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Algorithm: No. of Mean Depth Std. Dev. of Mean Gradient Std. Dev. of
Iterations: Error: Depth Error: Error: Gradient Error:

Kimmel & Sethian: 1 0.58363 0.44509 12.16410 120.05034
Perspective FM: 1st 0.41374 0.27841 8.13954 284.45168
Perspective FM: 2nd 0.09686 0.06990 0.40490 2.60023
Perspective FM: 3rd 0.09474 0.06947 0.32935 1.00981
Perspective FM: 4th 0.09455 0.06935 0.31795 0.80138
Perspective FM: 5th 0.09455 0.06938 0.31755 0.80125
Prados & Faugeras: 356 0.03068 0.03564 0.15031 0.25134

Table 4: Comparison of algorithms on example #3.

Algorithm: No. of Mean Depth Std. Dev. of Mean Gradient Std. Dev. of
Iterations: Error: Depth Error: Error: Gradient Error:

Kimmel & Sethian: 1 0.16896 0.10483 0.08623 0.16119
Perspective FM: 1st 0.08131 0.06237 0.04360 0.09746
Perspective FM: 2nd 0.07401 0.05411 0.02924 0.06335
Perspective FM: 3rd 0.07418 0.05436 0.03056 0.06359
Perspective FM: 4th 0.07419 0.05437 0.03058 0.06361
Perspective FM: 5th 0.07419 0.05437 0.03058 0.06361
Prados & Faugeras: 35 0.07950 0.06459 0.03628 6.94938

Table 5: Comparison of algorithms on example #4.

Algorithm: No. of Mean Depth Std. Dev. of Mean Gradient Std. Dev. of
Iterations: Error: Depth Error: Error: Gradient Error:

Kimmel & Sethian: 1 0.35744 0.21890 9.10098 284.53313
Perspective FM: 1st 0.34954 0.23540 6.74028 88.13782
Perspective FM: 2nd 0.40338 0.25898 2.28858 4.98138
Perspective FM: 3rd 0.40178 0.26164 16.31858 164.50187
Perspective FM: 4th 0.40222 0.26133 8.77626 38.31631
Perspective FM: 5th 0.40249 0.26089 14.39487 216.13707
Prados & Faugeras: 73 0.38651 0.25717 5.27366 32.45018

Table 6: Comparison of algorithms on example #5.
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Original Real Orthographic Perspective Prados & Faugeras:
Image: Surface: Fast Marching: Fast Marching:

1.

−3
−2

−1
0

1
2

−3

−2

−1

0

1

2

250

300

350

−2
0

2
−2

0

2

280
300
320

−0.6
−0.4

−0.2
0

0.2
0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.95

1

1.05

−2
0

2
−2

0

2

260
280
300
320

2.

−20
−10

0
10

20

−20
−10

0
10

20

90

95

100

105

xy

z(
x,

y)

−20
−10

0
10

20

−20
−10

0
10

20

96

98

100

102

−30
−20

−10
0

10
20

30

−20

0

20

0.998

0.999

1

1.001

1.002

1.003

1.004

−20
−10

0
10

−20
−10

0
10

20

90

95

100

105

3.

−2
−1

0
1

2

−2
−1

0
1

2

90

95

100

xy

z(
x,

y)

−2
−1

0
1

2

−2
−1

0
1

2

93.5

94

94.5

95

95.5

96

96.5

−2
−1

0
1

2

−2
−1

0
1

2

85

90

95

100

−2
−1

0
1

2

−2
−1

0
1

2

90

95

100

4.

−2
−1

0
1

2

−2
−1

0
1

2

9

9.5

10

10.5

11

11.5

12

xy

z(
x,

y)

−2
−1

0
1

2

−2
−1

0
1

2

9

9.5

10

10.5

11

−2
−1

0
1

2

−2
−1

0
1

2

9

9.5

10

10.5

11

11.5

−2
−1

0
1

2

−2
−1

0
1

2

9

9.5

10

10.5

11

11.5

12

5.

−2
−1

0
1

2

−2
−1

0
1

2

17

18

19

20

21

22

23

xy

z(
x,

y)

−2
−1

0
1

2

−2
−1

0
1

2

18.5

19

19.5

20

20.5

21

21.5

−2
−1

0
1

2

−2
−1

0
1

2

19.8

20

20.2

20.4

20.6

−2
−1

0
1

2

−2
−1

0
1

2

19.5

20

20.5

21

21.5

22

Figure 2: Comparison of surfaces reconstructed by the orthographic Fast Marching, perspective Fast Marching, and the
perspective algorithm of Prados and Faugeras [18]. The leftmost column indicates the serial number of the example (see
Table 1). In Examples #1,#2, some spikes in the reconstruction by perspective Fast Marching were cropped for better
visualization only.

it is clear that except for some peaks, the perspective Fast Marching generated a reconstruction most similar to the original.
(Fig. 2; Indeed, removing the peaks would result in lowest error rates according to all criteria.)

Example #3: Perspective Fast Marching and Prados & Faugeras performed significantly better than orthographic Fast
Marching according to all error criteria. Prados & Faugeras performed better than perspective Fast Marching according to all
error criteria.

Example #4: The two perspective methods perform better than the orthographic. Perspective Fast Marching gained lower
error rates than Prados & Faugeras according to all criteria. This can be seen in Fig. 2 especially by the more accurate shape
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Original Orthographic Perspective Prados & Faugeras:
Image: Fast Marching: Fast Marching:
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Figure 3: Juxtaposition of the surfaces reconstructed by the three algorithms and the true surfaces. The leftmost column
indicates the serial number of the example (see Table 1). In Example #1, some spikes in the reconstruction by perspective
Fast Marching were cropped for better visualization only.
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of perspective Fast Marching at the vicinity of the peak. Bear in mind that the smoother surface at image boundaries obtained
by Prados & Faugeras is due to their requirement of Dirichlet boundary condition at both critical points and image boundaries
(i.e., true depth is supplied to Prados & Faugeras on the boundaries as well).

Example #5: In this example orthographic Fast Marching obtained lowest error rates according to mean and standard
deviation of depth error. It gained lower mean gradient error than perspective Fast Marching, but higher than Prados &
Faugeras. Nevertheless, visual inspection of the perspective Fast Marching and the algorithm of Prados & Faugeras (Fig. 2)
reveals, that both algorithms managed to reconstruct the sinusoidal structure of the true surface (with some errors), while
orthographic Fast Marching did not recover this structure at all. The original surface consists of parallel sinusoidal waves,
but due to the perspective projection, the images of the crests become unparallel. The perspective methods succeeded to
recover this structure, but the orthographic Fast Marching reconstructed waves which are neither parallel nor uniform along
the y-axis. It reconstructed one of the sinusoidal waves approximately half-sized and with incorrect orientation (unparallel to
the y-axis). The other wave is again unparallel to the y-axis, with one orientation for positive y-rates and another for negative
ones.

We see that in most examples, the perspective methods obtained lower error rates than the orthographic one. Nevertheless,
there were cases when the orthographic method gained lower error rates according to all or some criteria. In these cases
(as exemplified by Examples #2, #5), the orthographic reconstruction appears to be inferior to the perspective ones in visual
inspection. This demonstrates why error measures common in the literature, such as mean and standard deviation of depth or
gradient errors, disagree with human vision. While the errors ranked the orthographic Fast Marching as best in Example #5,
visual inspection revealed its failure to recover the underlying sinusoidal structure (in contrast with the perspective methods).
In Example #2, the measures failed to show that except for a very small portion of the image (the peaks) the reconstruction
by perspective Fast Marching was very accurate. This mainly stem from incorrect scaling in the first stage of the computation
of the measures (cf. the perspective Fast Marching in Fig. 2 with its appearance in Fig. 3, where the peaks were not cropped).

Another important factor in a reconstruction comparison is the projection of the reconstructed surface onto the original
one. This is especially important for perspective algorithms, where scaling of the surface and its comparison in real-world co-
ordinates are sensitive to this projection. An inaccurate scaling process can change comparison results drastically. Improving
the error measures or the projection model is beyond the scope of this paper, and is a subject for future research.

While the perspective Fast Marching and the algorithm of Prados & Faugeras equate when considering the quality of
the reconstructions they produce, perspective Fast Marching has three important advantages over the algorithm of Prados &
Faugeras:

1. It requires a significantly lower number of iterations to converge, at least 1–2 orders of magnitude on the simple synthetic
images examined.

2. The algorithm of Prados & Faugeras uses the full knowledge of the focal length and the [uv] grid on which the image
has been produced. The perspective Fast Marching, on the other hand, lacks the grid size information, and thus spaced
the grid with 1 unit intervals. This is equivalent to lack of knowledge of the focal length f .

3. Perspective Fast Marching does not require a Dirichlet boundary condition on image boundaries. Knowledge of the true
boundary depth is not trivial to obtain (unlike depth at minima points, where a global topology solver can be applied [8],
[2], [9]). [If one had an algorithm to obtain the boundary depth, one could run this algorithm, then crop the boundary of
the image, re-run the algorithm, etc. and thus build the depth map from the boundary inward.]

5.3. Comparison on Real Medical Images
Figure 4A shows the gastric fundus3. The cropped version of this image focuses on a cavity with folded walls (Fig. 4B). The
orthographic Fast Marching method failed to recover the cavity. Straight horizontal folds were recovered instead of curved
gastric folds along cavity walls (Fig. 4C). These showed little match to the true ones. The perspective method presented
high correspondence of both the cavity and its folds to the contents of the original image (Figs. 4D–H). Figures 4D–H show
perspective reconstruction after 1–5 perspective iterations. As no significant improvement occurred at the second or higher
iterations, we use different viewing angles to emphasize the 3D structure. Figures 4C,D have an identical viewpoint, which
enables their visual comparison.

Figure 5A introduces the gastric angulus3. The cropped version of this image contains three folds (Fig. 5B). The ortho-

3Image from www.gastrolab.net, courtesy of The Wasa Workgroup on Intestinal Disorders, GASTROLAB, Vasa, Finland.
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A. Original. B. Cropped image.

C. Orthographic reconstruction. D. Perspective reconstruction (1 iter.). E. Perspective reconstruction (2 iters.).

F. Perspective reconstruction (3 iters.). G. Perspective reconstruction (4 iters.). H. Perspective reconstruction (5 iters.).

Figure 4: The gastric fundus (cropped image size: 64 × 64 pixels). Perspective reconstruction is visually the same at all
iterations; we exploit this to display more viewing directions of the reconstructed surface. The viewpoint in (C) and (D) is
identical.

graphic method reconstructed one fold, but instead of the second one, a bend of the surface was recovered. Between the first
and second folds there was a very prominent pyramid-like cavity. The third fold is missing (Fig. 5C). Perspective recon-
struction clearly recovered all three folds (Figs. 5D–H). In Figs. 5D–H, pay special attention to the change in width of the
shadow casted by the folds. The visible part of the shadow alters between different viewing directions. This implies that the
reconstructed folds are indeed three dimensional. Fig. 5H emphasizes the height of each fold above the gastric wall.

Figure 6A exhibits the descending duodenum3. The cropped version contains three plicae circulares (folds typical of the
small intestine; Fig. 6B). The orthographic method yielded two surfaces with a sharp edge between them, which did not
appear in the original data (Fig. 6C). In contrast, the perspective version recovered all three folds correctly (Figs. 6D–H).
Fig. 6H is a side view of the folds which lets their different heights be appreciated.

Figure 7A presents an inverted appendix4. Figure 7B focuses on the appendiceal orifice; its image is of low quality.
4Image from www.gastrointestinalatlas.com, courtesy of the Department of Gastroenterology, Hospital Centro de Emergencias, Jerusalem Medical
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A. Original. B. Cropped image.

C. Orthographic reconstruction. D. Perspective reconstruction (1 iter.). E. Perspective reconstruction (2 iters.).

F. Perspective reconstruction (3 iters.). G. Perspective reconstruction (4 iters.). H. Perspective reconstruction (5 iters.).

Figure 5: The gastric angulus (cropped image size: 64 × 64 pixels). The perspectively reconstructed surface is visually the
same at all iterations; we use this fact to show more viewing angles of the surface. The viewpoint in (C) and (D) is identical.

Figure 7C presents the reconstruction by the orthographic Fast Marching method, which recovered merely horizontal folds.
Figs. 7D–H introduce perspective reconstruction. The appendiceal orifice was faithfully reconstructed.

Figure 8A shows the colon ascendens3. Figure 8B shows three plicae semicircularis (typical folds of the large intestine)
from Fig. 8A. Even though this image visually resembles Fig. 5B, bear in mind that it is of a different part of the gas-
trointestinal tract. Figure 8C shows the orthographic reconstruction, while Figs. 8D–H, the perspective. The orthographic
reconstruction produced horizontal and vertical folds which did not exist in the original image. Two of the main folds could
difficultly be noticed in the reconstruction (center and bottom–left of Fig. 8C). Both of these folds suffered strong noise in
the form of short vertical folds. In the perspective reconstruction, all three folds were prominent.

Center, San Salvador, El-Salvador.
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A. Original. B. Cropped image.

C. Orthographic reconstruction. D. Perspective reconstruction (1 iter.). E. Perspective reconstruction (2 iters.).

F. Perspective reconstruction (3 iters.). G. Perspective reconstruction (4 iters.). H. Perspective reconstruction (5 iters.).

Figure 6: The descending duodenum (cropped image size: 40× 40 pixels). The appearance of the perspective reconstruction
is similar at all iterations; we use this fact to present more viewing directions of the surface. The viewpoint in (C) and (D) is
identical.

Even though both algorithms use the same numerical methodology, the perspective Fast Marching appears to outrank the
orthographic one. This suggests that the assumption of a perspective rather than an orthographic image irradiance equation
yields an important improvement in reconstruction.

While many orthographic algorithms rival the best numerical way to solve the classic equation, the suggested one adopts its
numerical scheme from Kimmel and Sethian [9] and thus avoids competition in the numerical arena. Instead, it demonstrates
that the perspective equation may be better suited for the task of SfS.
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A. Original. B. Cropped image.

C. Orthographic reconstruction. D. Perspective reconstruction (1 iter.). E. Perspective reconstruction (2 iters.).

F. Perspective reconstruction (3 iters.). G. Perspective reconstruction (4 iters.). H. Perspective reconstruction (5 iters.).

Figure 7: An inverted appendix (cropped image size: 40 × 40 pixels). Perspective reconstruction is visually the same at
all iterations; we exploit this to show more viewing angles of the reconstructed surface. The viewpoint in (C) and (D) is
identical.

6. Conclusions
This research re-examined the roots of the field of Shape-from-Shading, the image irradiance equation. We reformulated the
equation under the assumption of perspective projection and showed its dependence on the natural logarithm of the depth
function. Based on this equation, a perspective variant of the Fast Marching method of Kimmel & Sethian [9] was developed.

We compared three algorithms: the orthographic Fast Marching, the perspective Fast Marching and the perspective algo-
rithm of Prados & Faugeras [18]. In general, the two perspective methods showed lower error rates than the orthographic,
while they equated in accuracy with each another.
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A. Original. B. Cropped image.

C. Orthographic reconstruction. D. Perspective reconstruction (1 iter.). E. Perspective reconstruction (2 iters.).

F. Perspective reconstruction (3 iters.). G. Perspective reconstruction (4 iters.). H. Perspective reconstruction (5 iters.).

Figure 8: The colon ascendens (cropped image size: 50 × 50 pixels). Perspective reconstruction is visually the same at all
iterations; again, more viewing angles of the reconstructed surface are introduced this way. The viewpoint in (C) and (D) is
identical.

Even though the perspective Fast Marching and Prados & Faugeras exhibited similar accuracy performance, the perspec-
tive Fast Marching has three important advantages. First and foremost, perspective Fast Marching needs orders of magnitude
less iterations to converge than the algorithm of Prados & Faugeras (each iteration has similar complexity for both algo-
rithms). Indeed, proving the convergence of the perspective Fast Marching is still an open issue, but in practice no more than
5 iterations were ever necessary (on both synthetic and real images). Second, the algorithm of Prados & Faugeras requires
prior knowledge of the true depth on image boundary (Dirichlet boundary condition). This requirement is nontrivial and in
practice cannot be obtained for real-life images. This requirement does not exist for the perspective Fast Marching method.
Third, the algorithm of Prados & Faugeras uses the grid size on which the image was constructed. This data cannot be
obtained unless exact camera parameters are available. Lack of these data (as is the case for the perspective Fast Marching
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method) is equivalent to lack of knowledge of the true focal length of the camera.
Despite the comparison results described above, it is important to pay attention to the fact, that a comparison of perspective

algorithms is more complex than in the orthographic case. Perspective algorithms produce their own [xy] domain, which has
to be fit to the original one. This scaling of the domain, along with scaling of the surface to fit the original (due to invariance
to depth scaling) are sensitive to the method used for projecting one surface onto the other.

In addition, error measures common in the literature (see [32]), namely: mean and standard deviation of depth and
gradient errors, are also sensitive to noise. This is due to their pixel-wise nature. Translation of a reconstructed feature of
the surface by 1 pixel from the original may cause a drastic change in mean and standard deviation of the depth error, for
example. In addition, the need for scaling described above increases the sensitivity of the measures. Their inaccuracy is
further demonstrated by disagreements between different measures when comparing the perspective Fast Marching method
with the algorithm of Prados & Faugeras (see Example #1, Sect. 5.2): some measures rendered the perspective Fast Marching
method better, while others, that of Prados & Faugeras. Another important deficiency in these measures is their discordance
with human visual inspection. As Example #5 shows, lower error rates according to these measures not necessarily reflect
better correspondence to the original surface from a human point of view. Development of more adequate error measures is
beyond the scope of the current paper.

As a result of the above, visual inspection remains a major evaluation technique. As such, fitness of SfS algorithms for
real-life tasks should mainly be evaluated visually for the specific task under consideration. Zhang et al. [32] draws similar
conclusions, saying synthetic images has low predictive power for real-life images.

To show the aptness of perspective SfS to real-life tasks, we compared reconstruction by the orthographic and perspective
variants of the Fast Marching method on endoscopic images from different parts of the gastrointestinal channel. It appears that
perspective SfS outperformed the orthographic Fast Marching method. As we compared two variants with a similar numerical
basis, the results seem related to the underlying assumptions, rather than to the numerical methodology. Consequently, we
infer that the perspective assumption yields a significant improvement in reconstruction.

From the practical point of view, the comparison demonstrated that perspective SfS could be used for real-life images. The
application to endoscopy suggests that, unlike orthographic SfS, perspective SfS should be robust enough to handle real-life
images.
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A Deriving The Perspective Image Irradiance Equation
We next develop the formula of the perspective image irradiance equation in image coordinates u, v.

Let us define a scene surface S = {(x, y, ẑ(x, y)) : (x, y) ∈ Ωscene} where Ωscene is an open domain. Due to the
perspective projection equations this surface can be written as: S = {(−uz

f
, −vz

f
, z(u, v)) : (u, v) ∈ Ωimage} where Ωimage

is an open domain. Let us assume the surface is differentiable with respect to (u, v) and also with respect to (x, y). The
surface is depicted in Fig. 9.

In addition, let us assume that surface S is Lambertian and visible from all points of Ωimage under the perspective
projection model. A point light source at infinity illuminates the scene from direction: ~L = (−ps,−qs, 1). The image
intensity in image coordinates is a function I : Ωimage 7−→ [0, 1], which maps the brightness of S as observed at point
(u, v,−f) to image coordinate (u, v).

Theorem 1 Under the above definitions and assumptions, the perspective image irradiance equation is:

I(u, v) =
(u − fps)zu + (v − fqs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f2(z2

u + z2
v)

(13)
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Figure 9: The image plane is π = {(u, v,−f)} where f is the focal length. Point ~Q = (x0, y0, ẑ(x, y)) on scene surface S

is projected onto point ~P = (u0, v0,−f) on image plane π. The curves c1(u), c2(v) ∈ π (red and blue) are parallel to axes
x, y (or u, v). The curves C1(u), C2(v) ∈ S (red and blue) are the curves on the object whose perspective projections on π

are curves c1(u), c2(v) ∈ π, respectively. The tangents to C1(u), C2(v) at point ~Q are computed from ~P and the perspective
projection equations. The normal to the two tangents is the normal to S at point ~Q.

Proof: Let us examine a curve on the projection plane:

c(s)
def
= (u(s), v(s),−f)

with parameter s. This curve is the projection of a curve on the real-world surface S. Due to the perspective projection
equations, the real-world curve can be written as:

C(s) = (−u(s)z(s)

f
,−v(s)z(s)

f
, z(s)) =

z(s)

f
(−u,−v, f)

A tangent to the real-world curve C(s) is:

dC(s)

ds
=

1

f
(−us(s)z(s) − u(s)zs(s),−vs(s)z(s) − v(s)zs(s), fzs(s)) (14)

Now, let us consider two different curves through image point ~P = (u0, v0,−f) (where (u0, v0) ∈ Ωimage). We define the
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curves to be parallel to the x and y axes at the vicinity of ~P . Thus,

c1(u) = (u, v0,−f)

c2(v) = (u0, v,−f)

where u and v are the parameters of the curves (see Fig. 9). Substituting these curves into Eq. 14 provides two tangents to
surface S at point ~P :

dC1(u)

du
=

1

f
(−z − uzu,−vzu, fzu)

dC2(v)

dv
=

1

f
(−uzv,−z − vzv, fzv)

A normal to the surface is therefore parallel to the cross product:

~N =
dC1(u)

du
× dC2(v)

dv
=

z

f2
(fzu, fzv, uzu + vzv + z)

A unit normal is thus given by:

N̂ =
(fzu, fzv, uzu + vzv + z)√

(uzu + vzv + z)2 + f2(z2
u + z2

v)

The image irradiance equation thus becomes:

I(u, v) = N̂ · L̂ =
(−ps,−qs, 1) · (fzu, fzv, uzu + vzv + z)√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f2(z2

u + z2
v)

=
(u − fps)zu + (v − fqs)zv + z√

1 + p2
s + q2

s

√
(uzu + vzv + z)2 + f2(z2

u + z2
v)

2

B Perspective Fast Marching

B.1 The Equation
We raise the image irradiance equation to the power of 2, and rearrange the terms:

p2A + q2B + 2pqC + 2pD + 2qE + F = 0

where:

A
def
= I2‖L‖2(u2 + f2) − (u − fps)

2

B
def
= I2‖L‖2(v2 + f2) − (v − fqs)

2

C
def
= I2‖L‖2uv − (u − fps)(v − fqs)

D
def
= I2‖L‖2u − (u − fps)

E
def
= I2‖L‖2v − (v − fqs)

F
def
= I2‖L‖2 − 1

We would like to have the left-hand side of this equation positive semidefinite. We therefore transfer non positive definite
terms to the right-hand side:

p2A1 + q2B1 = p2A2 + q2B2 − 2pqC − 2pD − 2qE − F
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where:

A1
def
= I2‖L‖2(u2 + f2)

A2
def
= (u − fps)

2

B1
def
= I2‖L‖2(v2 + f2)

B2
def
= (v − fqs)

2

Let us also define:
F̂

def
= p2A2 + q2B2 − 2pqC − 2pD − 2qE − F

so the equation becomes:
p2A1 + q2B1 = F̂ (15)

where A1 and B1 are positive definite, by definition. It therefore also implies that F̂ ≥ 0.

B.2 Solution of the Main Case
Similarly to [9], we estimate the directional derivatives by:

pij ≈ zij − z1

qij ≈ zij − z2

where zij
def
= z(i · ∆u, j · ∆v) is the depth of the pixel (i, j), z1

def
= min{zi−1,j , zi+1,j} and z2

def
= min{zi,j−1, zi,j+1}.

Substituting into Eq. 15, we get:
A1(zij − z1)

2 + B1(zij − z2)
2 = F̂ij

where F̂ij
def
= F̂ (i · ∆u, j · ∆v). Solving this equation for zij yields:

zij =
A1z1 + B1z2 ±

√
(A1 + B1)F̂ij − A1B1(z1 − z2)2

A1 + B1
(16)

B.3 Solution of the Degenerate Cases

The degenerate cases of the solution (Eq. 16) result from negative discriminant ∆
def
= (A1 + B1)F̂ij −A1B1(z1 − z2)

2 < 0.
This case can be written as:

|z1 − z2| >

√
F̂ij

A1
+

F̂ij

B1
(17)

We next consider three lemmas which solve the equation (Eq. 15) for the degenerate case. We adopt the following notation
from [9]: D−u

ij z
def
=

zij−zi−1,j

∆u
is the standard backward derivative approximation and D+u

ij z
def
=

zi+1,j−zij

∆u
is the standard

forward derivative approximation in the u-direction. D−v
ij z and D+v

ij z are defined in a similar manner for the v-direction.
W.L.O.G we assume ∆u = ∆v = 1.

Lemma 1 If z2 − z1 >

√
F̂ij

A1
, then zij

def
= z1 +

√
F̂ij

A1
is a solution of the equation:

(
max{D−u

ij z,−D+u
ij z, 0}

)2
A1 +

(
max{D−v

ij z,−D+v
ij z, 0}

)2
B1 = F̂ij

Proof:
The estimate of the u-derivative is:

max{D−u
ij z,−D+u

ij z, 0} = zij − min{zi−1,j , zi+1,j , zij}

= z1 +

√
F̂ij

A1
− min{z1, z1 +

√
F̂ij

A1
}

= z1 +

√
F̂ij

A1
− z1 =

√
F̂ij

A1
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The estimate of the v-derivative is:

max{D−v
ij z,−D+v

ij z, 0} = zij − min{zi,j−1, zi,j+1, zij} = z1 +

√
F̂ij

A1
− min{z2, z1 +

√
F̂ij

A1
}

Now, because z2 − z1 >

√
F̂ij

A1
, it follows that:

max{D−v
ij z,−D+v

ij z, 0} = z1 +

√
F̂ij

A1
− (z1 +

√
F̂ij

A1
) = 0

If we substitute into Eq. 15:

(
max{D−u

ij z,−D+u
ij z, 0}

)2
A1 +

(
max{D−v

ij z,−D+v
ij z, 0}

)2
B1 =




√
F̂ij

A1




2

A1 + 02B1 = F̂ij

2

Lemma 2 If z1 − z2 >

√
F̂ij

B1
, then zij

def
= z2 +

√
F̂ij

B1
is a solution of the equation:

(
max{D−u

ij z,−D+u
ij z, 0}

)2
A1 +

(
max{D−v

ij z,−D+v
ij z, 0}

)2
B1 = F̂ij

The proof is similar to that of Lemma 1.

Lemma 3 If ∆ < 0 then necessarily either z2 − z1 >

√
F̂ij

A1
or z1 − z2 >

√
F̂ij

B1
holds. In other words, any degenerate case

is contained in one of the cases of Lemmas 1 or 2.

Proof:
By definition: A1 > 0 and B1 > 0. Therefore, any F̂ij which satisfies Eq. 15 is positive: F̂ij > 0.

From Eq. 17, if ∆ < 0 then |z1 − z2| >

√
F̂ij

A1
+

F̂ij

B1
. Hence, |z1 − z2| >

√
F̂ij

A1
+

F̂ij

B1
> max{

√
F̂ij

A1
,

√
F̂ij

B1
}. We

distinguish three cases:

1. If z1 > z2, then z1 − z2 = |z1 − z2| >

√
F̂ij

A1
+

F̂ij

B1
>

√
F̂ij

B1
.

2. If z1 < z2, then z2 − z1 = |z1 − z2| >

√
F̂ij

A1
+

F̂ij

B1
>

√
F̂ij

A1
.

3. If z1 = z2, then ∆ = (A1 + B1)F̂ij > 0.

It follows, that in any case where ∆ < 0, either z2 − z1 >

√
F̂ij

A1
or z1 − z2 >

√
F̂ij

B1
holds.

2

Lemmas 1 and 2 found solutions for the cases z2 − z1 >

√
F̂ij

A1
and z1 − z2 >

√
F̂ij

B1
, respectively. Lemma 3 showed that

these cases contain the degenerate case (∆ < 0), which means that the solutions introduced by Lemmas 1 and 2 cover the
degenerate case ∆ < 0.
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