
Out-of-Core SVD and
QR Decompositions∗

Eran Rabani† and Sivan Toledo‡

1 Introduction
out-of-core singular-value-decomposition algorithm. The algorithm is designed for
tall narrow matrices that are too large to fit in main memory and are stored on disks.
We have implemented the algorithm and combined it with a larger eigensolver code
to obtain the electronic states of a semiconductor nanocrystal. The computational-
chemistry application requires finding an orthonormal basis for a subspace spanned
by a small set of real vectors. The input typically consists of several hundreds
to several thousands vectors whose length is between 200, 000–2, 000, 000. The or-
thonormal basis vectors are then used to reduce the dimensionality of an operator:
given a matrix U of orthonormal basis vectors (U ’s columns) and a matrix H rep-
resented as a matrix-vector-multiplication routine, we compute Ĥ = UT HU . We
report on performance-evaluation runs on random matrices whose size ranges from
8 to 32GB and matches the size of the computational-chemistry application.

Since neither the input matrix A (consisting of the original set of column
vectors) nor the basis U fit in memory, we must store them on disks. We therefore
use the following out-of-core strategy:

• An out-of-core algorithm computes the QR decomposition of A, A = QR.
The matrix Q is stored on disks but R is small enough to fit in memory.

• An in-core algorithm (from LAPACK) computes the SVD of R, R = U1ΣV T .

• An out-of-core matrix multiplication algorithm computes U = QU1, where
Q is stored on disks, usually not explicitly, and U is written to disks. Now
A = UΣV ∗ is the SVD of A.

∗This research was supported by Israel Science Foundation founded by the Israel Academy of
Sciences and Humanities (grant number 572/00, grant number 9060/99, and grant number 34/00)
and by the University Research Fund of Tel-Aviv University. Access to the SGI Origin 2000 was
provided by Israel’s High-Performance Computing Unit.

†School of Chemistry, Tel-Aviv University. Email: rabani@tau.ac.il.
‡School of Computer Science, Tel-Aviv University. Email: stoledo@tau.ac.il

1



2

• We prune from U singular vectors that correspond to zero (or numerically
insignificant) singular values. The remaining vectors form U ′, an orthonormal
basis for the columns of A.

• We apply H to U ′ by readings blocks of columns of U ′, applying H to them
using a matrix-vector multiplication routine that uses FFT’s to quickly apply
H , and write the transformed vectors back to disk.

• An out-of-core matrix multiplication computes Ĥ = (U ′)T (HU ′) to produce
the in-core product of two out-of-core matrices.

The most challenging phase in the out-of-core SVD of tall narrow matrices is
the out-of-core QR decomposition. Since the input matrix is tall and narrow, we
cannot use a conventional block-column approach for the QR phase. We use instead
a recursive block-Householder QR algorithm due to Elmroth and Gustavson [1, 2]
in order to achieve a high level of data reuse. The locality reference in block-column
approaches depends on the ability to store a fairly large number of columns in main
memory. In our case, we often cannot store more than 10 columns in main memory,
even on machines with several Gbytes of main memory.

Recursive formulations of decomposition algorithms that must operate on full
columns, such as QR and LU with partial pivoting, enhance locality of reference
over block-column formulations for matrices of all shapes. As a result, recursive
formulations perform better because they perform fewer cache misses and because
they require less I/O in out-of-core codes. But while the benefit of recursive for-
mulations is small when processing square matrices, the benefit is enormous for tall
narrow matrices, as shown for the LU decomposition by Toledo in [6] and for the
QR decomposition by Elmroth and Gustavson in [1, 2]. As a result, our algorithm
performs the QR decomposition at rates that are not much slower than in-core
computational rates.

We use a block-Householder QR algorithm rather than the cheaper modified
Gram-Schmidt QR algorithm since the columns of A in our application are often
linearly dependent, and in such cases neither classical nor modified Gram-Schimdt
is guaranteed to return an orthogonal Q due to rounding errors (see, for example,
[4, Chapter 18]).

We prefer to compute the SVD of A rather than a rank-revealing QR factor-
ization because the extra expense of computing the SVD of R is insignificant in our
application, since the input matrix is tall and thin. In addition, we are not aware
of an efficient column-pivoting scheme for out-of-core matrices. In other words, the
column pivoting actions of a rank-revealing QR factorization are likely to increase
the amount of I/O in an out-of-core factorization, but the savings in floating-point
arithmetic over the SVD are insignificant when the matrix is thin and tall.

We implemented the new out-of-core QR and SV D algorithms as part of SO-
LAR [8], a library of out-of-core linear algebra subroutines. Before we started the
current project, SOLAR already included sequential and parallel out-of-core codes
for matrix multiplication, solution of triangular linear systems, Cholesky factor-
izations, and LU factorizations with partial pivoting. SOLAR can exploit share-
memory parallel processing, distributed-memory parallel processing (or both), par-



3

allel input-output, and nonblocking input-output. SOLAR can process real and
complex matrices, single or double precision.

The main new addition to SOLAR is an out-of-core QR factorization. The new
code is optimized for tall narrow matrices. The new code uses existing subroutines
extensively to multiply matrices and to solve triangular systems. One unique feature
of SOLAR was particularly valuable in the implementation of the QR solver. Most
SOLAR routines, such as the matrix multiplication routine (out-of-core GEMM),
can process any mix of in-core and out-of-core arguments. For example, SOLAR
can multiply an out-of-core matrix by an in-core matrix and add the product to an
out-of-core matrix. During the recursive QR factorization of a tall narrow matrix
we often multiply a large matrix, which we must store out-of-core, by a small matrix
that we prefer to leave in-core, so this feature of SOLAR is helpful. On the other
hand, SOLAR still lacks some subroutines that could have been useful, such as
a triangular matrix multiplication routine (TRMM). Consequently, we had to use
instead the more general GEMM routine, which causes the code to perform more
floating-point operations than necessary. This overhead is relatively small.

We have also improved the I/O layer of SOLAR over the one described
in [8]. The changes allow SOLAR to perform non-blocking I/O without relying on
operating-system support (which sometimes performs poorly), they allow SOLAR
to perform I/O in distributed-memory environments without a data-redistribution
phase, and they allow SOLAR to perform I/O on large buffers without allocating
large auxiliary buffers. These changes improve the performance of SOLAR’s I/O,
they reduce the amount of I/O, and they allow the algorithms to control main
memory usage more accurately and more easily than before.

As in many other applications of out-of-core numerical software [7], our pri-
mary goal was to be able to solve very large systems, not necessarily to solve them
quickly. The largest computer currently at our disposal has only 14GBytes of main
memory, so we simply can’t solve very large systems without an out-of-core algo-
rithm. While we like to solve large systems quickly, a running time of a day or
two, perhaps up to a week, is entirely acceptable to us, mainly because the SVD
code is part of a larger application and it is not the most time-consuming part,
only the most memory-consuming. We therefore used the following rule of thumb
while developing the code: keep the amount of I/O low to achieve acceptable perfor-
mance, but do not try to eliminate small amounts of I/O if this requires a significant
programming effort.

As a consequence of this design decision we were able to design and implement
the algorithm relatively quickly using existing SOLAR subroutines. The resulting
algorithm often achieves over 60% of the peak performance of the computer, but it
could probably achieve more if more I/O is optimized away. I/O could be eliminated
by implementing out-of-core triangular matrix multiplication routines in SOLAR
(which currently only has a routine for general rectangular matrices) and by avoiding
the storage and retrieval of blocks of explicit zeros. The number of floating-point
operations would also be reduced by applying these optimizations.

The remainder of the paper is organized as follows. Section 2 describes the
recursive QR and SVD algorithm that we use and their out-of-core implementation.
Section 3 describes the computational-chemistry eigensolver for which we developed



4

the algorithm. Section 4 describes experimental results, and Section 5 describes our
conclusions.

2 Out-of-Core Recursive QR and SVD

2.1 Computing R and the Compact-WY Representation of Q

We use a recursive out-of-core algorithm for computing the compact-WY represen-
tation of Q, Q = I −Y TY T . The basic in-core formulation of this algorithm is due
to Elmroth and Gustavson [1, 2]. The input of the algorithm is A and its output is
the triplet (Y, R, T ). The algorithm factors an m-by-n matrix as follows.

1. If n = 1 then compute the Householder transformation Q = I − tyyT such
that QA = (r, 0, . . . , 0)T (t and r are scalars, y is a column vector). Return
the triplet (y, r, t). We have Y = y, T = t, and R = r.

2. Otherwise, split A into [A1A2], where A1 consists of the left n1 = bn/2c
columns of A and A2 consists of the right n2dn/2e columns.

3. Compute recursively the factorization (Y1, R11, T11) of A1.

4. Update Ã2 = QT
1 A2 = (I − Y1T11Y

T
1 )A2.

5. Compute recursively the factorization (Y2, R22, T22) of the last m − n1 rows
of Ã2.

6. Compute T12 = −T11(Y T
11Y22)T22.

7. Compute R3 which consists of the first n1 rows of Ã.

8. Return ([
Y1 Y2

]
,

[
R11 R12

0 R22

]
,

[
T11 T12

0 T22

])
.

Memory management, both in- and out-of-core, is an important aspect of
out-of-core algorithms. Our recursive QR code works with one m-by-n out-of-core
matrix and three in-core n-by-n matrices. The out-of-core matrix initially stores A
and is overwritten by Y . One of the small in-core matrices is passed in by the user
as an argument to receive R. The code allocated internally two more matrices of
the same size, one to store T and the other, denoted Z, as temporary storage. The
remaining main memory is used by the algorithm to hold blocks of A and Y that
are operated upon.

The out-of-core implementation of the recursive QR algorithm does not stop
the recursion when n = 1, but when n is small enough so that the block of A to be
factored fits within the remaining main memory (taking into account the memory
already consumed by R, T , and Z). If the block of A fits within main memory,
the code reads it from disk, computes (Y, R, T ) in core, and writes Y back to disk,
overwriting A. The in-core factorization algorithm is, in fact, an implementation
of the same recursive algorithm. We use this recursive algorithm rather than an



5

existing subroutine from, say, LAPACK, because the matrices that this routine
must factor are extremely thin, such as 2, 000, 000-by-20, and as shown in [1, 2],
the recursive algorithm outperforms LAPACK’s blocked algorithm by a large factor
in such cases. (The in-core QR factorizations of narrow panels constitute a small
fraction of the total work in this algorithm, however, so this optimization is unlikely
to significantly impact the total running time.)

If the block of A to be factored does not fit within main memory, the algorithm
splits it into A1 and A2 and factors the block recursively. Computing Ã2 = QT

1 A2 =
(I − Y1T1Y

T
1 )A2 is done in three out-of-core steps, each of which involves a call to

SOLAR’s out-of-core matrix-multiply-add routine: Ã2+ = Y1(T1(Y T
1 A2)). The first

intermediate result Y T
1 A2 is stored in the Z12 and the second intermediate result

in T12 (which is still empty).
Next, the code reads the first n1 rows of Ã2 into R12.
The code then writes out a block of zeros into the first n1 rows of A2, since

Y is lower trapezoidal, and recursively factors the last m − n1 rows of A2.
We compute T12 = (−T11(Y T

11Y22))T22 in three steps, using T12 for the first
intermediate result (Y T

11Y22), and Z12 for the second intermediate result. The first
multiplication multiplies two out-of-core matrices, the remaining two multiply in-
core matrices.

We then zero T21 and R21, which are both upper triangular.

2.2 Computing the Q or the SVD

Following the computation of the compact-WY representation of Q our code ac-
tually proceeds to compute Q or the SVD, depending on the routine called by the
user. If the user requested a QR decomposition, the code uses SOLAR’s out-of-core
matrix multiplication to compute the first n columns of Q = I − I − Y TY T . If
the user requested an SVD, the code first computes the SVD U1ΣV T of R in-core,
and then applies Q to U1 to get the left singular vectors U of A. The best way to
apply Q is to use the compact-WY representation directly and apply I − Y TY T

directly to U1. Our code currently uses a slightly less efficient method but we plan
to improve it.

3 A Computational-Chemistry Application
One of the most challenging problems of theoretical chemistry is to extend the size of
systems that can be studied computationally. Semiconductor nanocrystals fall into
the category of large system and their theoretical study requires the development
of new computational tools. In the application reported below we have used the
solver to obtain the electronic states of a semiconductor nanocrystal that contains
thousands of atoms and requires more than 50GB of disk storage. The size of the
chemical application is about an order of magnitude larger than the largest size
reported using a conventional application of electronic structure calculations within
the same physical framework.

Three steps are required to obtain the full electronic information of the nanocrys-
tal. The first is based on a physical approximation, namely that the electronic



6

structure of the nanocrystal is described within the semiempirical pseudopoten-
tial method. In this approximation the electronic state of the nanocrystal can
be computed from a single electron picture similar to a density functional ap-
proach. We used a screened nonlocal pseudopotential developed recently by Wang
and Zunger [9] that produces local-density approximation quality wave functions
with experimentally fit bulk band structure and effective masses. For simplicity the
spin-orbit interactions were neglected.

We represent the electronic wave function on a three dimensional grid in real-
space. In this representation both the nonlocal potential and kinetic operators can
be evaluated using linear scaling methods. Since it is not feasible to diagonalize
directly the one-electron Hamiltonian to obtain the desired eigenvalues and eigen-
states, even for relatively small nanocrystal sizes, we use the filter-diagonalization
method and combined it with the out-of-core SVD and QR decompositions. The de-
tailed description of the filter-diagonalization method for semiconductor nanocrys-
tals is described elsewhere [5]. Here we briefly outline the main steps of the eigen-
solver.

We compute the eigenvalues of a Hamiltonian H that lie in a specific energy
range in three steps. First, we compute a set of vectors A = [a1a2 · · · ak], not
necessarily independent, spanning the desired eigenvectors. Next we compute an
orthonormal basis U for the subspace spanned by the columns of A (and hence the
desired eigenvectors). We then reduce the order of the Hamiltonian by computing
Ĥ = UT HU . Every eigenvalue λ of Ĥ is also an eigenvalue of H , and if Ĥw =
λw, then H(Uw) = λ(Uw). The last step in our eigensolver is, therefore, the
computation of the eigenvalues Λ and eigenvectors W of Ĥ and the corresponding
eigenvectors UW of H .

The columns of A, the matrix whose columns span the desired eigenspace,
are generated by a Krylov-like filtering processes that starts from random initial
vectors. Each filtering process generates a few columns of A. Since the processes are
completely independent, we can run many of them on a cluster of Linux workstations
or on multiple processors of a parallel computer (a 112-processor SGI Origin 2000 in
our case). Each filtering process stores the columns that it generates in a separate
file. The the details of the filtering algorithm are beyond the scope of this paper
and are described elsewhere [5].

Once these filtering processes terminate and their output files are ready, our
out-of-core SVD code collects the columns of A from these files, in which multiple
columns are stored one after the other. All the columns are collected into one
SOLAR matrix file which is stored by block to optimize disk accesses. Our code can
collect filter output files from files stored on locally accessible file systems (typically
local disks or NFS mounted file systems) or on remote machines. The code collects
columns from remotely-stored files using scp, a remote file copying program.

The code now computes the SVD UΣV T of A. We use the singular values
to determine the numerical rank r of A. We then use the first r columns of U ,
corresponding to the r largest singular values, as an orthonormal basis for A, re-
duce the order of H , and compute the eigenvalues and eigenvectors of the reduced
Hamiltonian Ĥ and then the eigenvectors of H .

We assume that several matrices of size r fit into main memory, which allows



7

Table 1. The performance of our out-of-core QR factorization code includ-
ing the formation of the explicit Q. The table shows the machine used (one processor
was used in all cases), the amount of main memory that was actually used, the num-
ber of rows m and columns n in A, the number n0 of columns that the code was
able to process in core, the total factorization time (in seconds), the time spent on
in-core computations and the time spent on I/O. The last two columns show the
computational rate M of the entire factorization in millions of floating-point oper-
ations per second (Mflops), and the computational rate of the in-core computations
alone.

Machine Mem m n n0 T Tic Tio M Mic

Pentium III 1.5GB 1e6 1e3 120 39932 12280 27647 100 325
Pentium III 1.5GB 5e5 2e3 260 54339 23373 30960 147 342
Origin 2000 2GB 2e6 2e3 70 122379 69722 52630 261 459

us to compute the eigendecomposition of Ĥ in main memory (we use LAPACK’s
DSYEV routine).

4 Experimental Results
Table 1 summarizes the results of three performance-evaluation experiments. Two
experiments were conducted on a 600MHz dual Pentium III machine running Linux
and another on a 400MHz, 112-processor SGI Origin 2000. We used only one
processor on both machines. The Linux machine did not have sufficient attached
disk space, so we used 4 other similar machines as I/O servers. Communication
between the machine running the code and the I/O servers was done using a remote-
I/O module that is part of SOLAR. The I/O servers used one 18GB SCSI each,
and were connected to the other machine using fast Ethernet (100Mbits/s). The
effective I/O rate that we measured on this setup was about 9.8MBytes/s. The
Origin had an attached disk array with approximately 300GBytes.

The main conclusion from these results is that on these machines, the code
runs at 30-55% of the effective peak performance of the machine, and is hence
highly usable. Clearly, on faster machines or machines with slower I/O or on even
narrower problems, I/O would become a bottleneck. On the other hand, wider
problems should lead to better performance. We choose these matrix sizes for our
performance evaluation runs since they approximate our needs in the computational
chemistry application.

We can also see from the table that the code performs better on wider, shorter
matrices, because it performs less I/O.

We were unable to produce large-scale results from our production code in
time for the submission deadline of this paper, but we did manage to run part
of the application. Our production run completed its filtering stage on a 2e6-by-
3500 matrix. The filtering stage ran for 4 days on 10 of the Origin’s processors.
An extrapolation from our measured performance results show that computing the
SVD of this matrix would also take about 4 days (100 hours) on the Origin, using



8

only 1 processors. We conclude that the out-of-core SVD constitutes a significant
fraction of the total running time of the application, but does not dominate the
running time.

5 Summary

We have presented an out-of-core SVD and QR factorization algorithm and its
implementation. The code is intended to be used in a computational-chemistry
eigensolver. We have demonstrated that the code is efficient and that it can solve
within days problems whose size is much bigger than main memory.

We expect that the algorithm would also be useful in other algorithms that
require large-scale orthogonalization.



Bibliography

[1] E. Elmroth and F. Gustavson. New serial and parallel recursive QR factorization
algorithms for SMP systems. In B. Kågström et al., editors, Applied Parallel
Computing: Large Scale Scientific and Industrial Problems, volume 1541 of Lec-
ture Notes in Computer Science, pages 120–128. Springer-Verlag, 1998.

[2] E. Elmroth and F. Gustavson. Applying recursion to serial and parallel QR
factorization leads to better performance. IBM Journal of Research and Devel-
opment, 44(4):605–624, 2000.

[3] E. Elmroth and F. Gustavson. High-performance library software for QR fac-
torization. In P. Björstad et al., editors, Applied Parallel Computing: New
Paradigms for HPC in Industry and Academia, Lecture Notes in Computer Sci-
ence. Springer-Verlag, To appear.

[4] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
1996.

[5] Eran Rabani, Balazs Hetenyi, Bruce J. Berne, and Louis E. Brus. Electronic
properties of cdse nanocrystals in the absence and presence of a dielectric
medium. Journal of Chemical Physics, 110(11):5355–5369, 1999.

[6] Sivan Toledo. Locality of reference in LU decomposition with partial pivoting.
SIAM Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[7] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. In
James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 161–179. American Mathematical Society, 1999.

[8] Sivan Toledo and Fred G. Gustavson. The design and implementation of SO-
LAR, a portable library for scalable out-of-core linear algebra computations.
In Proceedings of the 4th Annual Workshop on I/O in Parallel and Distributed
Systems, pages 28–40, Philadelphia, May 1996.

[9] Lin-Wang Wang and Alex Zunger. Local density derived semiempirical pseu-
dopotentials. Physical Reviews B, 51(24):17398–17416, 1995.

9


