Advanced Statistical Theory

(0365.4133)

Lecturer Prof. Felix Abramovich (felix@math.tau.ac.il)
Lecture Hours Tuesday 16-19, Schreiber 006




Topics:

  1. Introduction
    • likelihood function
    • sufficiency, minimal sufficiency
    • completeness
    • exponential family of distributions
  2. Parameter Estimation
    • maximum likelihood estimation
    • other methods of estimation: method of moments, least squares
    • criteria for estimators, mean squared error
    • unbiased estimators
      • Fisher information
      • Cramer-Rao inequality
      • Rao-Blackwell theorem
      • Lehmann-Scheffe theorem
  3. Confidence Intervals & Confidence Regions
  4. Hypotheses Testing
    • introduction, basic concepts
    • simple hypotheses, Neyman-Pearson lemma
    • composite hypotheses, uniformly most powerful tests
    • generalized likelihood ratio test
  5. Large-Sample Theory
    • different types of convergence of estimators
    • consistency of estimators
    • asymptotic normality
    • asymptotic distribution of maximum likelihood estimators
    • asymptotic confidence regions
    • asymptotic distribution of generalized likelihood ratio, Wilks theorem
  6. Bayesian Inference
    • introduction, basic concepts
    • choices for prior distributions
    • Bayes estimation, credible sets and hypotheses testing
  7. Elements of Statistical Decision Theory
    • introduction, basic concepts
    • minimax risk and minimax rules
    • Bayes risk and Bayes rules
    • posterior expected loss and Bayes actions

Literature


Homework Exercises: