RECENT PUBLICATIONS
A. Beck, M.Teboulle
Mirror Descent and Nonlinear Projected Subgradient Methods for
Convex Optimization
Operations Research Letters, 31, (2003), 167-175
J. Bolte, M. Teboulle
Barrier operators and associated gradient like dynamical systems
for constrained minimization problems
SIAM J. of Control and Optimization, 42, (2003), 1266-1292
A. Auslender, M. Teboulle
The Log-Quadratic proximal methodology in convex optimization
algorithms and variational inequalities
in "Equilibrium Problems and Variational Methods", Edited by P. Daniel, F.
Gianessi and A. Maugeri
Nonconvex Optimization and its Applications, Vol 68,
Kluwer Academic Press, (2003).
A. Beck, M. Teboulle
Convergence rate analysis and error bounds for projection algorithms
in convex feasibility problems
Optimization and Software, 18, (2003), 377-394
H. Attouch and M. Teboulle
A regularized Lotka-Volterra dynamical system as a continuous
proximal-like method in optimization
Journal of Optimization Theory and Applications, 121,
( 2004), 541--570.
A. Auslender, M. Teboulle
Interior gradient and epsilon-subgradient descent methods for constrained
convex minimization
Mathematics of Operations research, 29, (2004), 1-26
A. Beck, M. Teboulle
A conditional gradient method with linear rate of convergence for
solving convex linear systems
Mathematical Methods of Operations Research, 59, (2004), 235-247.
A. Attouch, J. Bolte, P. Redont, M. Teboulle
Singular Riemannian Barrier Methods and Gradient Projected Dynamical Systems for
Constrained Optimization
Optimization, 53, (2004), 435-454
J. Kogan, M. Teboulle, C. Nicholas
Data Driven similarity measures for k-means like clustering algorithms
Information Retrival, 8, (2005), 331-349
A. Auslender, M. Teboulle
Interior projection-like methods for monotone variational
inequalities.
Mathematical Programming, 104, (2005), 39-68
M. Teboulle, J. Kogan
Deterministic annealing and a k-means type smoothing optimization algorithm
SIAM
Proceedings of Workshop on Clustering High Dimensional Data and
its Applications, (2005), 13--22
Auslender and M. Teboulle
Interior gradient and proximal methods in convex and conic optimization
SIAM J. Optimization, 16, (2006), 697-725
A. Beck and M. Teboulle
A Linearly Convergent Dual-Based Gradient Projection Algorithm for Quadratically Constrained Convex
Minimization
Mathematics of Operations Research, 31, (2006), 398-417
M. Teboulle, P. Berkhin, I. Dhillon, Y. Guan, and J. Kogan
Clustering with entropy-like k-means algorithms
Grouping Multidimensional Data: Recent Advances in Clustering, (J.
Kogan, C. Nicholas, and M. Teboulle, (Eds.)), Springer Verlag, NY,
(2006), 127--160
A. Beck, A. Ben-Tal, M. Teboulle
Finding a global optimal
solution for a quadratically constrained fractional quadratic
problem with applications to the regularized total least
squares
SIAM J. Matrix Analysis and Applications, 28, (2006), 425--445
M. C. Pinar and M. Teboulle
On semidefinite bounds for maximization of a non-convex quadratic objective over the l-one unit ball
RAIRO Operations Research, 40, (2006) 253-265
M. Teboulle
A unified continuous optimization framework for center-based clustering methods
Journal of Machine Learning Research, 8, (2007) 65-102
A. Auslender, P.J.S. Silva, M. Teboulle
Nonmonotone Projected Gradient Methods Based on Barrier and
Euclidean Distances.
Computational Optimization and Applications, 38, (2007) 305-327
A. Ben-Tal and M. Teboulle
An old-new concept of convex risk measures: the optimized
certainty equivalent.
Mathematical Finance, 17, (2007), 449-476
A. Beck, M. Teboulle, Z. Chikishev
Iterative Minimization Schemes for Solving the Single Source Localization Problem
SIAM Journal on Optimization, 19 (2008), no. 3, 1397--1416.
Y. Eldar, A. Beck, M. Teboulle
A Minimax Chebyshev Estimator for Bounded
Error Estimation
IEEE Transactions on Signal Processing, Vol. 56, No. 4, (2008), 1388-1397.
A. Auslender and M. Teboulle
Projected Subgradient Methods
with Non-Euclidean Distances for Nondifferentiable Convex
Minimization and Variational Inequalities
Mathematical
Programming B, Vol. 120, 27-48 (2009).
A. Beck and M. Teboulle
A Convex Optimization Approach for Minimizing the
Ratio of Indefnite Quadratic Functions over an Ellipsoid
Mathematical Programming A, Vol 118, 13-35, (2009).
H. Attouch, R. Cominetti and M. Teboulle
Foreword: Special issue on nonlinear convex
optimization and variational inequalities
Mathematical Programming, Series B, Vol. 116 (2009), 1 --3
A. Beck and M. Teboulle
Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
SIAM J. Imaging Sciences, Vol. 2 (2009), 183 -- 202
A. Beck and M. Teboulle
Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring
IEEE Trans. Image Proc. vol. 18, no. 11, November 2009, 2419--2434.
L.C. Ceng, M. Teboulle and J.C. Yao
Weak Convergence of an Iterative Method
for Pseudomonotone Variational Inequalities
and Fixed-Point Problems
Journal of Optimization Theory and Applications
Volume 146, Number 1, 19-31, 2010.
A. Beck and M. Teboulle
Gradient-Based Algorithms with Applications in Signal Recovery Problems
PDF
In Convex Optimization in Signal Processing and Communications,
D. Palomar and Y. Eldar Eds., pp. 33--88. Cambribge University Press, 2010.
A. Beck and M. Teboulle
On Minimizing Quadratically Constrained Ratio of Two
Quadratic Functions
Journal of Convex Analysis 17(2010), No. 3&4, 789--804.
Alfred Auslender, Ron Shefi and Marc Teboulle
A Moving Balls Approximation Method for a Class of Smooth Constrained Minimization Problems
SIAM J. Optim. 20, 2010, pp. 3232-3259.
Ronny Luss and Marc Teboulle
Convex Approximations to Sparse PCA via Lagrangian Duality
Operations Research Letters, 39(1), 2011, pp. 57-61.
A. Beck and M. Teboulle
A Linearly Convergent Algorithm for Solving a Class of Nonconvex/Affine Feasibility Problems
In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Eds H. Bauschke et al.,
Springer Optimization and Its Applications, 2011, Volume 49, 33-48.
A. Beck, Y. Drori and M. Teboulle
A new semidefinite programming relaxation scheme for a class of quadratic matrix problems
Operations Research Letters, 40(4), 2012, pp. 298--302.
A. Beck and M. Teboulle
Smoothing and First Order Methods: A Unified Framework
SIAM J. Optimization, 22, 2012, pp. 557--580.
R. Luss and M. Teboulle
Conditional Gradient Algorithms for Rank One Matrix Approximations with a Sparsity Constraint
SIAM Review, 55, 2013, pp. 65--98.
A. Beck, A. Nedich, A. Ozdaglar, and M. Teboulle
An O(1/k) Gradient Method for Network Resource Allocation Problems
IEEE Transactions on Control of Network Systems, Volume 1, 2014, pp. 64--73.
Y. Drori and M. Teboulle
Performance of first-order methods for smooth convex minimization: a novel approach
Mathematical Programming, Series A, Volume 145,
2014, pp 451-482.
A. Beck and M. Teboulle
A fast dual proximal gradient algorithm for convex minimization
and applications.
Operations Research Letters, 42, 2014, pp. 16.
J. Bolte, S. Sabach and M. Teboulle
Proximal alternating linearized minimization for nonconvex and nonsmooth problems
Mathematical Programming, Series A, Volume 146, 2014, pp 459-494 .
R. Shefi and M. Teboulle
Rate of Convergence Analysis of Decmposition
Methods Based on the Proximal Method of
Multipliers for Convex Minimization
SIAM J. Optimization, Volume 24, 2014, pp 269--297 .
Y. Drori, S. Sabach and M. Teboulle
A simple algorithm for a class of nonsmooth convexconcave saddle-point problems
Operation Research Letters, Volume 43, Issue 2, March 2015, Pages 209214 .
H. Bauschke, J. Bolte, and M. Teboulle
A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications
Mathematics of Operation Research, August 2016, Pages 119 .
R. Shefi and M. Teboulle
On the rate of convergence of the proximal alternating
linearized minimization algorithm for convex problems
EURO Journal on Computational Optimization, 2016, Volume 4,
Issue 1, pp 2746 .
Y. Drori and M. Teboulle
An Optimal Variant of Kelley's Cutting Plane Method
Mathematical Programming, Series A,
2016, Volume 160, Issue 1, pp 321-351.
A. Beck, S. Sabach and M. Teboulle
An Alternating Semiproximal Method for Nonconvex Regularized Structured Total Least Squares Problems
SIAM J. Matrix Analysis and Applications, 2016, Vol. 37, No. 3, pp. 11291150.
R. Shefi and M. Teboulle
A dual method for minimizing a nonsmooth objective
over one smooth inequality constraint
Mathematical Programming, Series A, 2016, Volume 159, Issue 1, pp 137164.
Y. Drori and M. Teboulle
An Optimal Variant of Kelley's Cutting-Plane Method
Mathematical Programming, Series A, Volume 160, Issue 2, (2016), pp. 321-351.
H. Bauschke, J. Bolte and M. Teboulle
A descent Lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications
Mathematics of Operations Research, Vol. 42, (2017), pp. 330--348.
R. Luke, S. Sabach, M. Teboulle and K. Zatlawy
A simple globally convergent algorithm for the nonsmooth nonconvex single source localization problem
Journal of Global Optimization, Volume 69, issue 4, (2017), pp. 889--909.
J. Bolte, S. Sabach and M. Teboulle. Nonconvex Lagrangian-Based Optimization: Monitoring
Schemes and Global Convergence
Mathematics of Operations Research, Vol. 43, (2018) pp.1210--1232.
J. Bolte, S. Sabach, M. Teboulle and Y. Vaisbourd
First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems
SIAM J. Optimization, Vol. 28, (2018), pp. 2131--2151.
M. Teboulle
A simplified view of first order methods for optimization
Mathematical Programming, Volume 170, (2018), pp 6796.
S. Sabach, M. Teboulle and S. Voldman. A smoothing alternating minimization-based algorithm
for clustering with sum-min of Euclidean norms.
Pure Applied Functional Analysis, 3(4), (2018), pp. 653--679.
H. Bauschke, J. Bolte, C. Jiawei, M. Teboulle, and X. Wang. On Linear Convergence of Non-
Euclidean Gradient Methods without Strong Convexity and Lipschitz Gradient Continuity.
Journal of Optimization Theory and Applications, 182, (2019), 1068--1087.
N. Hallak and M. Teboulle. A non-Euclidean gradient descent method with sketching for
unconstrained matrix minimization.
Operations Research Letters, 47, (2019), 421--426.
D. R. Luke, S. Sabach and M. Teboulle. Optimization on Spheres: Models and Proximal Algorithms
with Computational Performance Comparisons.
SIAM J. Mathematics of Data Science,
Vol. 1, (2019) 408--445.
R. Luke, M. Teboulle, and N. Thao.
Necessary conditions for linear convergence of iterated
expansive, set-valued mappings
Mathematical Programming, 180, (2020), pp. 1--31.
S. Sabach and M. Teboulle. Lagrangian Methods for Composite Optimization.
Handbook of Numerical Analysis, Volume 20, (2019), 401-436.
M. Teboulle and Y. Vaisbourd. Novel Proximal Gradient Methods for Nonnegative Matrix Fac-
torization with Sparsity Constraints.
SIAM J. Imaging Sciences, 13, (2020), 381--421.
N. Hallak and M. Teboulle. Finding second-order stationary points in constrained minimization:
a feasible direction approach.
Journal of Optimization Theory and Applications, 186,
(2020), 480503.
E. Cohen, S. Sabach and M. Teboulle. Non-Euclidean proximal methods for convex-concave
saddle point problems.
J. of Applied and Numerical Optimization, 3, (2021), 4360.
A. Beck and M. Teboulle. Dual Randomized Coordinate Descent Method for Solving a Class
of Nonconvex Problems.
SIAM J. Optimization, 31, (2021), 18771896.
E. Cohen, N. Hallak and M. Teboulle. A Dynamic Alternating Direction of Multipliers for
Nonconvex Minimization with Nonlinear Functional Equality Constraints.
J. of Optimization
Theory and Applications, 193, (2022), 324-353.
S. Sabach and M. Teboulle. Faster Lagrangians Based Methods in Convex Optimization.
SIAM J. Optimization, 32, (2022), 204-227.
M. Teboulle and Y. Vaisbourd. An elementary approach to tight worst case complexity
analysis of gradient based methods.
Mathematical Programming, Series A. (2023). To appear.
N. Hallak and M. Teboulle. An Adaptive Lagrangian-Based Scheme for Nonconvex Composite
Optimization.
Mathematics of Operations Research (2023). To appear.
Updated -- Sept 2023