RECENT PUBLICATIONS
A. Beck, M.Teboulle
Mirror Descent and Nonlinear Projected Subgradient Methods for
Convex Optimization
Operations Research Letters, 31, (2003), 167-175
J. Bolte, M. Teboulle
Barrier operators and associated gradient like dynamical systems
for constrained minimization problems
SIAM J. of Control and Optimization, 42, (2003), 1266-1292
A. Auslender, M. Teboulle
The Log-Quadratic proximal methodology in convex optimization
algorithms and variational inequalities
in "Equilibrium Problems and Variational Methods", Edited by P. Daniel, F.
Gianessi and A. Maugeri
Nonconvex Optimization and its Applications, Vol 68,
Kluwer Academic Press, (2003).
A. Beck, M. Teboulle
Convergence rate analysis and error bounds for projection algorithms
in convex feasibility problems
Optimization and Software, 18, (2003), 377-394
H. Attouch and M. Teboulle
A regularized Lotka-Volterra dynamical system as a continuous
proximal-like method in optimization
Journal of Optimization Theory and Applications, 121,
( 2004), 541--570.
A. Auslender, M. Teboulle
Interior gradient and epsilon-subgradient descent methods for constrained
convex minimization
Mathematics of Operations research, 29, (2004), 1-26
A. Beck, M. Teboulle
A conditional gradient method with linear rate of convergence for
solving convex linear systems
Mathematical Methods of Operations Research, 59, (2004), 235-247.
A. Attouch, J. Bolte, P. Redont, M. Teboulle
Singular Riemannian Barrier Methods and Gradient Projected Dynamical Systems for
Constrained Optimization
Optimization, 53, (2004), 435-–454
J. Kogan, M. Teboulle, C. Nicholas
Data Driven similarity measures for k-means like clustering algorithms
Information Retrival, 8, (2005), 331–-349
A. Auslender, M. Teboulle
Interior projection-like methods for monotone variational
inequalities.
Mathematical Programming, 104, (2005), 39–-68
M. Teboulle, J. Kogan
Deterministic annealing and a k-means type smoothing optimization algorithm
SIAM
Proceedings of Workshop on Clustering High Dimensional Data and
its Applications, (2005), 13--22
Auslender and M. Teboulle
Interior gradient and proximal methods in convex and conic optimization
SIAM J. Optimization, 16, (2006), 697-–725
A. Beck and M. Teboulle
A Linearly Convergent Dual-Based Gradient Projection Algorithm for Quadratically Constrained Convex
Minimization
Mathematics of Operations Research, 31, (2006), 398-–417
M. Teboulle, P. Berkhin, I. Dhillon, Y. Guan, and J. Kogan
Clustering with entropy-like k-means algorithms
Grouping Multidimensional Data: Recent Advances in Clustering, (J.
Kogan, C. Nicholas, and M. Teboulle, (Eds.)), Springer Verlag, NY,
(2006), 127--160
A. Beck, A. Ben-Tal, M. Teboulle
Finding a global optimal
solution for a quadratically constrained fractional quadratic
problem with applications to the regularized total least
squares
SIAM J. Matrix Analysis and Applications, 28, (2006), 425--445
M. C. Pinar and M. Teboulle
On semidefinite bounds for maximization of a non-convex quadratic objective over the l-one unit ball
RAIRO Operations Research, 40, (2006) 253-265
M. Teboulle
A unified continuous optimization framework for center-based clustering methods
Journal of Machine Learning Research, 8, (2007) 65-102
A. Auslender, P.J.S. Silva, M. Teboulle
Nonmonotone Projected Gradient Methods Based on Barrier and
Euclidean Distances.
Computational Optimization and Applications, 38, (2007) 305-327
A. Ben-Tal and M. Teboulle
An old-new concept of convex risk measures: the optimized
certainty equivalent.
Mathematical Finance, 17, (2007), 449-476
A. Beck, M. Teboulle, Z. Chikishev
Iterative Minimization Schemes for Solving the Single Source Localization Problem
SIAM Journal on Optimization, 19 (2008), no. 3, 1397--1416.
Y. Eldar, A. Beck, M. Teboulle
A Minimax Chebyshev Estimator for Bounded
Error Estimation
IEEE Transactions on Signal Processing, Vol. 56, No. 4, (2008), 1388-1397.
A. Auslender and M. Teboulle
Projected Subgradient Methods
with Non-Euclidean Distances for Nondifferentiable Convex
Minimization and Variational Inequalities
Mathematical
Programming B, Vol. 120, 27-48 (2009).
A. Beck and M. Teboulle
A Convex Optimization Approach for Minimizing the
Ratio of Indefnite Quadratic Functions over an Ellipsoid
Mathematical Programming A, Vol 118, 13-35, (2009).
H. Attouch, R. Cominetti and M. Teboulle
Foreword: Special issue on nonlinear convex
optimization and variational inequalities
Mathematical Programming, Series B, Vol. 116 (2009), 1 --3
A. Beck and M. Teboulle
Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
SIAM J. Imaging Sciences, Vol. 2 (2009), 183 -- 202
A. Beck and M. Teboulle
Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring
IEEE Trans. Image Proc. vol. 18, no. 11, November 2009, 2419--2434.
L.C. Ceng, M. Teboulle and J.C. Yao
Weak Convergence of an Iterative Method
for Pseudomonotone Variational Inequalities
and Fixed-Point Problems
Journal of Optimization Theory and Applications
Volume 146, Number 1, 19-31, 2010.
A. Beck and M. Teboulle
Gradient-Based Algorithms with Applications in Signal Recovery Problems
PDF
In Convex Optimization in Signal Processing and Communications,
D. Palomar and Y. Eldar Eds., pp. 33--88. Cambribge University Press, 2010.
A. Beck and M. Teboulle
On Minimizing Quadratically Constrained Ratio of Two
Quadratic Functions
Journal of Convex Analysis 17(2010), No. 3&4, 789--804.
Alfred Auslender, Ron Shefi and Marc Teboulle
A Moving Balls Approximation Method for a Class of Smooth Constrained Minimization Problems
SIAM J. Optim. 20, 2010, pp. 3232-3259.
Ronny Luss and Marc Teboulle
Convex Approximations to Sparse PCA via Lagrangian Duality
Operations Research Letters, 39(1), 2011, pp. 57-61.
A. Beck and M. Teboulle
A Linearly Convergent Algorithm for Solving a Class of Nonconvex/Affine Feasibility Problems
In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Eds H. Bauschke et al.,
Springer Optimization and Its Applications, 2011, Volume 49, 33-48.
A. Beck, Y. Drori and M. Teboulle
A new semidefinite programming relaxation scheme for a class of quadratic matrix problems
Operations Research Letters, 40(4), 2012, pp. 298--302.
A. Beck and M. Teboulle
Smoothing and First Order Methods: A Unified Framework
SIAM J. Optimization, 22, 2012, pp. 557--580.
R. Luss and M. Teboulle
Conditional Gradient Algorithms for Rank One Matrix Approximations with a Sparsity Constraint
SIAM Review, 55, 2013, pp. 65--98.
Y. Drori and M. Teboulle
Performance of first-order methods for smooth convex minimization: a novel approach
Mathematical Programming Series A, 2013.