Information up to (and including) January 2021 can be found on the original seminar webpage at https://dms.umontreal.ca/~cornea/Seminar.html
Next talk – Apr. 16: Three 20min research talks

Maxim Jeffs (Harvard)
Title: Mirror symmetry and Fukaya categories of singular varieties
Abstract: In this talk I will explain Auroux' definition of the Fukaya category of a singular hypersurface and two results about this definition, illustrated with some examples. The first result is that Auroux' category is equivalent to the FukayaSeidel category of a LandauGinzburg model on a smooth variety; the second result is a homological mirror symmetry equivalence at certain large complex structure limits. I will also discuss ongoing work on generalizations.

Côme Dattin (Nantes)
Title: Wrapped sutured Legendrian homology and the conormal of braids
Abstract: In this talk we will discuss invariants of sutured Legendrians. A sutured contact manifold can be seen as either generalizing the contactisation of a Liouville domain, or as a presentation of a contact manifold with convex boundary. Using the first point of view, we define the wrapped sutured homology of Legendrians with boundary, employing ideas coming from Floer theory. To illustrate the second aspect, we apply the unit conormal construction to braids with two strands, which yields a sutured Legendrian. We will show that, if the conormals of two 2braids are Legendrian isotopic, then the braids are equivalent.

Bingyu Zhang (Institut Fourier, Université Grenoble Alpes)
Title: Capacities from the ChiuTamarkin complex
Abstract: In this talk, we will discuss the ChiuTamarkin complex. It is a symplectic/contact invariant that comes from the microlocal sheaf theory. I will explain how to define some capacities using the ChiuTamarkin complex in both symplectic and contact situations. The main result is the structure theorem of the ChiuTamarkin complex of convex toric domains. Consequently, we can compute the capacities of convex toric domains.
About the seminar
 Regular research talks are of 60 minutes. There will be 30 min at the end of each talk reserved for discussion. The first 15 minutes (roughly) are, mainly, for questions addressed to the speaker. After that, questions and answers may involve different participants.
 Once a month we intend to have a seminar consisting of three 20min talks (followed each by 10min of discussion time) given by young researchers/recent PhD's. Suggestions, nominations, and volunteers (including a title and short abstract) should be sent to Egor Shelukhin at egorshel@gmail.com (with cc to octav.cornea@gmail.com).
 It is intended that all talks be accessible to a global community in symplectic geometry/topology and beyond (thus, they should contain an introduction of interest to a broad audience).
 Please do not hesitate to ask questions: First indicate your intention (or even the question) by chat, then, when invited by the host/organizer, use your microphone and video (if available).
 We post links to the slides of the talks as well as links to recordings of the talks.
The Zoominar promotes an atmosphere of collegiality, equity and respect and is committed to creating a welcoming and inclusive environment for all participants, enabling them to fully focus on mathematics.
Current Zoominar organizers: Daniel ÁlvarezGavela (MIT), Octav Cornea (Montréal), Dan CristofaroGardiner (IAS), Helmut Hofer (IAS), Yusuf Barış Kartal (Princeton), Leonid Polterovich (Tel Aviv), Egor Shelukhin (Montréal), Sara Tukachinsky (IAS), Claude Viterbo (Paris), Zhengyi Zhou (IAS)
Future talks
 Apr. 23: Cancelled on account of the Spring School on Symplectic and Contact Topology, https://conferences.cirmmath.fr/2329.html
 Apr. 30: Cancelled on account of the conference From Hamiltonian Systems to Symplectic Topology and Beyond, https://indico.math.cnrs.fr/event/5786/
 May 7: Laura Starkston (UC Davis), TBA
 May 14: Daniel ÁlvarezGavela (MIT), TBA
 May 21: Cancelled on account of Advances in Symplectic Topology, https://indico.math.cnrs.fr/event/5787/

May 28: Three 20min research talks
 TBD
 TBD
 TBD
 Jun. 4: Simion Filip (Chicago), TBA
 Jun. 11: TBD
 Jun. 18: TBD
 Jun. 25: TBD
 Jul. 2: Cancelled on account of Convexity in Contact and Symplectic Topology, https://indico.math.cnrs.fr/event/5788/
 Jul. 9: TBD
 Jul. 16: Helmut Hofer (IAS), The Floer Jungle: 35 years of Floer Theory
Past talks

Apr. 9: Sara Tukachinsky (IAS),
Relative quantum cohomology and other stories,
(video),
(slides),
(abstract)
We define a quantum product on the cohomology of a symplectic manifold relative to a Lagrangian submanifold, with coefficients in a Novikov ring. The associativity of this product is equivalent to an open version of the WDVV equations for an appropriate disk superpotential. Both structures — the quantum product and the WDVV equations — are consequences of a more general structure we call the tensor potential, which will be the main focus of this talk. This is joint work with Jake Solomon.

Apr. 2: Sheel Ganatra (USC),
Categorical nonproperness in wrapped Floer theory,
(video),
(slides),
(abstract)
In all known explicit computations on Weinstein manifolds, the selfwrapped Floer homology of noncompact exact Lagrangian is always either infinitedimensional or zero. We will explain why a global variant of this observed phenomenon holds in broad generality: the wrapped Fukaya category of any positivedimensional Weinstein (or nondegenerate Liouville) manifold is always either nonproper or zero, as is any quotient thereof. Moreover any noncompact connected exact Lagrangian is always either a "nonproper object" or zero in such a wrapped Fukaya category, as is any idempotent summand thereof. We will also examine where the argument could break if one drops exactness, which is consistent with known computations of nonexact wrapped Fukaya categories which are smooth, proper, and nonvanishing (e.g., work of RitterSmith).

Mar. 26: Three 20min research talks

Jesse Huang (UIUC),
Variation of FLTZ skeleta,
(video),
(slides),
(abstract)
In this short talk, I will discuss an interpolation of FLTZ skeleta mirror to derived equivalent toric varieties. This is joint work with Peng Zhou.

Shaoyun Bai (Princeton),
SU(n)–Casson invariants and symplectic geometry,
(video),
(slides),
(abstract)
In 1985, Casson introduced an invariant of integer homology 3spheres by counting SU(2)representations of the fundamental groups. The generalization of Casson invariant by considering Lie groups SU(n) has been long expected, but the original construction of Casson encounters some difficulties. I will present a solution to this problem, highlighting the equivariant symplectic geometry and AtiyahFloer type result entering the construction.

Thomas Melistas (UGA),
The LargeScale Geometry of Overtwisted Contact Forms,
(video),
(slides),
(abstract)
Inspired by the symplectic BanachMazur distance, proposed by Ostrover and Polterovich in the setting of nondegenerate starshaped domains of Liouville manifolds, we define a distance on the space of contact forms supporting a given contact structure on a closed contact manifold and we use it to biLipschitz embed part of the 2dimensional Euclidean space into the space of overtwisted contact forms supporting a given contact structure on a smooth closed manifold.

Jesse Huang (UIUC),
Variation of FLTZ skeleta,
(video),
(slides),
(abstract)

Mar. 19: Egor Shelukhin (UdeM),
Lagrangian configurations and Hamiltonian maps,
(video),
(slides),
(abstract)
We study configurations of disjoint Lagrangian submanifolds in certain lowdimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinitedimensional flats in the Hamiltonian group of the twosphere equipped with Hofer's metric, showing in particular that this group is not quasiisometric to a line. This answers a wellknown question of KapovichPolterovich from 2006. We show that these flats in \(Ham(S^2)\) stabilize to certain product fourmanifolds, prove constraints on Lagrangian packing, find new instances of Lagrangian Poincare recurrence, and present a new hierarchy of normal subgroups of areapreserving homeomorphisms of the twosphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds. This is joint work with Leonid Polterovich.

Mar. 12: Oleg Lazarev (Harvard),
Inverting primes in Weinstein geometry,
(video),
(slides),
(abstract)
A classical construction in topology associates to a space \(X\) and prime \(p\), a new "localized" space \(X_p\) whose homotopy and homology groups are obtained from those of \(X\) by inverting \(p\). In this talk, I will discuss a symplectic analog of this construction, extending work of AbouzaidSeidel and CieliebakEliashberg on flexible Weinstein structures. Concretely, I will produce primelocalized Weinstein subdomains of highdimensional Weinstein domains and also show that any Weinstein subdomain of a cotangent bundle agrees Fukayacategorically with one of these special subdomains. The key will be to classify which objects of the Fukaya category of \(T^*M\) – twisted complexes of Lagrangians – are quasiisomorphic to actual Lagrangians. This talk is based on joint work with Z. Sylvan.

Mar. 5: Sobhan Seyfaddini (IMJPRG),
Periodic Floer homology and the largescale geometry of Hofer's metric on the sphere,
(video),
(slides),
(abstract)
The group of Hamiltonian diffeomorphisms of a symplectic manifold admits a remarkable biinvariant metric, called Hofer’s metric. My talk will be about a recent joint work with Dan CristofaroGardiner and Vincent Humilière resolving the following two openquestions related to the largescale geometry of this metric. The first, due to Kapovich and Polterovich, asks whether the twosphere, equipped with Hofer’s metric, is quasiisometric to the real line; we show that it is not. The second, due to Fathi, asks whether the group of area and orientation preserving homeomorphisms of the twosphere is a simple group; we show that it is not. Key to our proofs is a new sequence of spectral invariants defined via Hutchings’ Periodic Floer Homology.
 For two somewhat related talks by Rémi Leclercq and Vincent Humilière on Mar. 6, see the link: https://dms.umontreal.ca/~cornea/MicroC0.

Feb. 26: Generating Functions Day

9:15am EST: Sylvain Courte (Université Grenoble Alpes),
Twisted generating functions and the nearby Lagrangian conjecture,
(video),
(slides),
(abstract)
I will explain the notion of twisted generating function and show that a closed exact Lagrangian submanifold L in the cotangent bundle of M admits such a thing. The type of function arising in our construction is related to Waldhausen's tube space from his manifold approach to algebraic Ktheory of spaces. Using the rational equivalence of this space with BO, as proved by Bökstedt, we conclude that the stable Lagrangian Gauss map of L vanishes on all homotopy groups. In particular when M is a homotopy sphere, we obtain the triviality of the stable Lagrangian Gauss map and a genuine generating function for L. This is a joint work with M. Abouzaid, S. Guillermou and T. Kragh.

12pm EST, at the
WHVSS:
Simon Allais (ENS Lyon),
Periodic points of Hamiltonian diffeomorphisms and generating functions,
(abstract)
Ginzburg and Gürel recently showed that a hamiltonian diffeomorphism of \(CP^d\) a hyperbolic periodic point have infinitely many periodic points whereas fixed points of a pseudorotation are isolated as an invariant set. In 2019, Shelukhin proved a homology version of the HoferZehnder conjecture in a large class of symplectic manifolds \(M\) that includes \(CP^d\): a Hamiltonian diffeomorphism with more homologically visible fixed points than the dimension of the homology of \(M\) has infinitely many periodic points. These results rely on the quantum structure of the Floer homology.
In this talk, I will explain how the study of sublevel sets of generating functions can replace the use of \(J\)holomorphic curves and Floer theory in the study of periodic points of \(CP^d\), based on ideas of Givental and Théret in the 90s. 
3pm EST, at the
WHVSS:
Yael Karshon (Toronto University),
Nonlinear Maslov index on lens spaces,
(abstract)
Let L be a lens space with its standard contact structure. We use generating functions to construct a "nonlinear Maslov index", which associates an integer to any contact isotopy of L that starts at the identity, and whose properties allow us to prove rigidity properties of L as a contact manifold.
This is joint work with Gustavo Granja, Milena Pabiniak, and Sheila (Margherita) Sandon, and it follows earlier work of Givental and Theret that applied to real and complex projective spaces.

9:15am EST: Sylvain Courte (Université Grenoble Alpes),
Twisted generating functions and the nearby Lagrangian conjecture,
(video),
(slides),
(abstract)

Feb. 19: Daniel Pomerleano (UMass Boston),
Intrinsic mirror symmetry and categorical crepant resolutions,
(video),
(slides),
(abstract)
Gross and Siebert have recently proposed an "intrinsic" programme for studying mirror symmetry. In this talk, we will discuss a symplectic interpretation of some of their ideas in the setting of affine log CalabiYau varieties. Namely, we describe work in progress which shows that, under suitable assumptions, the wrapped Fukaya category of such a variety \(X\) gives an intrinsic "categorical crepant resolution" of \(Spec(SH^0(X))\). No background in mirror symmetry will be assumed for the talk.

Feb. 12: Cheuk Yu Mak (Edinburgh),
Nondisplaceable Lagrangian links in fourmanifolds,
(video),
(slides),
(abstract)
One of the earliest fundamental applications of Lagrangian Floer theory is detecting the nondisplaceablity of a Lagrangian submanifold. Many progress and generalisations have been made since then but little is known when the Lagrangian submanifold is disconnected. In this talk, we describe a new idea to address this problem. Subsequently, we explain how to use FukayaOhOhtaOno and ChoPoddar theory to show that for every \(S^2 \times S^2\) with a nonmonotone product symplectic form, there is a continuum of disconnected, nondisplaceable Lagrangian submanifolds such that each connected component is displaceable. This is a joint work with Ivan Smith.

Feb. 5: Yusuf Barış Kartal (Princeton),
Algebraic torus actions on Fukaya categories,
(video),
(slides),
(abstract)
The purpose of this talk is to explore how Lagrangian Floer homology groups change under (nonHamiltonian) symplectic isotopies on a (negatively) monotone symplectic manifold \((M,\omega)\) satisfying a strong nondegeneracy condition. More precisely, given two Lagrangian branes \(L,L',\) consider family of Floer homology groups \(HF(\phi_v(L),L')\), where \(v\in H^1(M,\mathbb R)\) and \(\phi_v\) is the time1 map of a symplectic isotopy with flux \(v\). We show how to fit this collection into an algebraic sheaf over the algebraic torus \(H^1(M,\mathbb G_m)\). The main tool is the construction of an "algebraic action" of \(H^1(M,\mathbb G_m)\) on the Fukaya category. As an application, we deduce the change in Floer homology groups satisfy various tameness properties, for instance, the dimension is constant outside an algebraic subset of \(H^1(M,\mathbb G_m)\). Similarly, given closed \(1\)form \(\alpha\), which generates a symplectic isotopy denoted by \(\phi_\alpha^t\), the Floer homology groups \(HF(\phi_\alpha^t(L),L')\) have rank that is constant in \(t\), with finitely many possible exceptions.
 Earlier talks: https://dms.umontreal.ca/~cornea/Seminar.html